ON STABILITY OF CONVOLUTION OF JANOWSKI FUNCTIONS

KHALIDA INAYAT NOOR AND HUMAYOUN SHAHID*

Abstract

In this paper, the classes $S^{*}[A, B]$ and $C[A, B]$ are discussed in terms of dual sets. Using duality, various geometric properties of mentioned class are analyzed. Problem of neighborhood as well as stability of convolution of $S^{*}[A, B]$ and $C[A, B]$ are studied. Some of our results generalize previously known results.

1. Introduction

Let \mathcal{A} be the class of all functions of the form

$$
\begin{equation*}
f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n} \tag{1.1}
\end{equation*}
$$

which are analytic in open unit disc $E=\{z \in \mathbb{C}:|z|<1\}$.
Let $S \subset \mathcal{A}$ be the class of functions which are univalent and also $S^{*}(\alpha)$ and $C(\alpha)$ be the well known subclasses of S which, respectively consist of starlike and convex functions of order α. If $f(z)$ and $g(z)$ are analytic in E, we say that $f(z)$ is subordinate to $g(z)$, written as $f \prec g$ or $f(z) \prec g(z)$ if there exist a Schwarz function $w(z)$ which is analytic in E with $w(0)=0$ and $|w(z)|<1$ where $z \in E$, such that $f(z)=g(w(z)), z \in E$. Also, if $g \in S$, then

$$
f(z) \prec g(z) \text { if and only if } f(0)=g(0) \text { and } f(E) \subset g(E) .
$$

A number of subclasses of analytic functions were introduced using subordination. In 1973, Janowski [2] introduced the class $P[A, B]$ which is defined as

$$
P[A, B]=\left\{p(z): p(z) \prec \frac{1+A z}{1+B z}\right\},
$$

where $-1 \leq B<A \leq 1$. Geometrically, $p(E)$ is contained in the open disc centered on the real axis having diameter end points $\frac{1-A}{1-B}$ and $\frac{1+A}{1+B}$ with centered at $\frac{1-A B}{1-B^{2}}$. For specific values of A and B we obtain many known subclasses of $P[A, B]$. Some specific cases include
(i). $P[1,-1]=P$, the class of Caratheodory functions.
(ii). $P[1-2 \alpha,-1]=P(\alpha)$, the class of Caratheodory functions of order α.
(iii). $p(z) \in P[\alpha, 0]$ satisfies the condition $|p(z)-1|<\alpha$, see [4].

Using $P[A, B]$, Janowski [2] introduced $S^{*}[A, B]$ and $C[A, B]$ which are defined as

$$
S^{*}[A, B]=\left\{f \in \mathcal{A}: \frac{z f^{\prime}(z)}{f(z)} \prec \frac{1+A z}{1+B z}, z \in E\right\}
$$

and

$$
C[A, B]=\left\{f \in \mathcal{A}: \frac{\left(z f^{\prime}(z)\right)^{\prime}}{f^{\prime}(z)} \prec \frac{1+A z}{1+B z}, z \in E\right\}
$$

where $-1 \leq B<A \leq 1$. We note that Alexander relation holds between $S^{*}[A, B]$ and $C[A, B]$.

[^0]The convolution (Hadamard) of two functions $f(z)$ given by (1.1) and $g(z)=z+\sum_{n=2}^{\infty} b_{n} z^{n}$ is defined as

$$
(f * g)(z)=(g * f)(z)=z+\sum_{n=2}^{\infty} a_{n} b_{n} z^{n}
$$

Let $V \subset \mathcal{A}$ the dual set V^{*} (see [6]) is defined as following

$$
\begin{equation*}
V^{*}=\left\{g \in \mathcal{A}: \frac{(f * g)(z)}{z} \neq 0, \forall f \in A, z \in E\right\} \tag{1.2}
\end{equation*}
$$

Silverman et al. [8] proved that $S^{*}[A, B]=G^{*}$, where G^{*} represents the dual set of G defined in (1.2) and G is given by

$$
\begin{equation*}
G=\left\{g \in \mathcal{A}: g(z)=\frac{z-L z^{2}}{(1-z)^{2}}\right\} \tag{1.3}
\end{equation*}
$$

where $L=\frac{e^{-i \theta}+A}{A-B}$ and $\theta \in[0,2 \pi]$. Using the Alexander type relation, $C[A, B]=H^{*}$ where

$$
\begin{equation*}
H=\left\{h \in \mathcal{A}: h(z)=\frac{z+(1-2 L) z^{2}}{(1-z)^{3}}\right\} \tag{1.4}
\end{equation*}
$$

where L is same as given in (1.3) and $-1 \leq B<A \leq 1$.
For $f \in \mathcal{A}$ and is of form (1.1) and $\delta \geq 0$, the N_{δ} neighborhood of function f is defined as following (see [7]).

$$
N_{\delta}(f)=\left\{g(z)=z+\sum_{n=2}^{\infty} b_{n} z^{n} \in A: \sum_{n=2}^{\infty} n\left|b_{n}-a_{n}\right| \leq \delta\right\}
$$

Ruscheweyh proved many inclusion results of $N_{\delta}(f)$ especially $N_{\frac{1}{4}}(f) \subset S^{*}$ for all $f \in C$.
For $X, Y \subset \mathcal{A}$. The convolution is called stable univalent if there exist $\delta>0$ such that $N_{\delta}(f) *$ $N_{\delta}(g) \subset S$, where $f \in X$ and $g \in Y$. The constant δ is defined as

$$
\begin{equation*}
\delta(X * Y, Z)=\sup \left\{\delta: N_{\delta}(f) * N_{\delta}(g) \subset Z\right\} \tag{1.5}
\end{equation*}
$$

In the current paper, we estimate the coefficient bounds of functions given in (1.3) and (1.4). Using these estimates we discuss some interesting properties of $N_{\delta}(f)$ for different classes and inclusion properties of $N_{\delta}(f)$.

2. Preliminaries

To prove our main results, we need the following Lemmas.
Lemma 2.1. [8]. Let $-1 \leq B<A \leq 1$ and $\theta \in[0,2 \pi]$. Then $G^{*}=S^{*}[A, B]$, where

$$
G=\left\{g \in A: g(z)=\frac{z-\frac{e^{-i \theta}+A}{A-B} z^{2}}{(1-z)^{2}}\right\}
$$

Lemma 2.2. [8]. Let $-1 \leq B<A \leq 1$ and $\theta \in[0,2 \pi]$. Then $H^{*}=C[A, B]$, where

$$
\begin{equation*}
H=\left\{h \in A: h(z)=\frac{z+\left(1-2 \frac{e^{-i \theta}+A}{A-B}\right) z^{2}}{(1-z)^{3}}\right\} \tag{2.1}
\end{equation*}
$$

Lemma 2.3. [5]. Let Ψ be convex and g be starlike in E. Then, for F analytic in E with $F(0)=1$, $\frac{\Psi * F g}{\Psi * g}$ is contained in the convex hull of $F(E)$.

3. Main Results

Theorem 3.1. Let $-1 \leq B<A \leq 1$, then for $h(z)=z+\sum_{n=2}^{\infty} c_{n} z^{n} \in G$,

$$
\left|\frac{n(1+B)-(A+1)}{A-B}\right| \leq\left|c_{n}\right| \leq \frac{n(1-B)+A-1}{A-B}
$$

Proof. For $h \in G$, the coefficients can be written as

$$
c_{n}=n(1-L)+L
$$

where $L=\frac{e^{-i \theta}+A}{A-B}$ and $\theta \in[0,2 \pi]$. To find the maximum value of $\left|c_{n}(\theta)\right|$ where θ varies from 0 to 2π, consider

$$
\left|c_{n}(\theta)\right|^{2}=\frac{(n B-A)^{2}+(n-1)^{2}+2(n-1)(n B-A) \cos \theta}{(A-B)^{2}}=\phi(\theta)
$$

$\phi(\theta)$ attains its maximum value at $\theta=\pi$ as $\phi^{\prime}(\pi)=-\frac{2(n-1)(n B-A)}{(A-B)^{2}} \sin \pi=0$ and $\phi^{\prime \prime}(\pi)=$ $-\frac{2(n-1)(n B-A)}{(A-B)^{2}} \cos \pi<0$ as $n B-A<0$. The maximum value of $\phi(\theta)$ is $\phi(\pi)=\left(\frac{n(B-1)+1-A}{A-B}\right)^{2}$, we note that $\phi(\theta) \leq \phi(\pi)$ for all $\theta \in[0,2 \pi]$. Substituting the value of $\phi(\pi)$ we obtain

$$
\left|c_{n}\right| \leq \frac{n(1-B)+A-1}{A-B}
$$

Now again consider $\phi(\theta)$ and we note that $\phi(z)$ has its minimum at $\theta=0$ and $\phi(0)=\left(\frac{n(B+1)-(A+1)}{A-B}\right)^{2}$. Thus we obtain

$$
\left|c_{n}\right| \geq\left|\frac{n(B+1)-(A+1)}{A-B}\right|
$$

This completes the proof.
Applying the Alexander type relation between set G and H we obtain following
Corollary 3.1. Let $-1 \leq B<A \leq 1$, then for $h(z)=z+\sum_{n=2}^{\infty} c_{n} z^{n} \in H$,

$$
\left|\frac{n[n(B+1)-(A+1)]}{A-B}\right| \leq\left|c_{n}\right| \leq \frac{n[n(1-B)+A-1]}{A-B}
$$

Corollary 3.2. Let $-1 \leq B<A \leq 1$ and let $f(z)=z+\lambda z^{n}, n \geq 2$. Then $f \in S^{*}[A, B]$ if and only if

$$
\begin{equation*}
|\lambda| \leq \frac{A-B}{n(1-B)+A-1} \tag{3.1}
\end{equation*}
$$

Proof. Let $f(z)=z+\lambda z^{n}$ where λ is given in inequality (3.1) and then for $g \in G$, consider

$$
\left|\frac{(f * g)(z)}{z}\right| \geq 1-|\lambda|\left|c_{n}\right| z^{n-1}, z \in E
$$

Now using Theorem 3.1 and value of λ given in (3.1), we obtain

$$
\left|\frac{(f * g)(z)}{z}\right|>0, z \in E
$$

Hence $f \in S^{*}[A, B]$. Conversely, now consider $f(z)=z+\lambda z^{n} \in S^{*}[A, B]$ and let $g(z)=z+$ $\sum_{n=2}^{\infty} \frac{n(1-B)+A-1}{A-B} z^{n}$ and

$$
\frac{(f * g)(z)}{z}=1+\lambda \frac{n(1-B)+A-1}{A-B} z^{n-1} \neq 0
$$

If $|\lambda|>\frac{A-B}{n(1-B)+A-1}$, then there exist $\xi \in E$ such that

$$
\frac{(f * g)(\xi)}{\xi}=0
$$

which is a contradiction, hence $|\lambda| \leq \frac{A-B}{n(1-B)+A-1}$.

Corollary 3.3. Let $-1 \leq B<A \leq 1$ and let $f(z)=z+\lambda z^{n}, n \geq 2$. Then $f \in C[A, B]$ if and only if

$$
|\lambda| \leq \frac{A-B}{n[n(1-B)+A-1]}
$$

Using the coefficient bounds of functions in set G, we now give alternate method to prove the Theorem given in [1].

Corollary 3.4. Let $-1 \leq B<A \leq-1$ and let f is of the form (1.1) and satisfy

$$
\sum_{n=2}^{\infty}[n(1-B)+A-1]\left|a_{n}\right| \leq A-B
$$

then $f \in S^{*}[A, B]$.
Proof. Let $f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n}$ and $g(z)=z+\sum_{n=2}^{\infty} \frac{n(1-B)+A-1}{A-B} z^{n}$, consider

$$
\frac{(f * g)(z)}{z}=1+\sum_{n=2}^{\infty} \frac{n(1-B)+A-1}{A-B} a_{n} z^{n-1}, z \in E
$$

it is known from Lemma 2.1 that $f \in S^{*}[A, B]$ if and only if $\frac{(f * g)(z)}{z} \neq 0$. Now

$$
\left|\frac{(f * g)(z)}{z}\right| \geq 1-\sum_{n=2}^{\infty} \frac{n(1-B)+A-1}{A-B}\left|a_{n}\right||z|^{n-1}>0
$$

which gives us the required condition.
We now consider two specific functions

$$
\begin{equation*}
F_{\alpha}(z)=\frac{f(z)+\alpha z}{1+\alpha} \tag{3.2}
\end{equation*}
$$

and

$$
\begin{equation*}
F_{n, \alpha}(z)=f(z)+\frac{\alpha}{n} z^{n} \quad(n \geq 2) \tag{3.3}
\end{equation*}
$$

Here α is a non zero complex number also we note that if $f(z) \in \mathcal{A}$, then both $F_{\alpha}(z)$ and $F_{n, \alpha}(z) \in \mathcal{A}$. The geometric properties of these functions are studied by various authors (see [3]). Using these two functions, we study the geometric properties of $N_{\delta}(f)$ for classes of $S^{*}[A, B]$ and $C[A, B]$. We first discuss the relation between $f(z)$ and $F_{\alpha}(z)$ in the following Lemma.
Lemma 3.1. Let $-1 \leq B<A \leq 1, f \in \mathcal{A}$ and $\delta>0$ and let for for all $\alpha \in \mathbb{C}, F_{\alpha} \in S^{*}[A, B]$ (or $C[A, B]$), then $f \in S^{*}[A, B]$ (or $C[A, B]$) furthermore for all $g \in G$ (or H)

$$
\left|\frac{(f * g)(z)}{z}\right|>\delta
$$

where $|\alpha|<\delta$ and $z \in E$.
Proof. Since $F_{\alpha} \in S^{*}[A, B]$ then by Lemma 2.1, we know that for all $g \in G$,

$$
\frac{\left(F_{\alpha} * g\right)(z)}{z} \neq 0, z \in E
$$

Using (3.2) and simplifying, we obtain

$$
\frac{(f * g)(z)}{z} \neq-\alpha
$$

for all α. Thus we obtain

$$
\left|\frac{(f * g)(z)}{z}\right|>\delta
$$

Using Lemma 2.1, we obtain that $f \in S^{*}[A, B]$. This completes the proof.
Applying the similar method, we have the following result.

Lemma 3.2. Let $-1 \leq B<A \leq 1, f \in A$ and $\delta>0$ and let for for all $\alpha, F_{n, \alpha} \in S^{*}[A, B]$, then for all $h \in G$

$$
\left|\frac{(f * h)(z)}{z c_{n}}\right|>\frac{\delta}{n}
$$

where $|\alpha|<\delta$ and $z \in E$.
Using Theorem 3.1 in Lemma 3.1, we obtain the following.
Corollary 3.5. Let $-1 \leq B<A \leq 1, f \in A$ and $\delta>0$ and let for for all $\alpha, F_{n, \alpha} \in S^{*}[A, B]$, then for all $h \in G$

$$
\left|\frac{(f * h)(z)}{z}\right|>\frac{\delta}{n}\left|\frac{n(B+1)-(A+1)}{A-B}\right|
$$

where $|\alpha|<\delta$ and $z \in E$.
We now prove the following
Theorem 3.2. Let $-1 \leq B<A \leq 1$ and $\delta>0$ if for all $\alpha, F_{\alpha} \in S^{*}[A, B]$ then $N_{\delta_{1}}(f) \subset S^{*}[A, B]$ where

$$
\delta_{1}=\frac{\delta(A-B)}{1-B}
$$

Proof. Let $g \in N_{\delta_{1}}(f)$ and $g(z)=z+\sum_{n=2}^{\infty} b_{n} z^{n}$. To prove that $g \in S^{*}[A, B]$, it is enough to show that

$$
\frac{(g * h)(z)}{z} \neq 0
$$

where $h \in G$ and $z \in E$.
Consider

$$
\begin{aligned}
\left|\frac{(g * h)(z)}{z}\right| & =\left|\frac{(f * h)(z)}{z}+\frac{((g-f) * h)(z)}{z}\right| \\
& \geq\left|\frac{(f * h)(z)}{z}\right|-\left|\frac{((g-f) * h)(z)}{z}\right|
\end{aligned}
$$

Using Lemma 3.1 and series representations of $f(z), g(z)$ and $h(z)$, we obtain

$$
\begin{equation*}
\left|\frac{(g * h)(z)}{z}\right|>\delta-\sum_{n=2}^{\infty} \frac{(n(1-B)-(1-A))\left|b_{n}-a_{n}\right|}{A-B} \tag{3.4}
\end{equation*}
$$

Since

$$
\begin{equation*}
\sum_{n=2}^{\infty} \frac{(n(1-B)-(1-A))\left|b_{n}-a_{n}\right|}{A-B} \leq \frac{1-B}{A-B} \sum_{n=2}^{\infty} n\left|b_{n}-a_{n}\right| \leq \frac{1-B}{A-B} \delta_{1} \tag{3.5}
\end{equation*}
$$

Using (3.4) in (3.5), we obtain

$$
\left|\frac{(g * h)(z)}{z}\right|>\delta-\frac{1-B}{A-B} \delta_{1}>0
$$

Hence

$$
\delta_{1}=\frac{\delta(A-B)}{1-B}
$$

This completes the proof.
Theorem 3.3. Let $-1 \leq B<A \leq 1$. $f \in C[A, B]$, then $F_{\alpha} \in S^{*}[A, B]$ for $|\alpha|<\frac{1}{4}$.
Proof. Let $f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n}$. Then

$$
\begin{aligned}
F_{\alpha}(z) & =\frac{f(z)+\alpha z}{(1+\alpha)} \\
& =(f(z) * \psi(z)), z \in E
\end{aligned}
$$

Here

$$
\psi(z)=\frac{z-\frac{\alpha}{1+\alpha} z^{2}}{1-z}
$$

Using the properties of convolution we obtain

$$
f(z) * \psi(z)=z f^{\prime}(z) *\left(\psi(z) * \log \left(\frac{1}{1-z}\right)\right)
$$

Since $f \in C[A, B], z f^{\prime} \in S^{*}[A, B]$, also if $|\alpha|<\frac{1}{4}, \psi \in S^{*}$. Applying the convolution we obtain

$$
\begin{equation*}
\psi(z) * \log \left(\frac{1}{1-z}\right)=\int_{0}^{z} \frac{\psi(t)}{t} d t \tag{3.6}
\end{equation*}
$$

Using the Alexander relation in (3.6), we obtain $\psi(z) * \log \left(\frac{1}{1-z}\right) \in C$. Using Lemma 2.3 one can prove that $C * S^{*}[A, B] \subset S^{*}[A, B]$, hence

$$
F_{\alpha}(z)=z f^{\prime}(z) *\left(\psi(z) * \log \left(\frac{1}{1-z}\right)\right) \in S^{*}[A, B], \quad|\alpha|<\frac{1}{4}
$$

This completes the proof.
We now prove the following.
Theorem 3.4. Let $-1 \leq B<A \leq-1$. If $f \in C[A, B]$, then $N_{\delta}(f) \subset S^{*}[A, B]$ where $\delta=\frac{A-B}{4(1-B)}$.
Proof. If $f \in C[A, B]$, then by Theorem 3.3 $F_{\alpha} \in S^{*}[A, B]$ for $|\alpha|<\frac{1}{4}$. choosing $\delta=\frac{1}{4}$ and applying Theorem 3.2, we obtain our required result.

For specific values of A and B we have the following
Corollary 3.6. [7]. If $f \in C[1,-1]=C$, then $N_{\delta}(f) \subset S^{*}$ where $\delta=\frac{1}{4}$.
Corollary 3.7. If $f \in C[1-2 \beta,-1]=C(\beta)$, then $N_{\delta}(f) \subset S^{*}(\beta)$ where $\delta=\frac{1-\beta}{4}$ and $0 \leq \beta<1$.
We now prove the stability of convolution given in (1.5) for different classes of $N_{\delta}(f)$. In the next Theorem I represent the identity function $I(z)=z$.
Theorem 3.5. Let $-1 \leq B<A \leq 1$. The following relation holds

$$
\begin{align*}
\delta(I * I, C[A, B]) & \geq \sqrt{\frac{A-B}{1-B}} \tag{3.7}\\
\delta\left(I * I, S^{*}[A, B]\right) & \geq \sqrt{\frac{2(A-B)}{1-B}} \tag{3.8}\\
\delta(C[A, B] * C, C[A, B]) & =0 \tag{3.9}\\
\delta\left(S^{*}[A, B] * C, C[A, B]\right) & =0 \tag{3.10}\\
\delta\left(C[A, B] * C, S^{*}[A, B]\right) & \geq \sqrt{4+\frac{(A-B)^{2}}{2(1-B)^{2}}}-2=\delta_{0} . \tag{3.11}
\end{align*}
$$

Proof. Let $f, g \in N_{\delta}(I)$, then applying definition of $N_{\delta}(f)$, we obtain $\sum_{n=2}^{\infty} n\left|a_{n}\right| \leq \delta$ and $\sum_{n=2}^{\infty} n\left|b_{n}\right| \leq \delta$.
Consider

$$
\sum_{n=2}^{\infty} \frac{n(n(1-B)-1+A)\left|a_{n}\right|\left|b_{n}\right|}{A-B} \leq \frac{1-B}{A-B} \sum_{n=2}^{\infty} n^{2}\left|a_{n}\right|\left|b_{n}\right| \leq \frac{1-B}{A-B} \delta^{2}
$$

Now for $h \in H$,

$$
\left|\frac{((f * g) * h)(z)}{z}\right| \geq \sum_{n=2}^{\infty} \frac{n(n(1-B)-1+A)\left|a_{n}\right|\left|b_{n}\right|}{A-B}-1 \geq \frac{1-B}{A-B} \delta^{2}-1>0
$$

Using value of δ given in (3.7), we obtain our first inequality.
Similarly consider $f, g \in N_{\delta}(I)$ and consider

$$
\sum_{n=2}^{\infty} \frac{(n(1-B)-1+A)\left|a_{n}\right|\left|b_{n}\right|}{A-B} \leq \frac{1-B}{A-B} \sum_{n=2}^{\infty} n^{2}\left|a_{n}\right|\left|b_{n}\right| \leq \frac{1-B}{2(A-B)} \delta^{2}
$$

Thus we obtain

$$
\left|\frac{((f * g) * h)(z)}{z}\right| \geq \sum_{n=2}^{\infty} \frac{(n(1-B)-1+A)\left|a_{n}\right|\left|b_{n}\right|}{A-B}-1 \geq \frac{1-B}{2(A-B)} \delta^{2}-1>0
$$

Which gives us inequality in (3.8).
To prove (3.9), consider $f(z)=z+\left(\frac{A-B}{2(2(1-B)-1+A)}\right) z^{2} \in C[A, B]$ and $g(z)=g_{0}(z)+\frac{\delta}{2} z^{2} \in C$, where $g_{0}(z)=\frac{z}{1-z}$. Taking the convolution of f and g, we get

$$
(f * g)(z)=z+\left(\frac{A-B}{2(2(1-B)-1+A)}+\frac{\delta(A-B)}{4(2(1-B)-1+A)}\right) z^{2}
$$

Applying Corollary 3.3 with $n=2,(f * g)(z) \in C[A, B]$ if and only if, $\delta=0$.
To prove (3.10), we are applying the same method with $f(z)=z+\left(\frac{A-B}{(2(1-B)-1+A)}\right) z^{2}$ and $g(z)=$ $g_{0}(z)+\frac{\delta}{2} z^{2}$.

For relation given in (3.11), consider $f_{0} \in C[A, B]$ and $g_{0} \in C$ and $f \in N_{\delta}\left(f_{0}\right)$ and $g \in N_{\delta}\left(g_{0}\right)$, then for $h \in G$

$$
\begin{align*}
\left|\frac{(f * g * h)(z)}{z}\right| \geq & \left|\frac{\left(f_{0} * g_{0} * h\right)(z)}{z}\right|-\left|\frac{\left(f_{0} *\left(g-g_{0}\right) * h\right)(z)}{z}\right| \\
& -\left|\frac{\left(g_{0} *\left(f-f_{0}\right) * h\right)(z)}{z}\right| \tag{3.12}\\
& -\left|\frac{\left(\left(f-f_{0}\right) *\left(g-g_{0}\right) * h\right)(z)}{z}\right|
\end{align*}
$$

Applying Lemma 2.3 one can prove $f_{0} * g_{0} \in S^{*}[A, B]$ and using Theorem 3.4, we obtain

$$
\begin{equation*}
\left|\frac{(f * g * h)(z)}{z}\right|>\frac{A-B}{4(1-B)} \tag{3.13}
\end{equation*}
$$

If $f_{0}(z)=z+\sum_{n=2}^{\infty} a_{0 n} z^{n}$ and $g_{0}(z)=z+\sum_{n=2}^{\infty} b_{0 n} z^{n}$ and we know that $f_{0}(z) \in C[A, B] \subset C$ therefore $\left|a_{0 n}\right| \leq 1$ and $\left|b_{0 n}\right| \leq 1$. Now

$$
\begin{equation*}
\left|\frac{\left(f_{0} *\left(g-g_{0}\right) * h\right)(z)}{z}\right| \leq \sum_{n=2}^{\infty} \frac{\left|a_{0 n}\right|\left|b_{n}-b_{0 n}\right||n(1-B)-1+A|}{A-B} \leq \frac{1-B}{A-B} \delta \tag{3.14}
\end{equation*}
$$

Using definition of $N_{\delta}(f)$, we know that $n\left|a_{n}-a_{0 n}\right| \leq \delta$ or $\left|a_{n}-a_{0 n}\right| \leq \frac{\delta}{2}$ as $n \geq 2$. Now consider

$$
\begin{align*}
\left|\frac{\left(\left(f-f_{0}\right) *\left(g-g_{0}\right) * h\right)(z)}{z}\right| & \leq \sum_{n=2}^{\infty} \frac{\left|a_{n}-a_{0 n}\right|\left|b_{n}-b_{0 n}\right||n(1-B)-1+A|}{A-B} \\
& \leq \frac{(1-B) \delta^{2}}{2(A-B)} \tag{3.15}
\end{align*}
$$

Using (3.13), (3.14) and (3.15) in (3.12), we obtain

$$
\left|\frac{(f * g * h)(z)}{z}\right| \geq \frac{A-B}{4(1-B)}-\frac{2(1-B)}{A-B} \delta-\frac{(1-B) \delta^{2}}{2(A-B)}>0
$$

Solving for δ we obtain relation given in (3.11) which is non negative when $\delta \leq \delta_{0}$. This completes the proof.

References

[1] O. P. Ahuja, Families of analytic functions related to Ruscheweyh derivatives and subordinate to convex functions, Yokohama Math. J., 41(1993), 39-50.
[2] W. Janowski, Some extremal problems for certain families of analytic functions, I. Ann. Polon. Math., 28(1973), 298-326.
[3] S. Kanas, Stability of convolution and dual sets for the class of k-uniformly convex and k-starlike functions, Zeszyty Naukowe Politechniki Rzeszowskiej Matematyka, 22(1998), 51-64.
[4] S. Ponnusamy and V. Singh, Convolution properties of some classes of analytic functions, J. Math. Sci., 89(1998), 1008-1020.
[5] S. Ruscheweyh, T. Sheil-Small, Hadamard products of Schlicht functions and the Pólya-Schoenberg conjecture, Comment. Math. Helv., 48(1973), 119-135.
[6] S. Ruscheweyh, Duality for Hadamard products with applications to extremal problems for functions regular in the unit disc, Trans. Amer. Math. Soc., 210(1975), 63-74.
[7] S. Ruscheweyh, Neighborhoods of univalent functions, Proc. Amer. Math. Soc., 81(1981), 521-527.
[8] H. Silverman and E. M. Silvia, Subclasses of starlike functions subordinate to convex functions, Canad. J. Math., 37(1985), 48-61.

Department of Mathematics COMSATS Institute of Information Technology Park Road, Islamabad, Pakistan
*CORRESPONDING AUTHOR: shahid_humayoun@yahoo.com

[^0]: Received $27^{\text {th }}$ October, 2016; accepted $9^{\text {th }}$ January, 2017; published $1^{\text {st }}$ March, 2017.
 2010 Mathematics Subject Classification. 30C45.
 Key words and phrases. convex; univalent functions; convolution; coefficent result; neighbourhood; stability of convolution; Janowski functions.

