EIGENVALUES FOR ITERATIVE SYSTEMS OF \((n,p)\)-TYPE FRACTIONAL ORDER BOUNDARY VALUE PROBLEMS

K. R. PRASAD\(^1\), B. M. B. KRUSHNA\(^2\),* AND N. SREEDHAR\(^3\)

Abstract. In this paper, we determine the eigenvalue intervals of \(\lambda_1, \lambda_2, \ldots, \lambda_n\) for which the iterative system of \((n,p)\)-type fractional order two-point boundary value problem has a positive solution by an application of Guo-Krasnosel’skii fixed point theorem on a cone.

1. Introduction

The study of fractional order differential equations has emerged as an important area of mathematics. It has wide range of applications in various fields of science and engineering such as physics, mechanics, control systems, flow in porous media, electromagnetics and viscoelasticity. Recently, much interest has been created in establishing positive solutions and multiple positive solutions for two-point, multi-point boundary value problems (BVPs) associated with ordinary and fractional order differential equations. To mention the related papers along these lines, we refer to Erbe and Wang [4], Davis, Henderson, Prasad and Yin [3] for ordinary differential equations, Henderson and Ntouyas [6, 7], Henderson, Ntouyas and Purnaras [8, 9] for systems of ordinary differential equations, Bai and Lu [1], Zhang [17], Kaufman and Mboumi [10], Benchohra, Henderson, Ntouyas and Ouahab [2], Su and Zhang [16], Khan, Rehman and Henderson[11], Prasad and Krushna [15] for fractional order differential equations.

This paper concerned with determining the eigenvalues \(\lambda_i, 1 \leq i \leq n\), for which there exist positive solutions for the iterative system of \((n,p)\)-type fractional order boundary value problems

\[
D_0^{\alpha_i} y_i(t) + \lambda_i a_i(t) f_i(y_{i+1}(t)) = 0, \quad 1 \leq i \leq n, \quad 0 < t < 1,
\]

\[
y_{n+1}(t) = y_1(t), \quad 0 < t < 1,
\]

\[
y_j^{(i)}(0) = 0, \quad 0 \leq j \leq n-2, \quad y_i^{(p)}(1) = 0,
\]

where \(D_0^{\alpha_i}\) is the standard Riemann-Liouville fractional order derivative, \(n-1 < \alpha \leq n\) and \(n \geq 3\), \(1 \leq p \leq \alpha - 1\) is a fixed integer.

By a positive solution of the fractional order BVP (1.1)-(1.2), we mean \((y_1(t), y_2(t), \ldots, y_n(t)) \in \left(C^1[0,1]\right)^n\) satisfying (1.1)-(1.2) with \(y_i(t) \geq 0, i = 1, 2, 3, \ldots, n\), for

2010 Mathematics Subject Classification. 26A33, 34B15, 34B18.

Key words and phrases. Fractional derivative, Boundary value problem, Iterative system, Two-point, Green’s function, Eigenvalues, Positive solution.

©2014 Authors retain the copyrights of their papers, and all open access articles are distributed under the terms of the Creative Commons Attribution License.
Lemma 2.1. \(f_i : \mathbb{R}^+ \to \mathbb{R}^+ \) is continuous, for \(1 \leq i \leq n \),
(A2) \(a_i : [0, 1] \to \mathbb{R}^+ \) is continuous and \(a_i \) does not vanish identically on any closed subinterval of \([0, 1]\), for \(1 \leq i \leq n \),
(A3) each of
\[
f_{i0} = \lim_{x \to 0^+} \frac{f_i(x)}{x} \quad \text{and} \quad f_{i\infty} = \lim_{x \to \infty} \frac{f_i(x)}{x},
\]
for \(1 \leq i \leq n \), exists as positive real numbers.

The rest of the paper is organized as follows. In Section 2, we construct the Green’s function for the homogeneous BVP and estimate the bounds for the Green’s function. In Section 3, we establish criteria to determine the eigenvalues for which the fractional order BVP (1.1)-(1.2) has at least one positive solution in a cone by using Guo-Krasnosel’skii fixed point theorem. In Section 4, as an application, we demonstrate our results with an example.

2. Green’s Function and Bounds

In this section, we construct the Green’s function for the homogeneous BVP and estimate the bounds for the Green’s function which are needed in establishing the main results.

Lemma 2.1. If \(h(t) \in \mathcal{C}[0, 1] \), then the fractional order BVP,
\[
P_0^\alpha y_1(t) + h(t) = 0, \quad t \in (0, 1),
\]
(2.1)
\[
y_1^{(j)}(0) = 0, \quad 0 \leq j \leq n - 2, \quad y_1^{(p)}(1) = 0
\]
(2.2)
has a unique solution,
\[
y_1(t) = \int_0^1 G(t, s)h(s)ds,
\]
where
\[
G(t, s) = \begin{cases}
\frac{t^{\alpha-1}(1-s)^{\alpha-1-p}}{\Gamma(\alpha)} & 0 \leq t \leq s \leq 1, \\
\frac{t^{\alpha-1}(1-s)^{\alpha-1-p} - (t-s)^{\alpha-1}}{\Gamma(\alpha)} & 0 \leq s \leq t \leq 1.
\end{cases}
\]

Proof. Assume that \(y_1(t) \in \mathcal{C}[\alpha+1][0, 1] \) is a solution of fractional order BVP (2.1)-(2.2) and is uniquely expressed as
\[
P_0^\alpha D_0^\alpha y_1(t) = -I_0^\alpha h(t)
\]
\[
y_1(t) = \frac{-1}{\Gamma(\alpha)} \int_0^t (t-s)^{\alpha-1}h(s)ds + c_1 t^{\alpha-1} + c_2 t^{\alpha-2} + c_3 t^{\alpha-3} + \cdots + c_n t^{\alpha-n}.
\]
From \(y_1^{(j)}(0) = 0 \), \(0 \leq j \leq n - 2 \), we have \(c_n = c_{n-1} = c_{n-2} = \cdots = c_2 = 0 \). Then
\[
y_1(t) = \frac{-1}{\Gamma(\alpha)} \int_0^t (t-s)^{\alpha-1}h(s)ds + c_1 t^{\alpha-1},
\]
\[
y_1^{(p)}(t) = c_1 \prod_{i=1}^p ((\alpha - i)t^{\alpha-1-p} - \prod_{i=1}^p ((\alpha - i)) \frac{1}{\Gamma(\alpha)} \int_0^1 (t-s)^{\alpha-1-p}h(s)ds.
\]
From \(y_1^{(p)}(1) = 0 \), we have
\[
c_1 \prod_{i=1}^p (\alpha - i) - \prod_{i=1}^p (\alpha - i) \frac{1}{\Gamma(\alpha)} \int_0^1 (1 - s)^{\alpha - 1 - p} h(s) ds = 0.
\]
Therefore, \(c_1 = \frac{1}{\Gamma(\alpha)} \int_0^1 (1 - s)^{\alpha - 1 - p} h(s) ds \). Thus, the unique solution of (2.1)-(2.2) is
\[
y_1(t) = -\frac{1}{\Gamma(\alpha)} \int_0^t (t - s)^{\alpha - 1} h(s) ds + \frac{\Gamma(\alpha)}{\Gamma(\alpha)} \int_0^1 (1 - s)^{\alpha - 1 - p} h(s) ds
\]
\[
= \int_0^1 G(t, s) h(s) ds,
\]
where \(G(t, s) \) is given in (2.3). \(\square \)

Lemma 2.2. The Green’s function \(G(t, s) \) satisfies the following inequalities,

(i) \(G(t, s) \geq 0, \) for all \((t, s) \in [0, 1] \times [0, 1], \)

(ii) \(G(t, s) \leq G(1, s), \) for all \((t, s) \in [0, 1] \times [0, 1], \)

(iii) \(G(t, s) \geq \frac{1}{4^{\alpha - 1}} G(1, s), \) for all \((t, s) \in I \times [0, 1], \)

where \(I = \left[\frac{1}{4}, \frac{3}{4} \right]. \)

Proof. The Green’s function \(G(t, s) \) is given in (2.3). For \(0 \leq t \leq s \leq 1, \)
\[
G(t, s) = \frac{1}{\Gamma(\alpha)} [t^{\alpha - 1}(1 - s)^{\alpha - 1 - p} - (t - s)^{\alpha - 1}]
\]
\[
\geq \frac{1}{\Gamma(\alpha)} [t^{\alpha - 1}(1 - s)^{\alpha - 1 - p} - t^{\alpha - 1}(1 - s)^{\alpha - 1}]
\]
\[
= \frac{1}{\Gamma(\alpha)} [t^{\alpha - 1}(1 - s)^{\alpha - 1 - p}][1 - (1 - s)^p] \geq 0.
\]

Hence the inequality (i) is proved. We prove the inequality (ii). For \(0 \leq t \leq s \leq 1, \)
\[
\frac{\partial}{\partial t} G(t, s) = \frac{1}{\Gamma(\alpha)} [(\alpha - 1)t^{\alpha - 2}(1 - s)^{\alpha - 1 - p}] \geq 0.
\]

For \(0 \leq s \leq t \leq 1, \)
\[
\frac{\partial}{\partial t} G(t, s) = \frac{1}{\Gamma(\alpha)} [(\alpha - 1)t^{\alpha - 2}(1 - s)^{\alpha - 1 - p} - (\alpha - 1)(t - s)^{\alpha - 2}]
\]
\[
= \frac{(\alpha - 1)}{\Gamma(\alpha)} [t^{\alpha - 2}(1 - s)^{\alpha - 2}(1 - s)^{1 - p} - (t - s)^{\alpha - 2}]
\]
\[
\geq \frac{(\alpha - 1)}{\Gamma(\alpha)} [t^{\alpha - 2}(1 - s)^{\alpha - 2}(1 - s)^{1 - p} - (t - ts)^{\alpha - 2}]
\]
\[
= \frac{(\alpha - 1)}{\Gamma(\alpha)} [(1 - s)^{1 - p} - 1](t - ts)^{\alpha - 2} \geq 0.
\]
Therefore $G(t, s)$ is increasing with respect to $t \in [0, 1]$. Hence the inequality (ii) is proved. Now, we establish the inequality (iii). For $0 \leq t \leq s \leq 1$ and $t \in I$,

$$G(t, s) = \frac{t^{\alpha-1}(1-s)^{\alpha-1-p}}{(1-s)^{\alpha-1-p}} = t^{\alpha-1} \geq \frac{1}{4^{\alpha-1}}.$$

For $0 \leq s \leq t \leq 1$ and $t \in I$,

$$G(t, s) = \frac{t^{\alpha-1}(1-s)^{\alpha-1-p} - (t-s)^{\alpha-1}}{(1-s)^{\alpha-1-p} - (1-s)^{\alpha-1}} \geq \frac{t^{\alpha-1}(1-s)^{\alpha-1-p} - (t-s)^{\alpha-1}}{(1-s)^{\alpha-1-p} - (1-s)^{\alpha-1}} \geq t^{\alpha-1} \geq \frac{1}{4^{\alpha-1}}.$$

Hence the inequality (iii) is proved.

An n-tuple $(y_1(t), y_2(t), \ldots, y_n(t))$ is a solution of the BVP (1.1)-(1.2) if and only if $y_i(t) \in C[0, 1]$ satisfies the following equations

$$y_i(t) = \lambda_i \int_0^1 G(t, s_1) a_1(s_1) f_1(\lambda_2 \int_0^1 G(s_1, s_2) a_2(s_2) \ldots f_{n-1} (\lambda_n \int_0^1 G(s_{n-1}, s_n) a_n(s_n) f_n(y_1(s_n)) ds_n) \ldots ds_2) ds_1$$

and

$$y_i(t) = \lambda_i \int_0^1 G(t, s) a_i(s) f_i(y_{i+1}(s)) ds, \ 0 \leq t \leq 1, \ 2 \leq i \leq n,$$

where

$$y_{n+1}(t) = y_1(t), \ 0 \leq t \leq 1.$$

In establishing our main result, we will employ the following fixed point theorem due to Guo-Krasnosel’skii [5, 13].

Theorem 2.3. [5, 13] Let X be a Banach Space, $P \subseteq X$ be a cone and suppose that Ω_1, Ω_2 are open subsets of X with $0 \in \Omega_1$ and $\overline{\Omega}_1 \subset \Omega_2$. Suppose further that $T : P \cap (\overline{\Omega}_2 \setminus \Omega_1) \to P$ is a completely continuous operator such that either

(i) $\| Tu \| \leq \| u \|, \ u \in P \cap \partial \Omega_1$ and $\| Tu \| \geq \| u \|, \ u \in P \cap \partial \Omega_2$, or

(ii) $\| Tu \| \geq \| u \|, \ u \in P \cap \partial \Omega_1$ and $\| Tu \| \leq \| u \|, \ u \in P \cap \partial \Omega_2$ holds.

Then T has a fixed point in $P \cap (\overline{\Omega}_2 \setminus \Omega_1)$.

3. Positive Solutions in a Cone

In this section, we establish criteria to determine the eigenvalues for which the fractional order BVP (1.1)-(1.2) has at least one positive solution in a cone.

Let $X = \{x : x \in C[0, 1]\}$ be the Banach space equipped with the norm

$$\|x\| = \max_{0 \leq t \leq 1} |x(t)|.$$

Define a cone $P \subseteq X$ by

$$P = \left\{ x \in X \mid x(t) \geq 0 \text{ on } [0, 1] \text{ and } \min_{t \in I} x(t) \geq \frac{1}{4^{\alpha-1}} \|x\| \right\}.$$
Now, we define an integral operator $T : P \to X$, for $y_1 \in P$, by

$$
Ty_1(t) = \lambda_1 \int_0^1 G(t, s_1)a_1(s_1)f_1 \left(\lambda_2 \int_0^1 G(s_1, s_2)a_2(s_2) \cdots \right.
$$

$$
\left. f_{n-1} \left(\lambda_n \int_0^1 G(s_{n-1}, s_n)a_n(s_n)f_n(y_1(s_n))ds_n \right) \cdots ds_2 \right) ds_1.
$$

(3.1)

Notice from (A1), (A2) and Lemma 2.2 that, for $y_1 \in P$, $Ty_1(t) \geq 0$ on $[0, 1]$. And also, we have

$$
Ty_1(t) \leq \lambda_1 \int_0^1 G(1, s_1)a_1(s_1)f_1 \left(\lambda_2 \int_0^1 G(s_1, s_2)a_2(s_2) \cdots \right.
$$

$$
\left. f_{n-1} \left(\lambda_n \int_0^1 G(s_{n-1}, s_n)a_n(s_n)f_n(y_1(s_n))ds_n \right) \cdots ds_2 \right) ds_1
$$

so that

$$
\|Ty_1\| \leq \lambda_1 \int_0^1 G(1, s_1)a_1(s_1)f_1 \left(\lambda_2 \int_0^1 G(s_1, s_2)a_2(s_2) \cdots \right.
$$

$$
\left. f_{n-1} \left(\lambda_n \int_0^1 G(s_{n-1}, s_n)a_n(s_n)f_n(y_1(s_n))ds_n \right) \cdots ds_2 \right) ds_1.
$$

(3.2)

Next, if $y_1 \in P$, we have from Lemma 2.2 and (3.2) that

$$
\min_{t \in I} Ty_1(t) = \min_{t \in I} \lambda_1 \int_0^1 G(t, s_1)a_1(s_1)f_1 \left(\lambda_2 \int_0^1 G(s_1, s_2)a_2(s_2) \cdots \right.
$$

$$
\left. f_{n-1} \left(\lambda_n \int_0^1 G(s_{n-1}, s_n)a_n(s_n)f_n(y_1(s_n))ds_n \right) \cdots ds_2 \right) ds_1
$$

$$
\geq \lambda_1 \frac{1}{4^{n-1}} \int_0^1 G(1, s_1)a_1(s_1)f_1 \left(\lambda_2 \int_0^1 G(s_1, s_2)a_2(s_2) \cdots \right.
$$

$$
\left. f_{n-1} \left(\lambda_n \int_0^1 G(s_{n-1}, s_n)a_n(s_n)f_n(y_1(s_n))ds_n \right) \cdots ds_2 \right) ds_1
$$

$$
\geq \frac{1}{4^{n-1}} \|Ty_1\|.
$$

Therefore,

$$
\min_{t \in I} Ty_1(t) \geq \frac{1}{4^{n-1}} \|Ty_1\|.
$$

Hence, $Ty_1 \in P$ and so $T : P \to P$. Further, the operator T is a completely continuous operator by an application of the Arzela-Ascoli Theorem.

Now, we seek suitable fixed point of T belonging to the cone P. For our first result, we define positive numbers N_1 and N_2, by

$$
N_1 = \max_{1 \leq i \leq n} \left\{ \left[\frac{1}{4^{n-1}} \int_{s \in I} G(1, s)a_i(s)dsf_i\right]^{-1} \right\}
$$

and

$$
N_2 = \min_{1 \leq i \leq n} \left\{ \left[\int_0^1 G(1, s)a_i(s)dsf_i\right]^{-1} \right\}.
$$
Theorem 3.1. Assume that the conditions (A1)-(A3) are satisfied. Then, for each
\(\lambda_1, \lambda_2, \cdots, \lambda_n \) satisfying
\[
(3.3) \quad N_1 < \lambda_i < N_2, \quad 1 \leq i \leq n,
\]
there exists an \(n \)-tuple \((y_1, y_2, \cdots, y_n) \) satisfying (1.1)-(1.2) such that \(y_i(t) > 0 \),
\(1 \leq i \leq n \) on \((0,1) \).

Proof. Let \(\lambda_i, 1 \leq i \leq n \) be given as in (3.3). Now, let \(\epsilon > 0 \) be chosen such that
\[
\max_{1 \leq i \leq n} \left\{ \frac{1}{4^{n-1}} \int_{s \in I} G(1, s) a_i(s) ds (f_{i \infty} - \epsilon) \right\} \leq \min_{1 \leq i \leq n} \lambda_i
\]
and
\[
\max_{1 \leq i \leq n} \lambda_i \leq \min_{1 \leq i \leq n} \left\{ \left[\int_0^1 G(1, s) a_i(s) ds (f_{i0} + \epsilon) \right]^{-1} \right\}.
\]
We seek fixed point of the completely continuous operator \(T : P \to P \) defined by
(3.1). Now, from the definitions of \(f_{i0}, 1 \leq i \leq n \), there exists an \(H_1 > 0 \) such that,
for each \(1 \leq i \leq n \),
\[
f_i(x) \leq (f_{i0} + \epsilon)x, \quad 0 < x \leq H_1.
\]
Let \(y_1 \in P \) with \(\|y_1\| = H_1 \). We first have from Lemma 2.2 and the choice of \(\epsilon \),
for \(0 \leq s_{n-1} \leq 1 \),
\[
\lambda_n \int_0^1 G(s_{n-1}, s_n) a_n(s_n) f_n(y_1(s_n)) ds_n
\]
\[
\leq \lambda_n \int_0^1 G(1, s_n) a_n(s_n) (f_{n0} + \epsilon) y_1(s_n) ds_n
\]
\[
\leq \lambda_n \int_0^1 G(1, s_n) a_n(s_n) ds_n (f_{n0} + \epsilon) \|y_1\|
\]
\[
\leq \|y_1\| = H_1.
\]
It follows in a similar manner from Lemma 2.2 and the choice of \(\epsilon \) that, for \(0 \leq s_{n-2} \leq 1 \),
\[
\lambda_{n-1} \int_0^1 G(s_{n-2}, s_{n-1}) a_{n-1}(s_{n-1})
\]
\[
f_{n-1} \left(\lambda_n \int_0^1 G(s_{n-2}, s_n) a_n(s_n) f_n(y_1(s_n)) ds_n \right) ds_{n-1}
\]
\[
\leq \lambda_{n-1} \int_0^1 G(s_{n-2}, s_{n-1}) a_{n-1}(s_{n-1}) ds_{n-1} (f_{n-1,0} + \epsilon) \|y_1\|
\]
\[
\leq \|y_1\| = H_1.
\]
Continuing with this bootstrapping argument, we have, for \(0 \leq t \leq 1 \),
\[
\lambda_1 \int_0^1 G(t, s_1) a_1(s_1) f_1 \left(\lambda_2 \int_0^1 G(s_1, s_2) a_2(s_2) \cdots \right.
\]
\[
f_n(y_1(s_n)) ds_n) \cdots ds_2 \Big) ds_1 \leq H_1,
\]
so that, for \(0 \leq t \leq 1 \),
\[
Ty_1(t) \leq H_1.
\]
Hence, \(\|Ty_1\| \leq H_1 = \|y_1\|\). If we set \(\Omega_1 = \{x \in X \mid \|x\| < H_1\}\), then
\begin{equation}
\|Ty_1\| \leq \|y_1\|, \text{ for } y_1 \in P \cap \partial \Omega_1.
\end{equation}

Next, from the definitions of \(f_i\), \(1 \leq i \leq n\), there exists \(\overline{H}_2 > 0\) such that, for each \(1 \leq i \leq n\), \(f_i(x) \geq (f_{\infty} - \epsilon)x, \ x \geq \overline{H}_2\). Choose \(H_2 = \max\{2H_1, 4^{\alpha-1}\overline{H}_2\}\). Let \(y_1 \in P\) and \(\|y_1\| = H_2\). Then,
\[
\min_{t \in I} y_1(t) \geq \frac{1}{4^{\alpha-1}} \|y_1\| \geq \overline{H}_2.
\]

Then, from Lemma 2.2 and choice of \(\epsilon\), for \(0 \leq s_{n-1} \leq 1\), we have that
\[
\lambda_n \int_0^1 G(s_{n-1}, s_n) a_n(s_n) f_n(y_1(s_n)) ds_n
\begin{align*}
&\geq \lambda_n \int_{s \in I} G(1, s_n) a_n(s_n) f_n(y_1(s_n)) ds_n \\
&\geq \frac{1}{4^{\alpha-1}} \lambda_n \int_{s \in I} G(1, s_n) (f_{\infty} - \epsilon) y_1(s_n) ds_n \\
&\geq \frac{1}{4^{\alpha-1}} \lambda_n \int_{s \in I} G(1, s_n) a_n(s_n) ds_n (f_{\infty} - \epsilon) \|y_1\| \\
&\geq \|y_1\| = H_2.
\end{align*}
\]

It follows in a similar manner from Lemma 2.2 and choice of \(\epsilon\), for \(0 \leq s_{n-2} \leq 1\),
\[
\lambda_{n-1} \int_0^1 G(s_{n-2}, s_{n-1}) a_{n-1}(s_{n-1}) \\
\begin{align*}
f_{n-1}\left(\lambda_n \int_0^1 G(s_{n-1}, s_n) a_n(s_n) f_n(y_1(s_n)) ds_n\right) ds_{n-1} \\
&\geq \frac{1}{4^{\alpha-1}} \lambda_{n-1} \int_{s \in I} G(1, s_{n-1}) a_{n-1}(s_{n-1}) ds_{n-1} ds_{n-1} (f_{n-1, \infty} - \epsilon) \|y_1\| \\
&\geq \|y_1\| = H_2.
\end{align*}
\]

Again, using a bootstrapping argument, we have
\[
\lambda \int_0^1 G(t, s_1) a_1(s_1) f_1 \left(\lambda_2 \int_0^1 G(s_1, s_2) a_2(s_2) \cdots \right) f_n(y_1(s_n)) ds_n \cdots ds_2 ds_1 \geq H_2,
\]
so that
\[
Ty_1(t) \geq H_2 = \|y_1\|.
\]

Hence, \(\|Ty_1\| \geq \|y_1\|\). So if we set \(\Omega_2 = \{x \in X \mid \|x\| < H_2\}\), then
\begin{equation}
\|Ty_1\| \geq \|y_1\|, \text{ for } y_1 \in P \cap \partial \Omega_2.
\end{equation}

Applying Theorem 2.3 to (3.4) and (3.5), we obtain that \(T\) has a fixed point \(y_1 \in P \cap (\overline{\Omega}_2 \setminus \Omega_1)\). Setting \(y_1 = y_{n+1}\), we obtain a positive solution \((y_1, y_2, \cdots, y_n)\) of (1.1)-(1.2) given iteratively by
\[
y_i(t) = \lambda_i \int_0^1 G(t, s) a_i(s) f_i(y_{i+1}(s)) ds, \ i = n, n-1, \cdots, 1.
\]

The proof is completed. \(\Box\)
Prior to our next result, we define the positive numbers N_3 and N_4 by

$$N_3 = \max_{1 \leq i \leq n} \left\{ \left[\frac{1}{4^{n-1}} \int_{s \in I} G(1, s) a_i(s) ds f_{i0} \right]^{-1} \right\}$$

and

$$N_4 = \min_{1 \leq i \leq n} \left\{ \left[\int_0^1 G(1, s) a_i(s) ds f_{i\infty} \right]^{-1} \right\}.$$

Theorem 3.2. Assume that the conditions (A1)-(A3) are satisfied. Then, for each $\lambda_1, \lambda_2, \cdots, \lambda_n$ satisfying

$$N_3 < \lambda_i < N_4, \quad 1 \leq i \leq n,$$

there exists an n-tuple (y_1, y_2, \cdots, y_n) satisfying (1.1)-(1.2) such that $y_i(t) > 0$, $1 \leq i \leq n$ on $(0, 1)$.

Proof. Let λ_i, $1 \leq i \leq n$ be given as in (3.6). Now, let $\epsilon > 0$ be chosen such that

$$\max_{1 \leq i \leq n} \left\{ \left[\frac{1}{4^{n-1}} \int_{s \in I} G(1, s) a_i(s) ds (f_{i0} - \epsilon) \right]^{-1} \right\} \leq \min_{1 \leq i \leq n} \lambda_i$$

and

$$\max_{1 \leq i \leq n} \lambda_i \leq \min_{1 \leq i \leq n} \left\{ \left[\int_0^1 G(1, s) a_i(s) ds (f_{i\infty} + \epsilon) \right]^{-1} \right\}.$$

Let T be the cone preserving, completely continuous operator that was defined by (3.1). From the definition of f_{i0}, $1 \leq i \leq n$ there exists $\overline{P}_3 > 0$ such that, for each $1 \leq i \leq n$,

$$f_i(x) \geq (f_{i0} - \epsilon)x, \quad 0 < x \leq \overline{P}_3.$$

Also, from the definitions of f_{i0}, it follows that $f_{i0}(0) = 0$, $1 \leq i \leq n$, and so there exist $0 < K_n < K_{n-1} < \cdots < K_2 < \overline{P}_3$ such that

$$\lambda_i f_i(t) \leq \frac{K_{i-1}}{\int_0^1 G(1, s) a_i(s) ds}, \quad t \in [0, K_i], \quad 3 \leq i \leq n,$$

and

$$\lambda_2 f_2(t) \leq \frac{\overline{P}_3}{\int_0^1 G(1, s) a_2(s) ds}, \quad t \in [0, K_2].$$

Choose $y_1 \in P$ with $\|y_1\| = K_n$. Then, we have

$$\lambda_n \int_0^1 G(s_{n-1}, s_n) a_n(s_n) f_n(y_1(s_n)) ds_n$$

$$\leq \lambda_n \int_0^1 G(1, s_n) a_n(s_n) f_n(y_1(s_n)) ds_n$$

$$\leq \frac{\int_0^1 G(1, s_n) a_n(s_n) K_{n-1} ds_n}{\int_0^1 G(1, s_n) a_n(s_n) ds_n}$$

$$\leq K_{n-1}.$$
Continuing with this bootstrapping argument, it follows that
\[
\lambda_2 \int_0^1 G(1, s_2) a_2(s_2) f_2(\lambda_3 \int_0^1 G(s_2, s_3) a_3(s_3) \cdots f_n(y_1(s_n)) ds_n) \cdots ds_3 ds_2 \leq \Theta_3.
\]
Then,
\[
T y_1(t) = \lambda_1 \int_0^1 G(t, s_1) a_1(s_1) f_1\left(\lambda_2 \int_0^1 G(s_1, s_2) a_2(s_2) \cdots f_n(y_1(s_n)) ds_n\right) \cdots ds_2 ds_1
\]
\[
\geq \frac{1}{4^{n-1}} \lambda_1 \int_{s \in I} G(1, s_1) a_1(s_1) (f_{10} - \epsilon) \|y_1\| ds_1 \geq \|y_1\|.
\]
So, \(\|Ty_1\| \geq \|y_1\|\). If we set \(\Omega = \{x \in X \mid \|x\| < K_n\}\), then
(3.7) \[\|Ty_1\| \geq \|y_1\|, \text{ for } y_1 \in P \cap \partial \Omega_1.\]
Since each \(f_{\infty}\) is assumed to be a positive real number, it follows that \(f_i, 1 \leq i \leq n\), is unbounded at \(\infty\). For each \(1 \leq i \leq n\), set
\[
f^*_i(x) = \sup_{0 \leq s \leq x} f_i(s).
\]
Then, it is straightforward that, for each \(1 \leq i \leq n\), \(f^*_i\) is a nondecreasing real-valued function, \(f_i \leq f^*_i\) and
\[
\lim_{x \to \infty} \frac{f^*_i(x)}{x} = f_{\infty}.
\]
Next, by definition of \(f_{\infty}\), \(1 \leq i \leq n\), there exists \(\Theta_4\) such that, for each \(1 \leq i \leq n\),
\[
f^*_i(x) \leq (f_{\infty} + \epsilon)x, \quad x \geq \Theta_4.
\]
It follows that there exists \(H_4 = \max(2\Theta_3, \Theta_4)\) such that, for each \(1 \leq i \leq n\),
\[
f^*_i(x) \leq f^*_i(H_4), \quad 0 < x \leq H_4.
\]
Choose \(y_1 \in P\) with \(\|y_1\| = H_4\). Then, using the usual bootstrapping argument, we have
\[
T y_1(t) = \lambda_1 \int_0^1 G(t, s_1) a_1(s_1) f_1(\lambda_2 \cdots f_n(y_1(s_n)) ds_1
\]
\[
\leq \lambda_1 \int_0^1 G(t, s_1) a_1(s_1) f_1^*(\lambda_2 \cdots ds_1
\]
\[
\leq \lambda_1 \int_0^1 G(1, s_1) a_1(s_1) f^*_i(H_4) ds_1
\]
\[
\leq \lambda_1 \int_0^1 G(1, s_1) a_1(s_1) ds_1 (f_{1\infty} + \epsilon) H_4
\]
\[
\leq H_4 = \|y_1\|.
\]
and so \(\|Ty_1\| \leq \|y_1\|\). So, if we let \(\Omega_2 = \{x \in X \mid \|x\| < H_4\}\), then
(3.8) \[\|Ty_1\| \leq \|y_1\|, \text{ for } y_1 \in P \cap \partial \Omega_2.\]
Applying Theorem 2.3 to (3.7)-(3.8), we obtain that \(T\) has a fixed point \(y_1 \in P \cap (\Theta_2 \backslash \Omega_1)\), which in turn with \(y_1 = y_{n+1}\), yields an \(n\)-tuple \((y_1, y_2, \cdots, y_n)\).
satisfying the BVP (1.1)-(1.2) for the chosen values of \(\lambda_i, 1 \leq i \leq n \). The proof is thus completed. \(\square \)

4. Example

In this section, as an application, we demonstrate our results with an example. Consider the fractional order boundary value problem

\[
\begin{align*}
D_{0+}^{\alpha} y_1(t) + \frac{\lambda_1}{1+t} y_2(46 - 27.5e^{-2ty_2})(500 - 487e^{-3y_2}) &= 0, t \in (0, 1), \\
D_{0+}^{\alpha} y_2(t) + \frac{\lambda_2}{1+t} y_3(37 - 25.5e^{-5ty_3})(400 - 368e^{-9y_3}) &= 0, t \in (0, 1), \\
D_{0+}^{\alpha} y_3(t) + \frac{\lambda_3}{1+t} y_1(79 - 75e^{-y_1})(800 - 749.5e^{-2y_1}) &= 0, t \in (0, 1),
\end{align*}
\]

(4.1)

\[
y_i(0) = 0, \quad y'_i(0) = 0 \quad \text{and} \quad y'_i(1) = 0, \quad i = 1, 2, 3.
\]

The Green’s function \(G(t, s) \) of corresponding homogeneous BVP is given by

\[
G(t, s) = \begin{cases}
\frac{t^{\alpha-1}(1-s)^{\beta-1}}{\Gamma(\alpha)\Gamma(\beta)}, & 0 \leq t \leq s \leq 1, \\
\frac{t^{\alpha-1}(1-s)^{\beta-1} - (t-s)^{\alpha-1}}{\Gamma(\alpha)}, & 0 \leq s \leq t \leq 1.
\end{cases}
\]

By direct calculations, we found that

\[
\begin{align*}
&f_{10} = 299, f_{20} = 368, f_{30} = 202, \\
&f_{1\infty} = 23000, f_{2\infty} = 14800, f_{3\infty} = 63200, \\
&N_1 = \max \left\{ (0.25)^{1.5} \int_{0.25}^{0.75} G(1, s)a_1(s)ds(23000) \right\}^{-1}, \\
&\left[(0.25)^{1.5} \int_{0.25}^{0.75} G(1, s)a_2(s)ds(14800) \right]^{-1}, \\
&\left[(0.25)^{1.5} \int_{0.25}^{0.75} G(1, s)a_3(s)ds(63200) \right]^{-1},
\end{align*}
\]

\[
= \max\{0.0009634, 0.0014972, 0.0003306\} = 0.0014972.
\]

Similarly, \(N_2 = \min\{0.0307737, 0.0250037, 0.0455512\} = 0.0250037 \). Applying Theorem 3.1, we get an optimal eigenvalue interval \(0.0014972355 < \lambda_i < 0.0250037 \), for \(i = 1, 2, 3 \) in which the fractional order BVP (4.1)-(4.2) has at least one positive solution.

References

1Department of Applied Mathematics, Andhra University, Visakhapatnam, 530 003, India

2Department of Mathematics, MVGR College of Engineering, Vizianagaram, 535 005, India

3Department of Mathematics, GITAM University, Visakhapatnam, 530 045, India

*Corresponding author