Bi-ideals and Weak Bi-ideals of Near Left Almost Rings

Thiti Gaketem*

Fuzzy Algebras and Decision-Making Problems Research Unit, Department of Mathematics School of Science, University of Phayao, Phayao 56000, Thailand

*Corresponding author: thiti.up.ac.th

Abstract. In this paper, we define bi-ideals and weak bi-ideals of nLA-ring. We investigate the properties of bi-ideals and weak bi-ideals of nLA-ring.

1. Introduction

M.A. Kazim and MD. Naseeruddin defined LA-semigroup as the following; a groupoid S is called a left almost semigroup, abbreviated as LA-semigroup if

$$(ab)c = (cb)a, \quad \forall a, b, c \in S$$

M.A. Kazim and MD. Naseeruddin [1, Proposition 2.1] asserted that, in every LA-semigroups G a medial law hold

$$(a \cdot b) \cdot (c \cdot d) = (a \cdot c) \cdot (b \cdot d), \quad \forall a, b, c, d \in G.$$

Q. Mushtaq and M. Khan [3, p.322] asserted that, in every LA-semigroups G with left identity

$$(a \cdot b) \cdot (c \cdot d) = (d \cdot b) \cdot (c \cdot a), \quad \forall a, b, c, d \in G.$$

Further M. Khan, Faisal, and V. Amjid [2], asserted that, if a LA-semigroup G with left identity the following law holds

$$a \cdot (b \cdot c) = b \cdot (a \cdot c), \quad \forall a, b, c \in G.$$

M. Sarwar (Kamran) [5] defined LA-group as the following; a groupoid G is called a left almost group, abbreviated as LA-group, if (i) there exists $e \in G$ such that $ea = a$ for all $a \in G$, (ii) for every $a \in G$ there exists $a' \in G$ such that, $a'a = e$, $(iii) (ab)c = (cb)a$ for every $a, b, c \in G$.

Received: Mar. 2, 2023.
2020 Mathematics Subject Classification. 16Y30.
Key words and phrases. nLA-ring; bi-ideal; weak bi-ideal.
Let \(\langle G, \cdot \rangle \) be an LA-group and \(S \) be a non-empty subset of \(G \) and \(S \) is itself and LA-group under the binary operation induced by \(G \), the \(S \) is called an LA-subgroup of \(G \), then \(S \) is called an LA-subgroup of \(\langle G, \cdot \rangle \).

S.M. Yusuf in [7, p.211] introduces the concept of a left almost ring (LA-ring). That is, a non-empty set \(R \) with two binary operations “+” and “·” is called a left almost ring, if \(\langle R, + \rangle \) is an LA-group, \(\langle R, \cdot \rangle \) is an LA-semigroup and distributive laws of “·” over “+” holds. T. Shah and I. Rehman [7, p.211] asserted that a commutative ring \(\langle R, +, \cdot \rangle \), we can always obtain an LA-ring \(\langle R, \oplus, \cdot \rangle \) by defining, for \(a, b, c \in R \), \(a \oplus b = b - a \) and \(a \cdot b \) is same as in the ring. We can not assume the addition to be commutative in an LA-ring. An LA-ring \(\langle R, +, \cdot \rangle \) is said to be LA-integral domain if \(a \cdot b = 0 \), \(a, b \in R \), then \(a = 0 \) or \(b = 0 \). Let \(\langle R, +, \cdot \rangle \) be an LA-ring and \(S \) be a non-empty subset of \(R \) and \(S \) is itself and LA-ring under the binary operation induced by \(R \), the \(S \) is called an LA-subring of \(R \), then \(S \) is called a left ideal of \(R \) if \(RS \subseteq S \). Right and two-sided ideals are defined in the usual manner.

By [4] a near-ring is a non-empty set \(N \) together with two binary operations “+” and “·” such that \(\langle N, + \rangle \) is a group (not necessarily abelian), \(\langle N, \cdot \rangle \) is a semigroup and one sided distributive (left or right) of “·” over “+” holds.

By [8] If a subgroup \(B \) of \(\langle N, + \rangle \) is said to be a bi-ideal of \(N \) if \(BNB \cap (BN) \ast B \subseteq B \). If \(N \) has a zero symmetric near-ring a subgroup \(B \) of \(\langle N, + \rangle \) is a bi-ideal if and only if \(BNB \subseteq B \).

By [9] A subgroup \(B \) of \(\langle N, + \rangle \) is said to be a weak bi-ideal of \(N \) if \(B^3 \subseteq B \). In this paper we will define bi-ideal of near-ring has a zero symmetric.

2. Near Left Almost Rings

T. Shah, F. Rehman and M. Raees [6, pp.1103-1111] introduces the concept of a near left almost ring (nLA-ring).

Definition 2.1. [6]. A non-empty set \(N \) with two binary operation “+” and “·” is called a near left almost ring (or simply an nLA-ring) if and only if

1. \(\langle N, + \rangle \) is an LA-group.
2. \(\langle N, \cdot \rangle \) is an LA-semigroup.
3. Left distributive property of \(\cdot \) over + holds, that is \(a \cdot (b + c) = a \cdot b + a \cdot c \) for all \(a, b, c \in N \).

Definition 2.2. [6]. An nLA-ring \(\langle N, + \rangle \) with left identity 1, such that \(1 \cdot a = a \) for all \(a \in N \), is called an nLA-ring with left identity.

Definition 2.3. [6]. A non-empty subset \(S \) of an nLA-ring \(N \) is said to be an nLA-subring if and only if \(S \) is itself an nLA-ring under the same binary operations as in \(N \).
Definition 2.4. [6]. An nLA-subring I of an nLA-ring N is called a left ideal of N if $NI \subseteq I$, and I is called a right ideal if for all $n, m \in N$ and $i \in I$ such that $(i + n)m - nm \in I$, and is called two sided ideal or simply ideal if it is both left and right ideal.

Definition 2.5. [6]. Let $(N, +, \cdot)$ be an nLA-ring. A non-zero element a of N is called a left zero divisor if there exists $0 \neq b \in N$ such that $a \cdot b = 0$. Similarly a is a right zero divisor if $b \cdot a = 0$. If a is both a left and a right zero divisor, then a is called a zero divisor.

Definition 2.6. [6]. An nLA-ring $(D, +, \cdot)$ with left identity 1, is called an nLA-ring integral domain if it has no left zero divisor.

Definition 2.7. [6]. An nLA-ring $(F, +, \cdot)$ with left identity 1, is called a near almost field (n-almost field) if and only if each non-zero element of F has inverse under “\cdot”.

3. Bi-ideals and Weak Bi-ideals of Near Left Almost Rings

Next we defines of a bi-ideals and weak bi-ideals in nLA-ring is defines the same as a bi-ideal and weak bi-ideal in near-ring in [8] and [9].

Definition 3.1. If a LA-subgroup B of $(N, +)$ is said to be a bi-ideal of N if $(BN)B \cap (BN)B \subseteq B$. If N has a zero symmetric nLA-ring a LA-subgroup B of $(N, +)$ is a bi-ideal if and only if $(BN)B \subseteq B$.

Lemma 3.1. Let N be a zero symmetric nLA-ring. An LA-subgroup B of N is a bi-ideal if and only if $(BN)B \subseteq B$.

Proof. For an LA-subgroup N of $(N, +)$ if $(BN)B \subseteq B$ then B is a bi-ideal of N.
Conversely if B is a bi-ideal, we have $(BN)B \cap (BN)B \subseteq B$. Since N is a zero symmetric nLA-ring, $NB \subseteq N \cdot B$, we get

$$(BN)B = (BN)B \cap (BN)B \subseteq (BN)B \cap (BN)B \subseteq B.$$

Thus $(BN)B \subseteq B$. □

Definition 3.2. Let N be an nLA-ring. An LA-subgroup B of $(N, +)$ is a bi-ideal if $(BN)B \subseteq B$.

Theorem 3.1. If B be a bi-ideal of a nLA-ring N and S is an nLA-subring of N. Then $B \cap S$ is a bi-ideal of S.

Proof. Since B is a bi-ideal of N we have $(BN)B \subseteq B$. Assume that $C := B \cap S$. Then $(CS)C \subseteq (SS)S \subseteq S$, since S is a nLA-subring of N and $C \subseteq S$.

On the other hand $(CS)C \subseteq (BS)B \subseteq (BN)B \subseteq B$. Hence $(CS)C \subseteq B \cap S = C$. Therefore C is a bi-ideal of S. □

Theorem 3.2. Let N be an nLA-ring and A, B be bi-ideals of an nLA-ring N. Then $A \cap B$ is a bi-ideal of N.
Theorem 3.3. The set of all bi-ideal of nLA-ring.

Proof. Let \(\{B_i\}_{i \in I} \) be a set of bi-ideal in \(N \) and \(B := \bigcap_{i \in I} B_i \). Then \((B_i)B \subseteq (\bigcap_{i \in I} B_i)\bigcap_{i \in I} B_i \subseteq B_i\) for every \(i \in I \). Thus \(B \) is a bi-ideal of \(N \). \(\square \)

Definition 3.3. Let \(N \) be an nLA-ring. An element \(d \) of \(N \) is called distributive if \((n + n')d = nd + n'd\) for all \(n, n' \in N \).

Theorem 3.4. Let \(N \) be an nLA-ring. If \(B \) is a bi-ideal of \(N \) then \(Bn \) and \(n'B \) are bi-ideal of \(N \) where \(n, n' \in N \) and \(n' \) is a distributive element in \(N \).

Proof. Since \(B \) is a bi-ideal we have \(Bn \) and \(n'B \) are an LA-subgroup \(\langle N, + \rangle \). Thus

\[
((Bn)N)(Bn) \subseteq (BN)(Bn) = (BN)Bn \subseteq Bn.
\]

Hence \(Bn \) is a bi-ideal of \(N \).

Again

\[
((n'B)N)(n'B) \subseteq ((n'B)N)B = (n'BN)B \subseteq n'B.
\]

Thus \(n'B \) are bi-ideal of \(N \). \(\square \)

Corollary 3.1. If \(B \) is a bi-ideal of nLA-ring. For \(b, c \in B \), if \(b \) is a distributive element in \(N \), then \(bBc \) is a bi-ideal of \(N \).

Proof. Let \(B \) be a bi-ideal of nLA-ring and \(b \) is a distributive element in \(N \). Then \(b(n + n') = bn + dn' \) for all \(n, n' \in N \). Since \(B \) is a bi-ideal we have \(bBc \) is an LA-subgroup \(\langle N, + \rangle \) then \((bBc)N)(bBc) \subseteq (BN)B \subseteq B \). \(\square \)

Definition 3.4. An nLA-ring \(N \) is said to be \(B \)-simple if it has no proper bi-ideals.

Theorem 3.5. Let \(N \) be an nLA-ring with more than one element. If \(N \) is a near almost field. Then \(N \) is a \(B \)-simple.

Proof. Let \(N \) be a near almost field then \(\{0\} \) and \(N \) are the only bi-ideals of \(N \). For if \(0 \neq B \) is a bi-ideal of \(N \), then for \(0 \neq b \in B \) we get \(N = Nb \) and \(N = bN \).

Now \(N = N^2 = (bN)(Nb) \subseteq bNb \subseteq B \), since \(B \) is a bi-ideal of \(N \). Then \(N = B \). Thus \(N \) is a \(B \)-simple. \(\square \)

The following we defined weak bi-ideal and study properties it.

Definition 3.5. An LA-subgroup \(B \) of \(\langle N, + \rangle \) is said to be a weak bi-ideal of \(N \) if \(B^3 \subseteq B \).
Theorem 3.6. Every bi-ideal of an nLA-ring is a weak bi-ideal.

Proof. Since \(B^3 = (BB)B \subseteq (BN)B \subseteq B \) we have every bi-ideal is a weak bi-ideal. \(\Box \)

Theorem 3.7. If \(B \) is a weak bi-ideal of a nLA-ring \(N \) and \(S \) is a nLA-subring of \(N \). Then \(B \cap S \) is a weak bi-ideal of \(N \).

Proof. Assume that \(C := B \cap S \). Then

\[
C^3 = ((B \cap S)(B \cap S))(B \cap S)
\]

\[
= ((B \cap S)(B \cap S))B \cap ((B \cap S)(B \cap S))S
\]

\[
\subseteq (BB)B \cap SSS
\]

\[
= B^3 \cap SSS
\]

\[
\subseteq B^3 \cap S
\]

\[
\subseteq B \cap S
\]

\[
= C.
\]

Thus \(C^3 \subseteq C \). Hence \(C \) is a weak bi-ideal of \(N \). \(\Box \)

Theorem 3.8. Let \(N \) be an nLA-ring. If \(B \) is a weak bi-ideal of \(N \) then \(Bn \) and \(n'B \) are bi-ideal of \(N \) where \(n, n' \in N \) and \(n' \) is a distributive element in \(N \).

Proof. Since \(B \) is a weak bi-ideal we have \(Bn \) and \(n'B \) are an LA-subgroup \(\langle N, + \rangle \). Thus

\[
(Bn)^3 = (BnBn)Bn \subseteq (BB)Bn \subseteq B^3 n = Bn.
\]

Hence \(Bn \) is a weak bi-ideal of \(N \).

Again

\[
(n'B)^3 = (n'Bn'B)n'B \subseteq (n'BBB)n'B = n'B^3 \subseteq n'B.
\]

Thus \(n'B \) is a weak bi-ideal of \(N \). \(\Box \)

Corollary 3.2. If \(B \) is a weak bi-ideal of nLA-ring. For \(b, c \in B \), if \(b \) is a distributive element in \(N \), then \(bBc \) is a weak bi-ideal of \(N \).

Acknowledgements: This research project was supported by the thailand science research and innovation fund and the Department of Mathematics, School of Science, University of Phayao, Phayao 56000, Thailand.

Conflicts of Interest: The authors declare that there are no conflicts of interest regarding the publication of this paper.
References

