COEFFICIENT ESTIMATES OF MEROMORPHIC BI-STARLIKE FUNCTIONS OF COMPLEX ORDER

T. JANANI AND G. MURUGUSUNDARAMOORTHY

Abstract. In the present investigation, we define a new subclass of meromorphic bi-univalent functions class Σ' of complex order $\gamma \in \mathbb{C} \setminus \{0\}$, and obtain the estimates for the coefficients $|b_0|$ and $|b_1|$. Further we pointed out several new or known consequences of our result.

1. Introduction and Definitions

Denote by \mathcal{A} the class of analytic functions of the form

$$ f(z) = z + \sum_{n=2}^{\infty} a_n z^n $$

which are univalent in the open unit disc $\Delta = \{z : |z| < 1\}$. Also denote by \mathcal{S} the class of all functions in \mathcal{A} which are univalent and normalized by the conditions $f(0) = 0 = f'(0) - 1$ in Δ. Some of the important and well-investigated subclasses of the univalent function class \mathcal{S} includes the class $\mathcal{S}^*(\alpha)(0 \leq \alpha < 1)$ of starlike functions of order α in Δ and the class $\mathcal{K}(\alpha)(0 \leq \alpha < 1)$ of convex functions of order α

$$ \Re \left(\frac{z f'(z)}{f(z)} \right) > \alpha \quad \text{or} \quad \Re \left(1 + \frac{z f''(z)}{f'(z)} \right) > \alpha, (z \in \Delta) $$

respectively. Further a function $f(z) \in \mathcal{A}$ is said to be in the class $\mathcal{S}(\gamma)$ of univalent function of complex order $\gamma (\gamma \in \mathbb{C} \setminus \{0\})$ if and only if

$$ \frac{f(z)}{z} \neq 0 \quad \text{and} \quad \Re \left(1 + \frac{1}{\gamma} \left[\frac{zf''(z)}{f'(z)} - 1 \right] \right) > 0, z \in \Delta. $$

By taking $\gamma = (1 - \alpha)\cos \beta \ e^{-i\beta}$, $|\beta| < \frac{\pi}{2}$ and $0 \leq \alpha < 1$, the class $\mathcal{S}((1 - \alpha)\cos \beta \ e^{-i\beta}) \equiv \mathcal{S}(\alpha, \beta)$ called the generalized class of β-spiral-like functions of order $\alpha (0 \leq \alpha < 1)$.

An analytic function φ is subordinate to an analytic function ψ, written by

$$ \varphi(z) \prec \psi(z), $$

\square 2014 Authors retain the copyrights of their papers, and all open access articles are distributed under the terms of the Creative Commons Attribution License.
provided there is an analytic function ω defined on Δ with

$$\omega(0) = 0 \quad \text{and} \quad |\omega(z)| < 1$$

satisfying

$$\varphi(z) = \psi(\omega(z)).$$

Ma and Minda [9] unified various subclasses of starlike and convex functions for which either of the quantity

$$zf'(z) f(z) \quad \text{or} \quad 1 + \frac{zf''(z)}{f'(z)}$$

is subordinate to a more general superordinate function. For this purpose, they considered an analytic function ϕ with positive real part in the unit disk Δ, $\phi(0) = 1$, $\phi'(0) > 0$ and ϕ maps Δ onto a region starlike with respect to 1 and symmetric with respect to the real axis.

The class of Ma-Minda starlike functions consists of functions $f \in A$ satisfying the subordination

$$zf'(z) f(z) \prec \phi(z).$$

Similarly, the class of Ma-Minda convex functions consists of functions $f \in A$ satisfying the subordination

$$1 + \frac{zf''(z)}{f'(z)} \prec \phi(z).$$

It is well known that every function $f \in S$ has an inverse f^{-1}, defined by

$$f^{-1}(f(z)) = z, \quad (z \in \Delta)$$

and

$$f(f^{-1}(w)) = w, \quad (|w| < r_0(f); r_0(f) \geq 1/4)$$

where

$$f^{-1}(w) = w - a_2w^2 + (2a_2^2 - a_3)w^3 - (5a_2^3 - 5a_2a_3 + a_4)w^4 + \cdots \quad (1.2)$$

A function $f \in A$ given by (1.1), is said to be bi-univalent in Δ if both $f(z)$ and $f^{-1}(z)$ are univalent in Δ, these classes are denoted by Σ. Earlier, Brannan and Taha [2] introduced certain subclasses of bi-univalent function class Σ, namely bi-starlike functions $S^*_\Sigma(\alpha)$ and bi-convex function $K_{\Sigma}(\alpha)$ of order α corresponding to the function classes $S^*(\alpha)$ and $K(\alpha)$ respectively. For each of the function classes $S^*_\Sigma(\alpha)$ and $K_{\Sigma}(\alpha)$, non-sharp estimates on the first two Taylor-Maclaurin coefficients $|a_2|$ and $|a_3|$ were found [2, 17]. But the coefficient problem for each of the following Taylor-Maclaurin coefficients:

$$|a_n| \quad (n \in \mathbb{N} \setminus \{1, 2\}; \quad \mathbb{N} := \{1, 2, 3, \cdots\})$$

is still an open problem (see [1, 2, 8, 10, 17]). Recently several interesting subclasses of the bi-univalent function class Σ have been introduced and studied in the literature (see [15, 18, 19]).

A function f is bi-starlike of Ma-Minda type or bi-convex of Ma-Minda type if both f and f^{-1} are respectively Ma-Minda starlike or convex. These classes are denoted respectively by $S^*_\Sigma(\phi)$ and $K_{\Sigma}(\phi)$. In the sequel, it is assumed that ϕ is an analytic function with positive real part in the unit disk Δ, satisfying
\(\phi(0) = 1, \phi'(0) > 0\) and \(\phi(\Delta)\) is symmetric with respect to the real axis. Such a function has a series expansion of the form
\[
\phi(z) = 1 + B_1 z + B_2 z^2 + B_3 z^3 + \cdots, \quad (B_1 > 0).
\]

Let \(\Sigma'\) denote the class of meromorphic univalent functions \(g\) of the form
\[
g(z) = z + b_0 + \sum_{n=1}^{\infty} \frac{b_n}{z^n}
\]
defined on the domain \(\Delta^* = \{z : 1 < |z| < \infty\}\). Since \(g \in \Sigma'\) is univalent, it has an inverse \(g^{-1} = h\) that satisfies
\[
g^{-1}(g(z)) = z, \quad (z \in \Delta^*)
\]
and
\[
g(g^{-1}(w)) = w, \quad (M < |w| < \infty, M > 0)
\]
where
\[
g^{-1}(w) = h(w) = w + \sum_{n=0}^{\infty} \frac{C_n}{wn^1}, \quad (M < |w| < \infty).
\]

Analogous to the bi-univalent analytic functions, a function \(g \in \Sigma'\) is said to be meromorphic bi-univalent if \(g^{-1} \in \Sigma'\). We denote the class of all meromorphic bi-univalent functions by \(M_{\Sigma'}\). Estimates on the coefficients of meromorphic univalent functions were widely investigated in the literature, for example, Schiffer [13] obtained the estimate \(|b_2| \leq \frac{2}{3}\) for meromorphic univalent functions \(g \in \Sigma'\) with \(b_0 = 0\) and Duren [3] gave an elementary proof of the inequality \(|b_n| \leq \frac{2}{(n+1)^2}\) on the coefficient of meromorphic univalent functions \(g \in \Sigma'\) with \(b_k = 0\) for \(1 \leq k < \frac{n}{2}\).

For the coefficient of the inverse of meromorphic univalent functions \(h \in M_{\Sigma'}\), Springer [14] proved that \(|C_3| \leq 1\) and \(|C_3 + \frac{1}{2} C_1^2| \leq \frac{1}{2}\) and conjectured that \(|C_{2n-1}| \leq \frac{(2n-1)^2}{n(n-1)^2}\), \((n = 1, 2, \ldots)\).

In 1977, Kubota [7] has proved that the Springer conjecture is true for \(n = 3, 4, 5\) and subsequently Schober [12] obtained a sharp bounds for the coefficients \(C_{2n-1}, 1 \leq n \leq 7\) of the inverse of meromorphic univalent functions in \(\Delta^*\). Recently, Kapoor and Mishra [6] (see [16]) found the coefficient estimates for a class consisting of inverses of meromorphic starlike univalent functions of order \(\alpha\) in \(\Delta^*\).

Motivated by the earlier work of [4, 5, 6, 20], in the present investigation, a new subclass of meromorphic bi-univalent functions class \(\Sigma'\) of complex order \(\gamma \in \mathbb{C}\setminus\{0\}\), is introduced and estimates for the coefficients \(|b_0|\) and \(|b_1|\) of functions in the newly introduced subclass are obtained. Several new consequences of the results are also pointed out.

Definition 1.1. For \(0 \leq \lambda \leq 1, \mu \geq 0, \mu > \lambda\) a function \(g(z) \in \Sigma'\) given by (1.4) is said to be in the class \(M_{\Sigma'}(\lambda, \mu, \phi)\) if the following conditions are satisfied:
\[
\frac{1}{\gamma} \left[(1 - \lambda) \left(\frac{g(z)}{z} \right)^\mu + \lambda g'(z) \left(\frac{g(z)}{z} \right)^{\mu-1} - 1 \right] \prec \phi(z)
\]
and
\[
\frac{1}{\gamma} \left[(1 - \lambda) \left(\frac{h(w)}{w} \right)^\mu + \lambda h'(w) \left(\frac{h(w)}{w} \right)^{\mu-1} - 1 \right] \prec \phi(w)
\]
where \(z, w \in \Delta^*, \gamma \in \mathbb{C}\setminus\{0\}\) and the function \(h\) is given by (1.5).
By suitably specializing the parameters λ and μ, we state the new subclasses of the class meromorphic bi-univalent functions of complex order $M^\gamma_{\Sigma'}(\lambda, \mu, \phi)$ as illustrated in the following Examples.

Example 1.1. For $0 \leq \lambda < 1, \mu = 1$ a function $g \in \Sigma'$ given by (1.4) is said to be in the class $M^\gamma_{\Sigma'}(\lambda, 1, \phi) \equiv F^\gamma_{\Sigma'}(\lambda, \phi)$ if it satisfies the following conditions respectively:

$$1 + \frac{1}{\gamma} \left[(1 - \lambda) \left(\frac{g(z)}{z} \right) + \lambda g'(z) - 1 \right] < \phi(z)$$

and

$$1 + \frac{1}{\gamma} \left[(1 - \lambda) \left(\frac{h(w)}{w} \right) + \lambda h'(w) - 1 \right] < \phi(w)$$

where $z, w \in \Delta^*$, $\gamma \in \mathbb{C}\{0\}$ and the function h is given by (1.5).

Example 1.2. For $\lambda = 1, 0 \leq \mu < 1$ a function $g \in \Sigma'$ given by (1.4) is said to be in the class $M^\gamma_{\Sigma'}(1, \mu, \phi) \equiv B^\gamma_{\Sigma'}(\mu, \phi)$ if it satisfies the following conditions respectively:

$$1 + \frac{1}{\gamma} \left[g'(z) \left(\frac{g(z)}{z} \right)^{\mu-1} - 1 \right] < \phi(z)$$

and

$$1 + \frac{1}{\gamma} \left[h'(w) \left(\frac{h(w)}{w} \right)^{\mu-1} - 1 \right] < \phi(w)$$

where $z, w \in \Delta^*$, $\gamma \in \mathbb{C}\{0\}$ and the function h is given by (1.5).

Example 1.3. For $\lambda = 1, \mu = 0$, a function $g \in \Sigma'$ given by (1.4) is said to be in the class $M^\gamma_{\Sigma'}(1, 0, \phi) \equiv S^\gamma_{\Sigma'}(\phi)$ if it satisfies the following conditions respectively:

$$1 + \frac{1}{\gamma} \left(\frac{z g'(z)}{g(z)} - 1 \right) < \phi(z)$$

and

$$1 + \frac{1}{\gamma} \left(\frac{w h'(w)}{h(w)} - 1 \right) < \phi(w)$$

where $z, w \in \Delta^*$, $\gamma \in \mathbb{C}\{0\}$ and the function h is given by (1.5).

2. **Coefficient estimates for the function class $M^\gamma_{\Sigma'}(\lambda, \mu, \phi)$**

In this section we obtain the coefficients $|b_0|$ and $|b_1|$ for $g \in M^\gamma_{\Sigma'}(\lambda, \mu, \phi)$ associating the given functions with the functions having positive real part. In order to prove our result we recall the following lemma.

Lemma 2.1. [11] If $\Phi \in \mathcal{P}$, the class of all functions with $\Re(\Phi(z)) > 0, (z \in \Delta)$ then

$$|c_k| \leq 2, \text{ for each } k,$$

where

$$\Phi(z) = 1 + c_1 z + c_2 z^2 + \cdots \text{ for } z \in \Delta.$$
Define the functions p and q in \mathcal{P} given by

$$p(z) = \frac{1 + u(z)}{1 - u(z)} = 1 + \frac{p_1}{z} + \frac{p_2}{z^2} + \cdots$$

and

$$q(z) = \frac{1 + v(z)}{1 - v(z)} = 1 + \frac{q_1}{z} + \frac{q_2}{z^2} + \cdots.$$

It follows that

$$u(z) = \frac{p(z) - 1}{p(z) + 1} = \frac{1}{2} \left[\frac{p_1}{z} + \left(\frac{p_2}{2} - \frac{p_1^2}{2} \right) \frac{1}{z^2} + \cdots \right]$$

and

$$v(z) = \frac{q(z) - 1}{q(z) + 1} = \frac{1}{2} \left[\frac{q_1}{z} + \left(\frac{q_2}{2} - \frac{q_1^2}{2} \right) \frac{1}{z^2} + \cdots \right].$$

Note that for the functions $p(z), q(z) \in \mathcal{P}$, we have $|p_i| \leq 2$ and $|q_i| \leq 2$ for each i.

Theorem 2.1. Let g be given by (1.4) be in the class $\mathcal{M}_{\gamma}^{\mathcal{L}}(\lambda, \mu, \phi)$. Then

(2.1)
$$|b_0| \leq \left| \frac{\gamma B_1}{\mu - \lambda} \right|$$

and

(2.2)
$$|b_1| \leq \left| \gamma \sqrt{\frac{(\mu - 1)\gamma B_1^2}{2(\mu - \lambda)^2} + \left(\frac{B_2}{\mu - 2\lambda} \right)^2} \right|$$

where $\gamma \in \mathbb{C}\backslash\{0\}, 0 \leq \lambda \leq 1, \mu \geq 0, \mu > \lambda$ and $z, w \in \Delta^*$.

Proof. It follows from (1.6) and (1.7) that

(2.3)
$$1 + \frac{1}{\gamma} \left[(1 - \lambda) \left(\frac{g(z)}{z} \right)^\mu + \lambda g'(z) \left(\frac{g(z)}{z} \right)^{\mu - 1} - 1 \right] = \phi(u(z))$$

and

(2.4)
$$1 + \frac{1}{\gamma} \left[(1 - \lambda) \left(\frac{h(w)}{w} \right)^\mu + \lambda h'(w) \left(\frac{h(w)}{w} \right)^{\mu - 1} - 1 \right] = \phi(v(w)).$$

In light of (1.4), (1.5), (1.6) and (1.7), we have

(2.5)
$$1 + \frac{1}{\gamma} \left[(1 - \lambda) \left(\frac{g(z)}{z} \right)^\mu + \lambda g'(z) \left(\frac{g(z)}{z} \right)^{\mu - 1} - 1 \right]
= 1 + \frac{1}{\gamma} \left[(\mu - \lambda) \frac{b_0}{z} + (\mu - 2\lambda) \frac{(\mu - 1)b_0}{2} + b_1 \frac{1}{z^2} + \cdots \right]
= 1 + B_1 p_1 \frac{1}{2z} + \left[\frac{1}{2} B_1 (p_2 - \frac{p_1^2}{2}) + \frac{1}{4} B_2 p_1^2 \right] \frac{1}{z^2} + \cdots$$
and

\[(2.6) \quad 1 + \frac{1}{\gamma} \left[(1 - \lambda) \left(\frac{h(w)}{w} \right)^{\mu} + \lambda h'(w) \left(\frac{h(w)}{w} \right)^{\mu-1} \right] = 1 + \frac{1}{\gamma} \left[-(\mu - \lambda) \frac{b_0}{z} + (\mu - 2\lambda) \left(\frac{b_0}{2} - b_1 \frac{1}{2z^2} + \ldots \right) \right] = 1 + B_1 q_1 \frac{1}{2w} + \left[\frac{1}{2} B_1 (q_2 - \frac{q_1^2}{2}) + \frac{1}{4} B_2 q_1^2 \right] \frac{1}{w^2} + \ldots \]

Now, equating the coefficients in (2.5) and (2.6), we get

\[(2.7) \quad \frac{1}{\gamma} (\mu - \lambda) b_0 = \frac{1}{2} B_1 p_1, \]

\[(2.8) \quad \frac{1}{\gamma} (\mu - 2\lambda) \left(\mu - 1 \right) \frac{b_0^2}{2} + b_1 = \frac{1}{2} B_1 (p_2 - \frac{p_1^2}{2}) + \frac{1}{4} B_2 p_1^2, \]

\[(2.9) \quad -\frac{1}{\gamma} (\mu - \lambda) b_0 = \frac{1}{2} B_1 q_1, \]

and

\[(2.10) \quad \frac{1}{\gamma} (\mu - 2\lambda) \left(\mu - 1 \right) \frac{b_0^2}{2} - b_1 = \frac{1}{2} B_1 (q_2 - \frac{q_1^2}{2}) + \frac{1}{4} B_2 q_1^2. \]

From (2.7) and (2.9), we get

\[(2.11) \quad p_1 = -q_1 \]

and

\[8(\mu - \lambda)^2 b_0^2 = \gamma^2 B_1^2 (p_1^2 + q_1^2). \]

Hence,

\[(2.12) \quad b_0^2 = \frac{\gamma^2 B_1^2 (p_1^2 + q_1^2)}{8(\mu - \lambda)^2}. \]

Applying Lemma (2.1) for the coefficients p_1 and q_1, we have

\[|b_0| \leq \left| \frac{\gamma B_1}{\mu - \lambda} \right|. \]

Next, in order to find the bound on $|b_1|$ from (2.8), (2.10) and (2.11), we obtain

\[(2.13) \quad (\mu - 2\lambda)^2 b_1^2 = (\mu - 2\lambda)^2 (\mu - 1)^2 \frac{b_0^4}{4} - \gamma^2 \left(\frac{B_1^2}{4} p_2 q_2 + (B_2 - B_1)(p_2 + q_2) \frac{p_1^2}{8} + (B_1 - B_2)^2 \frac{p_1^4}{16} \right). \]

Using (2.12) and applying Lemma (2.1) once again for the coefficients p_1, p_2 and q_2, we get

\[|b_1| \leq \frac{\gamma \left(\frac{((\mu - 1) \gamma B_1^2)^2}{2(\mu - \lambda)^2} + \frac{B_2}{\mu - 2\lambda} \right)^2}{2}. \]
Corollary 2.1. Let \(g(z) \) is given by (1.4) be in the class \(\mathcal{F}_\gamma^\prime(\lambda, \phi) \). Then
\[(2.14) \quad |b_0| \leq \left| \frac{\gamma B_1}{1 - \lambda} \right| \]
and
\[(2.15) \quad |b_1| \leq \left| \frac{\gamma B_2}{2\lambda - 1} \right| \]
where \(\gamma \in \mathbb{C}\setminus\{0\} \), \(0 < \lambda < 1 \) and \(z, w \in \Delta^* \).

Corollary 2.2. Let \(g(z) \) is given by (1.4) be in the class \(\mathcal{B}_\gamma^\prime(\mu, \phi) \). Then
\[(2.16) \quad |b_0| \leq \left| \frac{\gamma B_1}{\mu - 1} \right| \]
and
\[(2.17) \quad |b_1| \leq \left| \gamma \sqrt{\left(\frac{\gamma B_1^2}{2(\mu - 1)} \right)^2 + \left(\frac{B_2}{\mu - 2} \right)^2} \right| \]
where \(\gamma \in \mathbb{C}\setminus\{0\} \), \(0 < \mu < 1 \) and \(z, w \in \Delta^* \).

Corollary 2.3. Let \(g(z) \) is given by (1.4) be in the class \(\mathcal{S}_\gamma^\prime(\phi) \). Then
\[(2.18) \quad |b_0| \leq |\gamma B_1| \]
and
\[(2.19) \quad |b_1| \leq \left| \frac{\gamma}{2} \sqrt{\gamma^2 B_1^4 + B_2^2} \right| \]
where \(\gamma \in \mathbb{C}\setminus\{0\} \) and \(z, w \in \Delta^* \).

3. Corollaries and concluding Remarks

Analogous to (1.3), by setting \(\phi(z) \) as given below:
\[(3.1) \quad \phi(z) = \left(\frac{1 + z}{1 - z} \right)^\alpha = 1 + 2az + 2a^2z^2 + \cdots \quad (0 < \alpha \leq 1), \]
we have
\[B_1 = 2\alpha, \quad B_2 = 2\alpha^2. \]

For \(\gamma = 1 \) and \(\phi(z) \) is given by (3.1) we state the following corollaries:

Corollary 3.1. Let \(g \) is given by (1.4) be in the class \(\mathcal{M}_\Sigma^\prime(\lambda, \mu, \left(\frac{1+z}{1-z} \right)^\alpha) \equiv \mathcal{M}_\Sigma(\lambda, \alpha) \). Then
\[(2.18) \quad |b_0| \leq \left| \frac{2\alpha}{\mu - \lambda} \right| \]
and
\[(2.19) \quad |b_1| \leq \left| 2\alpha^2 \sqrt{\frac{(\mu - 1)^2}{(\mu - 2l)^2} + \frac{1}{(\mu - 2\lambda)^2}} \right| \]
where \(0 < \lambda \leq 1, \mu \geq 0, \mu > \lambda \) and \(z, w \in \Delta^* \).
Corollary 3.2. Let \(g(z) \) be given by (1.4) be in the class \(F_{\Sigma}^1(\lambda, \left(\frac{1+z}{1-z} \right)^\alpha) \equiv F_{\Sigma}(\lambda, \alpha) \), then
\[
|b_0| \leq \frac{2\alpha}{|1-\lambda|}
\]
and
\[
|b_1| \leq \frac{2\alpha^2}{|1-2\lambda|}
\]
where \(0 \leq \lambda < 1 \) and \(z, w \in \Delta^* \).

Corollary 3.3. Let \(g(z) \) be given by (1.4) be in the class \(B_{\Sigma}^1(\lambda, \left(\frac{1+z}{1-z} \right)^\alpha) \equiv B_{\Sigma}(\mu, \alpha) \), then
\[
|b_0| \leq \frac{2\alpha}{|\mu-1|}
\]
and
\[
|b_1| \leq \left| \frac{2\alpha^2}{(\mu-1)^2} + \frac{1}{(\mu-2)^2} \right|
\]
where \(0 \leq \mu < 1 \) and \(z, w \in \Delta^* \).

Corollary 3.4. Let \(g(z) \) be given by (1.4) be in the class \(S_{\Sigma}^1(\left(\frac{1+z}{1-z} \right)^\alpha) \equiv S_{\Sigma}^1(\alpha) \), then
\[
|b_0| \leq 2\alpha
\]
and
\[
|b_1| \leq \alpha^2 \sqrt{5}
\]
where \(z, w \in \Delta^* \).

On the other hand if we take
\[
(3.2) \quad \phi(z) = \frac{1 + (1-2\beta)z}{1-z} = 1 + 2(1-\beta)z + 2(1-\beta)z^2 + \cdots \quad (0 \leq \beta < 1),
\]
then
\[
B_1 = B_2 = 2(1-\beta).
\]

For \(\gamma = 1 \) and \(\phi(z) \) is given by (3.2) we state the following corollarys:

Corollary 3.5. Let \(g \) be given by (1.4) be in the class \(M_{\Sigma}^1(\lambda, \mu, \left(\frac{1+(1-2\beta)z}{1-z} \right)^\alpha) \equiv M_{\Sigma}(\lambda, \mu, \beta) \). Then
\[
|b_0| \leq \frac{2(1-\beta)}{|\mu-\lambda|}
\]
and
\[
|b_1| \leq \left| 2(1-\beta) \sqrt{\frac{(\mu-1)^2(1-\beta)^2}{(\mu-\lambda)^2} + \frac{1}{(\mu-2\lambda)^2}} \right|
\]
where \(0 \leq \lambda \leq 1, \mu \geq 0, \mu > \lambda \) and \(z, w \in \Delta^* \).

Remark 3.1. We obtain the estimates \(|b_0| \) and \(|b_1| \) as obtained in the Corollaries 3.2 to 3.4 for function \(g \) given by (1.4) are in the subclasses defined in Examples 1.1 to 1.3.
Concluding Remarks: Let a function $g \in \Sigma'$ given by (1.4). By taking $\gamma = (1 - \alpha) \cos \beta e^{-i\beta}$, $|\beta| < \frac{\pi}{2}$, $0 \leq \alpha < 1$ the class $M_{\gamma}^{\alpha}(\lambda, \mu, \phi) \equiv M_{\beta}^{\alpha}(\alpha, \lambda, \mu, \phi)$ called the generalized class of β-bi spiral-like functions of order $\alpha(0 \leq \alpha < 1)$ satisfying the following conditions.

\[
\begin{align*}
\exp^{i\beta} & \left[(1 - \lambda) \left(\frac{g(z)}{z} \right)^{\mu} + \lambda g'(z) \left(\frac{g(z)}{z} \right)^{\mu - 1} \right] \prec \left[\phi(z)(1 - \alpha) + \alpha \cos \beta + i \sin \beta \right] \\
\exp^{i\beta} & \left[(1 - \lambda) \left(\frac{h(w)}{w} \right)^{\mu} + \lambda h'(w) \left(\frac{h(w)}{w} \right)^{\mu - 1} \right] \prec \left[\phi(w)(1 - \alpha) + \alpha \cos \beta + i \sin \beta \right]
\end{align*}
\]

where $0 \leq \lambda \leq 1$, $\mu \geq 0$ and $z, w \in \Delta^*$ and the function h is given by (1.5).

For function $g \in M_{\gamma}^{\alpha}(\alpha, \lambda, \mu, \phi)$ given by (1.4), by choosing $\phi(z) = \left(\frac{1 + z}{1 - z} \right)$, (or $\phi(z) = \frac{1 + A_1 + B z}{1 - A_2 + B z}$, $-1 \leq B < A \leq 1$), we obtain the estimates $|b_0|$ and $|b_1|$ by routine procedure (as in Theorem 2.1) and so we omit the details.

References

School of Advanced Sciences, VIT University, Vellore - 632 014, India

*Corresponding author