Tri-Endomorphisms on BCH-Algebras

Patchara Muangkarn1, Cholatis Suanoom1, Jirayu Phuto2, Aiyared Iampan3,*

1Science and Applied Science Center, Program of Mathematics, Kamphaeng Phet Rajabhat University, Kamphaeng Phet 62000, Thailand
2Department of Mathematics, Faculty of Science, Naresuan University, Phitsanulok 65000, Thailand
3Fuzzy Algebras and Decision-Making Problems Research Unit, Department of Mathematics, School of Science, University of Phayao, Mae Ka, Mueang, Phayao 56000, Thailand

*Corresponding author: aiyared.ia@up.ac.th

Abstract. In this paper, we use the concept of endomorphisms and bi-endomorphisms as a model to create tri-endomorphisms on BCH-algebras. We introduce the concepts of left tri-endomorphisms, central tri-endomorphisms, right tri-endomorphisms, and complete tri-endomorphisms of BCH-algebras and provide some properties. In addition, we obtain the properties between those tri-endomorphisms and some subsets of BCH-algebras.

1. Introduction

The algebraic structures of BCK-algebras and BCI-algebras were studied by Iséki and his colleague [4, 5]. In 1983, Hu and Li [3] generalized a new class of algebras from BCI-algebras, namely, a BCH-algebra. Next, Bandru and Rafi [1] introduced a new algebra, called a G-algebra. BCH-algebras are also being studied extensively later, [2, 3].

In this paper, we use the concept of endomorphisms and bi-endomorphisms as a model to create tri-endomorphisms. We introduce the concepts of left tri-endomorphisms, central tri-endomorphisms, right tri-endomorphisms, and complete tri-endomorphisms of BCH-algebras and provide some properties.

Before studying, we will review the definitions and well-known results.

Received: Jul. 31, 2022.
2020 Mathematics Subject Classification. 06F35, 03G25.
Key words and phrases. BCH-algebra; left tri-endomorphism; central tri-endomorphism; right tri-endomorphism; complete tri-endomorphism.
Definition 1.1. [3] A BCH-algebra is a non-empty set \(X \) with an element 0 and a binary operation * satisfying the following conditions:

(BCH1) \((\forall x \in X)(x * x = 0)\),
(BCH2) \((\forall x, y \in X)(x * y = 0, y * x = 0 \Rightarrow x = y)\),
(BCH3) \((\forall x, y, z \in X)((x * y) * z = (x * z) * y)\).

In a BCH-algebra \(X = (X, *, 0) \), the binary relation \(\leq \) on \(X \) is defined as follows:

\((\forall x, y \in X)(x \leq y \iff x * y = 0)\).

Example 1.1. Let \(X = \{0, a, b, c\} \) with the following Cayley table as follows:

<table>
<thead>
<tr>
<th>*</th>
<th>0</th>
<th>a</th>
<th>b</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>a</td>
<td>a</td>
<td>0</td>
<td>c</td>
<td>c</td>
</tr>
<tr>
<td>b</td>
<td>b</td>
<td>0</td>
<td>0</td>
<td>b</td>
</tr>
<tr>
<td>c</td>
<td>c</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Then \(X = (X, *, 0) \) is a BCH-algebra.

Proposition 1.1. [2, 3] Let \(X = (X, *, 0) \) be a BCH-algebra. Then the following hold: for all \(x, y \in X \),

(BCH4) \((\forall x, y \in X)(x * (x * y) \leq y)\),
(BCH5) \((\forall x \in X)(x * 0 = 0 \Rightarrow x = 0)\),
(BCH6) \((\forall x, y \in X)(0 * (x * y) = (0 * x) * (0 * y))\),
(BCH7) \((\forall x \in X)(x * 0 = x)\),
(BCH8) \((\forall x, y \in X)((x * y) * x = 0 * y)\),
(BCH9) \((\forall x, y \in X)(x \leq y \Rightarrow 0 * x = 0 * y)\).

For a BCH-algebra \(X = (X, *, 0) \), some interesting subsets of \(X \) play a significant rule in the investigation of its properties described below.

Definition 1.2. A non-empty subset \(Y \) of a BCH-algebra \(X = (X, *, 0) \) is called a subalgebra of \(X \) if \(x * y \in Y \) for all \(x, y \in Y \). A non-empty subset \(I \) of a BCH-algebra \(X = (X, *, 0) \) is called an ideal of \(X \) if

(1) \(0 \in I \),
(2) \((\forall x, y \in X)(x * y \in I, x \in I \Rightarrow y \in I)\).

2. Main results

In this section, we introduce the concepts of left tri-endomorphisms, central tri-endomorphisms, right tri-endomorphisms, and complete tri-endomorphisms of BCH-algebras as follows.

Definition 2.1. Let \(X = (X, *, 0) \) be a BCH-algebra. A mapping \(f : X^3 \rightarrow X \) is called
(1) a left tri-endomorphism on X if $(\forall w, x, y, z \in X)(f(x \ast w, y, z) = f(x, y, z) \ast f(w, y, z))$,
(2) a central tri-endomorphism on X if $(\forall w, x, y, z \in X)(f(x, y \ast w, z) = f(x, y, z) \ast f(x, w, z))$,
(3) a right tri-endomorphism on X if $(\forall w, x, y, z \in X)(f(x, y, z \ast w) = f(x, y, z) \ast f(x, y, w))$,
(4) a complete tri-endomorphism on X if $(\forall a, b, c, x, y, z \in X)(f(x \ast a, y \ast b, z \ast c) = f(x, y, z) \ast f(a, b, c))$.

Example 2.1. In Example 1.1, we define $f_l : X^3 \to X$ by

$$f_l(x, y, z) = \begin{cases} x & \text{if } y = z = 0, \\ 0 & \text{otherwise}. \end{cases}$$

Then f_l is a left tri-endomorphism on X.

Proposition 2.1. Let $X = (X, \ast, 0)$ be a BCH-algebra and f_l be a left tri-endomorphism on X. Then

(1) $(\forall y, z \in X)(f_l(0, y, z) = 0)$,
(2) $(\forall w, x, y, z \in X)(x \leq w \Rightarrow f_l(x, y, z) \leq f_l(w, y, z))$.

Proof. (1) Let $y, z \in X$. Then, by BCH1, we have $f_l(0, y, z) = f_l(0 \ast 0, y, z) = f_l(0, y, z) \ast f_l(0, y, z) = 0$.

(2) Let $w, x, y, z \in X$ be such that $x \leq w$. Then, by (1), we have $0 = f_l(0, y, z) = f_l(x \ast w, y, z) = f_l(x, y, z) \ast f_l(w, y, z)$. Hence, $f_l(x, y, z) \leq f_l(w, y, z)$.

Similarly, the properties of central and right tri-endomorphisms are easily obtained.

Proposition 2.2. Let $X = (X, \ast, 0)$ be a BCH-algebra and f_c be a central tri-endomorphism on X. Then

(1) $(\forall x, z \in X)(f_c(x, 0, z) = 0)$,
(2) $(\forall w, x, y, z \in X)(y \leq w \Rightarrow f_c(x, y, z) \leq f_c(x, w, z))$.

Proposition 2.3. Let $X = (X, \ast, 0)$ be a BCH-algebra and f_r be a right tri-endomorphism on X. Then

(1) $(\forall x, y \in X)(f_r(x, y, 0) = 0)$,
(2) $(\forall w, x, y, z \in X)(z \leq w \Rightarrow f_r(x, y, z) \leq f_r(x, y, w))$.

Theorem 2.1. Let $X = (X, \ast, 0)$ be a BCH-algebra and f be a complete tri-endomorphism on X. Then

(1) $f(0, 0, 0) = 0$,
(2) if S is a subalgebra of X, then $f(S^3)$ is also a subalgebra of X,
(3) if S is an ideal of X and f is bijective, then $f(S^3)$ is also an ideal of X,
(4) if f is a left tri-endomorphism on X, then $f(x, y, z) \ast f(x, 0, 0) = 0$ for any $x, y, z \in X$,
(5) if f is a central tri-endomorphism on X, then $f(x, y, z) \ast f(0, y, 0) = 0$ for any $x, y, z \in X$,
(6) if f is a right tri-endomorphism on X, then $f(x, y, z) \ast f(0, 0, z) = 0$ for any $x, y, z \in X$.

(7) if \(f \) is a left and right (central and right, left and central) tri-endomorphism on \(X \), then \(f(x, y, z) = 0 \) for any \(x, y, z \in X \), i.e., \(f \) is the zero map.

Proof. (1) By BCH1, we have \(f(0, 0, 0) = f(0 * 0 * 0 * 0 * 0) = f(0, 0, 0) * f(0, 0, 0) = 0 \).

(2) Suppose that \(S \) is a subalgebra of \(X \). Let \(a, b \in f(S^3) \). Then there exist \((x_1, y_1, z_1), (x_2, y_2, z_2) \in S^3\) such that \(a = f(x_1, y_1, z_1) \) and \(b = f(x_2, y_2, z_2) \). Thus \(a * b = f(x_1, y_1, z_1) * f(x_2, y_2, z_2) = f(x_1 * x_2, y_1 * y_2, z_1 * z_2) \in f(S^3) \). Hence, \(f(S^3) \) is a subalgebra of \(X \).

(3) Suppose that \(S \) is an ideal of \(X \) and \(f \) is bijective. Since \(0 \in S \) and by (1), we have \(0 = f(0, 0, 0) \in f(S^3) \). Assume that \(x * y \in f(S^3) \) and \(x \in f(S^3) \). There exist \((x_1, y_1, z_1), (x_2, y_2, z_2) \in S^3\) such that \(x * y = f(x_1, y_1, z_1) \) and \(x = f(x_2, y_2, z_2) \). Since \(f \) is surjective, there exists \((a, b, c) \in X^3\) such that \(y = f(a, b, c) \). Thus \(f(S^3) \ni f(x_1, y_1, z_1) = x * y = f(x_2, y_2, z_2) * f(a, b, c) = f(x_2 * a, y_2 * b, z_2 * c) \). Since \(f \) is injective, we have \(x_2 * a, y_2 * b, z_2 * c \in S \). Since \(S \) is an ideal of \(X \), we get \(a, b, c \in S \). Thus \(y = f(a, b, c) \in f(S^3) \). Hence, \(f(S^3) \) is an ideal of \(X \).

(4)-(6) It is obvious from Propositions 2.1-2.3.

(7) Suppose that \(f \) is a left and right tri-endomorphism on \(X \). Let \(x, y, z \in X \). Then, by Propositions 2.1 and 2.3, BCH1, BCH7 \(0 = f(0, y, z) = f(x * x, y * 0, z * 0) = f(x, y, z) * f(x, 0, 0) = f(x, y, z) * 0 = f(x, y, z) \). Hence, \(f \) is the zero map on \(X \). □

Let \(T_1(X) \) (resp., \(T_c(X) \), \(T_r(X) \) and \(T(X) \)) be the set of all left tri-endomorphisms (resp., right, central and complete tri-endomorphisms) on a BCH-algebra \(X = (X, *, 0) \). We define an operation \(\ast \) on \(T_1(X) \) by \((\forall x, y, z \in X)((f \ast g)(x, y, z) = f(x, y, z) * g(x, y, z))\). Let \(f \in T_1(X) \) and \(x, y, z \in X \). Then \((f \ast f)(x, y, z) = f(x, y, z) * f(x, y, z) = 0 \). This means that \(f \ast f = 0_X \), where \(0_X : X^3 \to X \) is a function that maps all members to 0. Let \(f, g \in T_1(X) \) be such that \(f \ast g = 0_X \) and \(g \ast f = 0_X \). Then for all \(x, y, z \in X \), \(0 = (f \ast g)(x, y, z) = f(x, y, z) * g(x, y, z) \) and \(0 = (g \ast f)(x, y, z) = g(x, y, z) * f(x, y, z) \). Since \(g(x, y, z), f(x, y, z) \in X \), we have \(f(x, y, z) = g(x, y, z) \) for all \(x, y, z \in X \). Hence, \(f = g \). Let \(f, g, h \in T_1(X) \) and \(x, y, z \in X \). Then \(((f \ast g) \ast h)(x, y, z) = (f \ast g)(x, y, z) * h(x, y, z) = (f(x, y, z) * g(x, y, z)) * h(x, y, z) = (f(x, y, z) * h(x, y, z)) * g(x, y, z) \). Hence, \((f \ast g) \ast h = (f \ast h) \ast g \).

Theorem 2.2. \((T_1(X), \ast, 0_X), (T_c(X), \ast, 0_X), (T_r(X), \ast, 0_X), \) and \((T(X), \ast, 0_X) \) are BCH-algebras.

Let \(X = (X, *, 0) \) be a BCH-algebra. We define the binary operation \(\circ \) on \(X^3 \) as follows: \((\forall (a, b, c), (x, y, z) \in X^3)((a, b, c) \circ (x, y, z) = (a * x, b * y, c * z))\). Then \(X^3 = (X, \circ, (0, 0, 0)) \) is a BCH-algebra.

Theorem 2.3. Let \(X = (X, *, 0) \) be a BCH-algebra and \(S_1, S_2, S_3 \) be subsets of \(X \). Then

(1) \(S_1 \times S_2 \times S_3 \) is a subalgebra of \(X^3 \) if and only if \(S_1, S_2 \) and \(S_3 \) are subsets of \(X \),

(2) \(S_1 \times S_2 \times S_3 \) is an ideal of \(X^3 \) if and only if \(S_1, S_2 \) and \(S_3 \) are ideals of \(X \).
Proof. (1) Suppose that \(S_1 \times S_2 \times S_3 \) is a subalgebra of \(X^3 \). Firstly, we will show that \(S_1 \) is a subalgebra of \(X \). Let \(a, b \in S_1 \). Let \(x \in S_2 \) and \(u \in S_3 \). Then \((a, x, u), (b, x, u) \in S_1 \times S_2 \times S_3 \). Thus \((a \ast b, 0, 0) = (a \ast b, x \ast x, u \ast u) = (a, x, u) \odot (b, x, u) \in S_1 \times S_2 \times S_3 \), that is, \(a \ast b \in S_1 \). Hence, \(S_1 \) is a subalgebra of \(X \). On the other hand, we can show that \(S_2 \) and \(S_3 \) are subalgebras of \(X \).

Conversely, let \((x, y, z), (a, b, c) \in S_1 \times S_2 \times S_3 \). Then \(x \ast a \in S_1, y \ast b \in S_2, \) and \(z \ast c \in S_3 \), so \((x, y, z) \odot (a, b, c) = (x \ast a, y \ast b, z \ast c) \in S_1 \times S_2 \times S_3 \). Hence, \(S_1 \times S_2 \times S_3 \) is a subalgebra of \(X^3 \).

(2) Suppose that \(S_1 \times S_2 \times S_3 \) is an ideal of \(X^3 \). Since \((0, 0, 0) \in S_1 \times S_2 \times S_3 \), we have \(0 \in S_i \) for all \(i = 1, 2, 3 \). Assume that \(a \ast x \in S_1 \) and \(a \in S_1 \). Let \(b \in S_2 \) and \(c \in S_3 \). Then \((a, b, c) \in S_1 \times S_2 \times S_3 \) and \((x, b, c) \in X^3 \). Thus \((a, b, c) \odot (x, b, c) = (a \ast x, b \ast b, c \ast c) = (a \ast x, 0, 0) \in S_1 \times S_2 \times S_3 \). Since \(S_1 \times S_2 \times S_3 \) is an ideal of \(X^3 \), we have \((x, b, c) \in S_1 \times S_2 \times S_3 \), that is, \(x \in S_1 \). Hence, \(S_1 \) is an ideal of \(X \). Similarly, we can show that \(S_2 \) and \(S_3 \) are ideals of \(X \).

Conversely, suppose that \(S_1, S_2 \) and \(S_3 \) are ideals of \(X \). Since \(0 \in S_i \) for all \(i = 1, 2, 3 \), we have \((0, 0, 0) \in S_1 \times S_2 \times S_3 \). Assume that \((a, b, c) \ast (x, y, z) \in S_1 \times S_2 \times S_3 \) and \((a, b, c) \in S_1 \times S_2 \times S_3 \). We get \((a \ast x, b \ast y, c \ast z) \in S_1 \times S_2 \times S_3 \). Since \(a \ast x, a \in S_1 \), we have \(x \in S_1 \). Moreover, we can obtain that \(y \in S_2 \) and \(z \in S_3 \). This implies that \((x, y, z) \in S_1 \times S_2 \times S_3 \). Hence, \(S_1 \times S_2 \times S_3 \) is an ideal of \(X^3 \). \(\square \)

Acknowledgment: This research project was supported by the Thailand Science Research and Innovation Fund and the University of Phayao (Grant No. FF66-UoE017).

Conflicts of Interest: The authors declare that there are no conflicts of interest regarding the publication of this paper.

References