Some Properties of Generalized \((\Lambda, \alpha)\)-Closed Sets

Chawalit Boonpok, Montri Thongmoon∗

Mathematics and Applied Mathematics Research Unit, Department of Mathematics, Faculty of Science, Mahasarakham University, Maha Sarakham, 44150, Thailand

*Corresponding author: montri.t@msu.ac.th

Abstract. The aim of this paper is to introduce the concept of generalized \((\Lambda, \alpha)\)-closed sets. Moreover, we investigate some characterizations of \(\Lambda_{\alpha}T_{1/2}\)-spaces, \((\Lambda, \alpha)\)-normal spaces and \((\Lambda, \alpha)\)-regular spaces by utilizing generalized \((\Lambda, \alpha)\)-closed sets.

1. Introduction

The concept of generalized closed sets was first introduced by Levine [7]. Moreover, Levine defined a separation axiom called \(T_{1/2}\) between \(T_0\) and \(T_1\). Dontchev and Ganster [3] introduced the notion of \(T_{1/2}\)-spaces which are situated between \(T_1\) and \(T_{1/2}\) and showed that the digital line or the Khalimsky line [5] \((\mathbb{Z}, \kappa)\) lies between \(T_1\) and \(T_{1/2}\). As a modification of generalized closed sets, Palaniappan and Rao [10] introduced and studied the notion of regular generalized closed sets. As the further modification of regular generalized closed sets, Noiri and Popa [9] introduced and investigated the concept of regular generalized \(\alpha\)-closed sets. Park et al. [11] obtained some characterizations of \(T_{1/2}\)-spaces. Dungthaisong et al. [4] characterized \(\mu_{(m,n)}T_{1/2}\)-spaces by utilizing the concept of \(\mu_{(m,n)}\)-closed sets. Torton et al. [12] introduced and studied the notions of \(\mu_{(m,n)}\)-regular spaces and \(\mu_{(m,n)}\)-normal spaces. Buadong et al. [1] introduced and investigated the notions of \(T_1\)-GTMS spaces and \(T_2\)-GTMS spaces. Caldas et al. [2] by considering the concepts of \(\alpha\)-open sets and \(\alpha\)-closed sets, introduced and investigated \(\Lambda_{\alpha}\)-sets, \((\Lambda, \alpha)\)-closed sets, \((\Lambda, \alpha)\)-open sets and the \((\Lambda, \alpha)\)-closure operator. Khampakdee and Boonpok [6] studied some properties of \((\Lambda, \alpha)\)-open sets. In the present paper, we introduce the concept of generalized \((\Lambda, \alpha)\)-closed sets. Furthermore, some properties of

Received: Jun. 13, 2023.

2020 Mathematics Subject Classification. 54A05, 54D10.

Key words and phrases. generalized \((\Lambda, \alpha)\)-closed set; \(\Lambda_{\alpha}T_{1/2}\)-space; \((\Lambda, \alpha)\)-normal space; \((\Lambda, \alpha)\)-regular space.
generalized (Λ, α)-closed sets are discussed. In particular, several characterizations of $\Lambda_\alpha T^{\frac{1}{2}}$-spaces, (Λ, α)-normal spaces and (Λ, α)-regular spaces are established.

2. Preliminaries

Let A be a subset of a topological space (X, τ). The closure of A and the interior of A are denoted by $\text{Cl}(A)$ and $\text{Int}(A)$, respectively. A subset A of a topological space (X, τ) is said to be α-open [8] if $A \subseteq \text{Int}(\text{Cl}(\text{Int}(A)))$. The complement of an α-open set is called α-closed. The family of all α-open sets in a topological space (X, τ) is denoted by $\alpha(X, \tau)$. A subset $\Lambda_\alpha(A)$ [2] is defined as follows:

$$\Lambda_\alpha(A) = \cap\{O \in \alpha(X, \tau) | A \subseteq O\}.$$

Lemma 2.1. [2] For subsets A, B and $A_i (i \in I)$ of a topological space (X, τ), the following properties hold:

1. $A \subseteq \Lambda_\alpha(A)$.
2. If $A \subseteq B$, then $\Lambda_\alpha(A) \subseteq \Lambda_\alpha(B)$.
3. $\Lambda_\alpha(\Lambda_\alpha(A)) = \Lambda_\alpha(A)$.
4. $\Lambda_\alpha(\cap\{A_i | i \in I\}) \subseteq \cap\{\Lambda_\alpha(A_i) | i \in I\}$.
5. $\Lambda_\alpha(\cup\{A_i | i \in I\}) = \cup\{\Lambda_\alpha(A_i) | i \in I\}$.

Recall that a subset A of a topological space (X, τ) is said to be a Λ_α-set [2] if $A = \Lambda_\alpha(A)$.

Lemma 2.2. [2] For subsets A and $A_i (i \in I)$ of a topological space (X, τ), the following properties hold:

1. $\Lambda_\alpha(A)$ is a Λ_α-set.
2. If A is α-open, then A is a Λ_α-set.
3. If A_i is a Λ_α-set for each $i \in I$, then $\cap_{i \in I} A_i$ is a Λ_α-set.
4. If A_i is a Λ_α-set for each $i \in I$, then $\cup_{i \in I} A_i$ is a Λ_α-set.

A subset A of a topological space (X, τ) is called (Λ, α)-closed [2] if $A = T \cap C$, where T is a Λ_α-set and C is an α-closed set. The complement of a (Λ, α)-closed set is called (Λ, α)-open. The collection of all (Λ, α)-open (resp. (Λ, α)-closed) sets in a topological space (X, τ) is denoted by $\Lambda_\alpha O(X, \tau)$ (resp. $\Lambda_\alpha \text{C}(X, \tau)$). Let A be a subset of a topological space (X, τ). A point $x \in X$ is called a (Λ, α)-cluster point of A [2] if for every (Λ, α)-open set U of X containing x we have $A \cap U \neq \emptyset$. The set of all (Λ, α)-cluster points of A is called the (Λ, α)-closure of A and is denoted by $A^{(\Lambda, \alpha)}$.

Lemma 2.3. [2] Let A and B be subsets of a topological space (X, τ). For the (Λ, α)-closure, the following properties hold:

1. $A \subseteq A^{(\Lambda, \alpha)}$ and $[A^{(\Lambda, \alpha)}]^{(\Lambda, \alpha)} = A^{(\Lambda, \alpha)}$.
2. $A^{(\Lambda, \alpha)} = \cap\{F | A \subseteq F \text{ and } F \text{ is } (\Lambda, \alpha)\text{-closed}\}$.
3. If $A \subseteq B$, then $A^{(\Lambda, \alpha)} \subseteq B^{(\Lambda, \alpha)}$.
(4) \(A\) is \((\Lambda, \alpha)\)-closed if and only if \(A = A^{(\Lambda, \alpha)}\).

(5) \(A^{(\Lambda, \alpha)}\) is \((\Lambda, \alpha)\)-closed.

Definition 2.1. [6] Let \(A\) be a subset of a topological space \((X, \tau)\). The union of all \((\Lambda, \alpha)\)-open sets of \(X\) contained in \(A\) is called the \((\Lambda, \alpha)\)-interior of \(A\) and is denoted by \(A_{(\Lambda, \alpha)}\).

Lemma 2.4. [6] Let \(A\) and \(B\) be subsets of a topological space \((X, \tau)\). For the \((\Lambda, \alpha)\)-interior, the following properties hold:

1. \(A_{(\Lambda, \alpha)} \subseteq A\) and \([A_{(\Lambda, \alpha)}]_{(\Lambda, \alpha)} = A_{(\Lambda, \alpha)}\).
2. If \(A \subseteq B\), then \(A_{(\Lambda, \alpha)} \subseteq B_{(\Lambda, \alpha)}\).
3. \(A\) is \((\Lambda, \alpha)\)-open if and only if \(A_{(\Lambda, \alpha)} = A\).
4. \(A_{(\Lambda, \alpha)}\) is \((\Lambda, \alpha)\)-open.
5. \([X - A]_{(\Lambda, \alpha)} = X - A_{(\Lambda, \alpha)}\).
6. \([X - A]_{(\Lambda, \alpha)} = X - A^{(\Lambda, \alpha)}\).

3. Generalized \((\Lambda, \alpha)\)-closed sets

In this section, we introduce the notion of generalized \((\Lambda, \alpha)\)-closed sets. Moreover, some properties of generalized \((\Lambda, \alpha)\)-closed sets are discussed.

Definition 3.1. A subset \(A\) of a topological space \((X, \tau)\) is said to be generalized \((\Lambda, \alpha)\)-closed (briefly \(g\)-\((\Lambda, \alpha)\)-closed) if \(A_{(\Lambda, \alpha)} \subseteq U\) and \(U\) is \((\Lambda, \alpha)\)-open in \((X, \tau)\). The complement of a generalized \((\Lambda, \alpha)\)-closed set is said to be generalized \((\Lambda, \alpha)\)-open (briefly \(g\)-\((\Lambda, \alpha)\)-open).

Definition 3.2. A topological space \((X, \tau)\) is said to be \(\Lambda_{\alpha}\)-symmetric if for \(x\) and \(y\) in \(X\), \(x \in \{y\}^{(\Lambda, \alpha)}\) implies \(y \in \{x\}^{(\Lambda, \alpha)}\).

Theorem 3.1. A topological space \((X, \tau)\) is \(\Lambda_{\alpha}\)-symmetric if and only if \(\{x\}\) is \(g\)-\((\Lambda, \alpha)\)-closed for each \(x \in X\).

Proof. Assume that \(x \in \{y\}^{(\Lambda, \alpha)}\) but \(y \notin \{x\}^{(\Lambda, \alpha)}\). This implies that the complement of \(\{x\}^{(\Lambda, \alpha)}\) contains \(y\). Therefore, the set \(\{y\}\) is a subset of the complement of \(\{x\}^{(\Lambda, \alpha)}\). This implies that \(\{y\}^{(\Lambda, \alpha)}\) is a subset of the complement of \(\{x\}^{(\Lambda, \alpha)}\). Now the complement of \(\{x\}^{(\Lambda, \alpha)}\) contains \(x\) which is a contradiction.

Conversely, suppose that \(\{x\} \subseteq V \in \Lambda_{\alpha}O(X, \tau)\), but \(\{x\}^{(\Lambda, \alpha)}\) is not a subset of \(V\). This means that \(\{x\}^{(\Lambda, \alpha)}\) and the complement of \(V\) are not disjoint. Let \(y\) belongs to their intersection. Now, we have \(x \in \{y\}^{(\Lambda, \alpha)}\) which is a subset of the complement of \(V\) and \(x \notin V\). This is a contradiction. \(\square\)

Theorem 3.2. A subset \(A\) of a topological space \((X, \tau)\) is \(g\)-\((\Lambda, \alpha)\)-closed if and only if \(A^{(\Lambda, \alpha)} - A\) contains no nonempty \((\Lambda, \alpha)\)-closed set.
Proof. Let F be a (Λ, α)-closed subset of $A^{(\Lambda,\alpha)} - A$. Now, $A \subseteq X - F$ and since A is g-(Λ, α)-closed, we have $A^{(\Lambda,\alpha)} \subseteq X - F$ or $F \subseteq X - A^{(\Lambda,\alpha)}$. Thus, $F \subseteq A^{(\Lambda,\alpha)} \cap [X - A^{(\Lambda,\alpha)}] = \emptyset$ and hence F is empty.

Conversely, suppose that $A \subseteq U$ and U is (Λ, α)-open. If $A^{(\Lambda,\alpha)} \not\subseteq U$, then $A^{(\Lambda,\alpha)} \cap (X - U)$ is a nonempty (Λ, α)-closed subset of $A^{(\Lambda,\alpha)} - A$.

Definition 3.3. Let A be a subset of a topological space (X, τ). The (Λ, α)-frontier of A, $\Lambda_{\alpha}Fr(A)$, is defined as follows: $\Lambda_{\alpha}Fr(A) = A^{(\Lambda,\alpha)} \cap [X - A]^{(\Lambda,\alpha)}$.

Theorem 3.3. Let A be a subset of a topological space (X, τ). If A is g-(Λ, α)-closed and

$$A \subseteq V \in \Lambda_{\alpha}O(X, \tau),$$

then $\Lambda_{\alpha}Fr(V) \subseteq [X - A]^{(\Lambda,\alpha)}$.

Proof. Let A be g-(Λ, α)-closed and $A \subseteq V \subseteq \Lambda_{\alpha}O(X, \tau)$. Then, $A^{(\Lambda,\alpha)} \subseteq V$. Suppose that $x \in \Lambda_{\alpha}Fr(V)$. Since $V \subseteq \Lambda_{\alpha}O(X, \tau)$, $\Lambda_{\alpha}Fr(V) = V^{(\Lambda,\alpha)} - V$. Therefore, $x \not\in V$ and $x \not\in A^{(\Lambda,\alpha)}$. Thus, $x \in [X - A]^{(\Lambda,\alpha)}$ and hence $\Lambda_{\alpha}Fr(V) \subseteq [X - A]^{(\Lambda,\alpha)}$.

Theorem 3.4. Let (X, τ) be a topological space. For each $x \in X$, either $\{x\}$ is (Λ, α)-closed or g-(Λ, α)-open.

Proof. Suppose that $\{x\}$ is not (Λ, α)-closed. Then, $X - \{x\}$ is not (Λ, α)-open and the only (Λ, α)-open set containing $X - \{x\}$ is X itself. Thus, $[X - \{x\}]^{(\Lambda,\alpha)} \subseteq X$ and hence $X - \{x\}$ is g-(Λ, α)-closed. Therefore, $\{x\}$ is g-(Λ, α)-open.

Theorem 3.5. Let A be a subset of a topological space (X, τ). Then, A is g-(Λ, α)-open if and only if $F \subseteq A^{(\Lambda,\alpha)}$ whenever $F \subseteq A$ and F is (Λ, α)-closed.

Proof. Suppose that A is g-(Λ, α)-open. Let $F \subseteq A$ and F be (Λ, α)-closed. Then, we have

$$X - A \subseteq X - F \in \Lambda_{\alpha}O(X, \tau)$$

and $X - A$ is g-(Λ, α)-closed. Thus, $X - A^{(\Lambda,\alpha)} = [X - A]^{(\Lambda,\alpha)} \subseteq X - F$ and hence $F \subseteq A^{(\Lambda,\alpha)}$.

Conversely, let $X - A \subseteq U$ and $U \in \Lambda_{\alpha}O(X, \tau)$. Then, $X - U \subseteq A$ and $X - U$ is (Λ, α)-closed. By the hypothesis, $X - U \subseteq A^{(\Lambda,\alpha)}$ and hence $[X - A]^{(\Lambda,\alpha)} = X - A^{(\Lambda,\alpha)} \subseteq U$. This shows that $X - A$ is g-(Λ, α)-closed. Thus, A is g-(Λ, α)-open.

Theorem 3.6. A subset A of a topological space (X, τ) is g-(Λ, α)-closed if and only if $A \cap \{x\}^{(\Lambda,\alpha)} \neq \emptyset$ for every $x \in A^{(\Lambda,\alpha)}$.

Proof. Let A be a g-(Λ, α)-closed set and suppose that there exists $x \in A^{(\Lambda,\alpha)}$ such that $A \cap \{x\}^{(\Lambda,\alpha)} = \emptyset$. Therefore, $A \subseteq X - \{x\}^{(\Lambda,\alpha)}$ and so $A^{(\Lambda,\alpha)} \subseteq X - \{x\}^{(\Lambda,\alpha)}$. Hence $x \not\in A^{(\Lambda,\alpha)}$, which is a contradiction.
Conversely, suppose that the condition of the theorem holds and let U be any (Λ, α)-open set containing A. Let $x \in A^{(\Lambda, \alpha)}$. Then, by the hypothesis $A \cap A^{(\Lambda, \alpha)} \neq \emptyset$, so there exists $y \in A \cap \{x\}^{(\Lambda, \alpha)}$ and so $y \in A \subseteq U$. Thus, $\{x\} \cap U \neq \emptyset$. Hence $x \in U$, which implies that $A^{(\Lambda, \alpha)} \subseteq U$. This shows that A is g-(Λ, α)-closed.

□

Definition 3.4. A subset A of a topological space (X, τ) is said to be locally (Λ, α)-closed if $A = U \cap F$, where $U \in \Lambda_\alpha O(X, \tau)$ and F is a (Λ, α)-closed set.

Theorem 3.7. For a subset A of a topological space (X, τ), the following properties are equivalent:

1. A is locally (Λ, α)-closed;
2. $A = U \cap A^{(\Lambda, \alpha)}$ for some $U \in \Lambda_\alpha O(X, \tau)$;
3. $A^{(\Lambda, \alpha)} - A$ is (Λ, α)-closed;
4. $A \cup [X - A^{(\Lambda, \alpha)}] \in \Lambda_\alpha O(X, \tau)$;
5. $A \subseteq [A \cup [X - A^{(\Lambda, \alpha)}]]_{(\Lambda, \alpha)}$.

Proof. (1) \Rightarrow (2): Suppose that $A = U \cap F$, where $U \in \Lambda_\alpha O(X, \tau)$ and F is a (Λ, α)-closed set. Since $A \subseteq F$, we have $A^{(\Lambda, \alpha)} \subseteq F^{(\Lambda, \alpha)} = F$. Since $A \subseteq U$, $A \subseteq U \cap A^{(\Lambda, \alpha)} \subseteq U \cap F = A$. Thus, $A = U \cap A^{(\Lambda, \alpha)}$ for some $U \in \Lambda_\alpha O(X, \tau)$.

(2) \Rightarrow (3): Suppose that $A = U \cap A^{(\Lambda, \alpha)}$ for some $U \in \Lambda_\alpha O(X, \tau)$. Then, we have

$$A^{(\Lambda, \alpha)} - A = [X - U \cap A^{(\Lambda, \alpha)}] \cap A^{(\Lambda, \alpha)} = (X - U) \cap A^{(\Lambda, \alpha)}.$$}

Since $(X - U) \cap A^{(\Lambda, \alpha)}$ is (Λ, α)-closed, $A^{(\Lambda, \alpha)} - A$ is (Λ, α)-closed.

(3) \Rightarrow (4): Since $X - [A^{(\Lambda, \alpha)} - A] = [X - A^{(\Lambda, \alpha)}] \cup A$ and by (3), $A \cup [X - A^{(\Lambda, \alpha)}] \in \Lambda_\alpha O(X, \tau)$.

(4) \Rightarrow (5): By (4), we obtain $A \subseteq A \cup [X - A^{(\Lambda, \alpha)}] = [A \cup [X - A^{(\Lambda, \alpha)}]]_{(\Lambda, \alpha)}$.

(5) \Rightarrow (1): We put $U = [A \cup [X - A^{(\Lambda, \alpha)}]]_{(\Lambda, \alpha)}$. Then, $U \in \Lambda_\alpha O(X, \tau)$ and

$$A = A \cap U \subseteq U \cap A^{(\Lambda, \alpha)} \subseteq [A \cup [X - A^{(\Lambda, \alpha)}]]_{(\Lambda, \alpha)} \cap A^{(\Lambda, \alpha)} = A \cap A^{(\Lambda, \alpha)} = A.$$}

Thus, $A = U \cap A^{(\Lambda, \alpha)}$, where $U \in \Lambda_\alpha O(X, \tau)$ and $A^{(\Lambda, \alpha)}$ is a (Λ, α)-closed set. This shows that A is locally (Λ, α)-closed.

□

Theorem 3.8. A subset A of a topological space (X, τ) is (Λ, α)-closed if and only if A is locally (Λ, α)-closed and g-(Λ, α)-closed.

Proof. Let A be (Λ, α)-closed. Then, A is g-(Λ, α)-closed. Since $X \in \Lambda_\alpha O(X, \tau)$ and $A = X \cap A$, A is locally (Λ, α)-closed.

Conversely, suppose that A is locally (Λ, α)-closed and g-(Λ, α)-closed. Since A is locally (Λ, α)-closed, by Theorem 3.7, $A \subseteq [A \cup [X - A^{(\Lambda, \alpha)}]]_{(\Lambda, \alpha)}$. Since $[A \cup [X - A^{(\Lambda, \alpha)}]]_{(\Lambda, \alpha)} \in \Lambda_\alpha O(X, \tau)$ and A is g-(Λ, α)-closed, $A^{(\Lambda, \alpha)} \subseteq [A \cup [X - A^{(\Lambda, \alpha)}]]_{(\Lambda, \alpha)} \subseteq A \cup [X - A^{(\Lambda, \alpha)}]$ and hence $A^{(\Lambda, \alpha)} = A$. Thus, by Lemma 2.3, A is (Λ, α)-closed.

□
4. Applications of generalized (Λ, α)-closed sets

We begin this section by introducing the concept of $\Lambda_\alpha-T_{\frac{1}{2}}$-spaces.

Definition 4.1. A topological space (X, τ) is called a $\Lambda_\alpha-T_{\frac{1}{2}}$-space if every g-(Λ, α)-closed set of X is (Λ, α)-closed.

Lemma 4.1. Let (X, τ) be a topological space. For each $x \in X$, the singleton $\{x\}$ is (Λ, α)-closed or $X - \{x\}$ is g-(Λ, α)-closed.

Proof. Let $x \in X$ and the singleton $\{x\}$ be not (Λ, α)-closed. Then, $X - \{x\}$ is not (Λ, α)-open and X is the only (Λ, α)-open set which contains $X - \{x\}$ and $X - \{x\}$ is g-(Λ, α)-closed.

Let A be a subset of a topological space (X, τ). A subset $\Lambda_{(\Lambda, \alpha)}(A)$ [6] is defined as follows:

$$\Lambda_{(\Lambda, \alpha)}(A) = \bigcap \{U \mid A \subseteq U, U \in \Lambda_\alpha O(X, \tau)\}.$$

Lemma 4.2. [6] For subsets A, B of a topological space (X, τ), the following properties hold:

(1) $A \subseteq \Lambda_{(\Lambda, \alpha)}(A)$.
(2) If $A \subseteq B$, then $\Lambda_{(\Lambda, \alpha)}(A) \subseteq \Lambda_{(\Lambda, \alpha)}(B)$.
(3) $\Lambda_{(\Lambda, \alpha)}[\Lambda_{(\Lambda, \alpha)}(A)] = \Lambda_{(\Lambda, \alpha)}(A)$.
(4) If A is (Λ, α)-open, $\Lambda_{(\Lambda, \alpha)}(A) = A$.

A subset A of a topological space (X, τ) is called a $\Lambda_{(\Lambda, \alpha)}$-set if $A = \Lambda_{(\Lambda, \alpha)}(A)$. The family of all $\Lambda_{(\Lambda, \alpha)}$-sets of (X, τ) is denoted by $\Lambda_{(\Lambda, \alpha)}(X, \tau)$ (or simply $\Lambda_{(\Lambda, \alpha)}$).

Definition 4.2. A subset A of a topological space (X, τ) is called a generalized $\Lambda_{(\Lambda, \alpha)}$-set (briefly g-$\Lambda_{(\Lambda, \alpha)}$-set) if $\Lambda_{(\Lambda, \alpha)}(A) \subseteq F$ whenever $A \subseteq F$ and F is (Λ, α)-closed.

Lemma 4.3. Let (X, τ) be a topological space. For each $x \in X$, the singleton $\{x\}$ is (Λ, α)-open or $X - \{x\}$ is g-$\Lambda_{(\Lambda, \alpha)}$-set.

Proof. Let $x \in X$ and the singleton $\{x\}$ be not (Λ, α)-open. Then, $X - \{x\}$ is not (Λ, α)-closed and X is the only (Λ, α)-closed set which contains $X - \{x\}$ and $X - \{x\}$ is g-$\Lambda_{(\Lambda, \alpha)}$-set.

Theorem 4.1. For a topological space (X, τ), the following properties are equivalent:

(1) (X, τ) is a $\Lambda_\alpha-T_{\frac{1}{2}}$-space.
(2) For each $x \in X$, the singleton $\{x\}$ is (Λ, α)-open or (Λ, α)-closed.
(3) Every g-$\Lambda_{(\Lambda, \alpha)}$-set is a $\Lambda_{(\Lambda, \alpha)}$-set.

Proof. (1) \Rightarrow (2): By Lemma 4.1, for each $x \in X$, the singleton $\{x\}$ is (Λ, α)-closed or $X - \{x\}$ is g-(Λ, α)-closed. Since (X, τ) is a $\Lambda_\alpha-T_{\frac{1}{2}}$-space, we have $X - \{x\}$ is (Λ, α)-closed and hence $\{x\}$ is (Λ, α)-open in the latter case. Thus, the singleton $\{x\}$ is (Λ, α)-open or (Λ, α)-closed.
(2) \Rightarrow (3): Suppose that there exists a $g\Lambda_{\Lambda, \alpha}$-set A which is not a $\Lambda_{\Lambda, \alpha}$-set. Then, there exists $x \in \Lambda_{\Lambda, \alpha}(A)$ such that $x \notin A$. In case the singleton $\{x\}$ is (Λ, α)-open, $A \subseteq X - \{x\}$ and $X - \{x\}$ is (Λ, α)-closed. Since A is a $g\Lambda_{\Lambda, \alpha}$-set, $\Lambda_{\Lambda, \alpha}(A) \subseteq X - \{x\}$. This is a contradiction. In case the singleton $\{x\}$ is (Λ, α)-closed, $A \subseteq X - \{x\}$ and $X - \{x\}$ is (Λ, α)-open. By Lemma 4.2,

$$\Lambda_{\Lambda, \alpha}(A) \subseteq \Lambda_{\Lambda, \alpha}(X - \{x\}) = X - \{x\}.$$

This is a contradiction. Therefore, every $g\Lambda_{\Lambda, \alpha}$-set is a $\Lambda_{\Lambda, \alpha}$-set.

(3) \Rightarrow (1): Suppose that (X, τ) is not a $\Lambda_{\alpha}-T_{1/2}$-space. There exists a $g(\Lambda, \alpha)$-closed set A which is not (Λ, α)-closed. Since A is not (Λ, α)-closed, there exists a point $x \in A^{(\Lambda, \alpha)}$ such that $x \notin A$. By Lemma 4.3, the singleton $\{x\}$ is (Λ, α)-open or $X - \{x\}$ is a $g\Lambda_{\Lambda, \alpha}$-set. (a) In case $\{x\}$ is (Λ, α)-open, since $x \in A^{(\Lambda, \alpha)}$, $\{x\} \cap A \neq \emptyset$ and $x \in A$. This is a contradiction. (b) In case $X - \{x\}$ is a $\Lambda_{\Lambda, \alpha}$-set, if $\{x\}$ is not (Λ, α)-closed, $X - \{x\}$ is not (Λ, α)-open and $\Lambda_{\Lambda, \alpha}(X - \{x\}) = X$. Thus, $X - \{x\}$ is not a $\Lambda_{\Lambda, \alpha}$-set. This contradicts (3). If $\{x\}$ is (Λ, α)-closed, $A \subseteq X - \{x\} \subseteq \Lambda_{\alpha}O(X, \tau)$ and A is $g(\Lambda, \alpha)$-closed. Thus, $A^{(\Lambda, \alpha)} \subseteq X - \{x\}$. This contradicts that $x \in A^{(\Lambda, \alpha)}$. Therefore, (X, τ) is a $\Lambda_{\alpha}-T_{1/2}$-space.

\[\square\]

Definition 4.3. A topological space (X, τ) is said to be (Λ, α)-normal if for any pair of disjoint (Λ, α)-closed sets F and H, there exist disjoint (Λ, α)-open sets U and V such that $F \subseteq U$ and $H \subseteq V$.

Lemma 4.4. Let (X, τ) be a topological space. If U is a (Λ, α)-open set, then $U^{(\Lambda, \alpha)} \cap A \subseteq [U \cap A]^{(\Lambda, \alpha)}$ for every subset A of X.

Theorem 4.2. For a topological space (X, τ), the following properties are equivalent:

1. (X, τ) is (Λ, α)-normal.
2. For every pair of (Λ, α)-open sets U and V whose union is X, there exist (Λ, α)-closed sets F and H such that $F \subseteq U$, $H \subseteq V$ and $F \cup H = X$.
3. For every (Λ, α)-closed set F and every (Λ, α)-open set G containing F, there exists a (Λ, α)-open set U such that $F \subseteq U \subseteq U^{(\Lambda, \alpha)} \subseteq G$.
4. For every pair of disjoint (Λ, α)-closed sets F and H, there exist disjoint (Λ, α)-open sets U and V such that $F \subseteq U$ and $H \subseteq V$ and $U^{(\Lambda, \alpha)} \cap V^{(\Lambda, \alpha)} = \emptyset$.

Proof. (1) \Rightarrow (2): Let U and V be a pair of (Λ, α)-open sets such that $X = U \cup V$. Then, $X - U$ and $X - V$ are disjoint (Λ, α)-closed sets. Since (X, τ) is (Λ, α)-normal, there exist disjoint (Λ, α)-open sets G and W such that $X - U \subseteq G$ and $X - V \subseteq W$. Put $F = X - G$ and $H = X - W$. Then, F and H are (Λ, α)-closed sets such that $F \subseteq U$, $H \subseteq V$ and $F \cup H = X$.

(2) \Rightarrow (3): Let F be a (Λ, α)-closed set and G be a (Λ, α)-open set containing F. Then, $X - F$ and G are (Λ, α)-open sets whose union is X. Then by (2), there exist (Λ, α)-closed sets M and N such that $M \subseteq X - F$, $N \subseteq G$ and $M \cup N = X$. Then, $F \subseteq X - M$, $X - G \subseteq X - N$ and $(X - M) \cap (X - N) = \emptyset$. Put $U = X - M$ and $V = X - N$. Then U and V are disjoint (Λ, α)-open
sets such that \(F \subseteq U \subseteq X - V \subseteq G \). As \(X - V \) is a \((\Lambda, \alpha)\)-closed set, we have \(U^{(\Lambda, \alpha)} \subseteq X - V \) and hence \(F \subseteq U \subseteq U^{(\Lambda, \alpha)} \subseteq G \).

(3) \implies (4): Let \(F \) and \(H \) be two disjoint \((\Lambda, \alpha)\)-closed sets of \(X \). Then, \(F \subseteq X - H \) and \(X - H \) is \((\Lambda, \alpha)\)-open and hence there exists a \((\Lambda, \alpha)\)-open set \(U \) of \(X \) such that \(F \subseteq U \subseteq U^{(\Lambda, \alpha)} \subseteq X - H \). Put \(V = X - U^{(\Lambda, \alpha)} \). Then, \(U \) and \(V \) are disjoint \((\Lambda, \alpha)\)-open sets of \(X \) such that \(F \subseteq U \), \(H \subseteq V \) and \(U^{(\Lambda, \alpha)} \cap V^{(\Lambda, \alpha)} = \emptyset \).

(4) \implies (1): The proof is obvious. \[\square\]

Theorem 4.3. For a topological space \((X, \tau)\), the following properties are equivalent:

\begin{enumerate}
\item \((X, \tau)\) is \((\Lambda, \alpha)\)-normal.
\item For every pair of disjoint \((\Lambda, \alpha)\)-closed sets \(F \) and \(H \) of \(X \), there exist disjoint \(g-(\Lambda, \alpha)\)-open sets \(U \) and \(V \) of \(X \) such that \(F \subseteq U \) and \(H \subseteq V \).
\item For each \((\Lambda, \alpha)\)-closed set \(F \) and each \((\Lambda, \alpha)\)-open set \(G \) containing \(F \), there exists a \(g-(\Lambda, \alpha)\)-open set \(U \) such that \(F \subseteq U \subseteq U^{(\Lambda, \alpha)} \subseteq G \).
\item For each \((\Lambda, \alpha)\)-closed set \(F \) and each \(g-(\Lambda, \alpha)\)-open set \(G \) containing \(F \), there exists a \((\Lambda, \alpha)\)-open set \(U \) such that \(F \subseteq U \subseteq U^{(\Lambda, \alpha)} \subseteq G_{(\Lambda, \alpha)} \).
\item For each \((\Lambda, \alpha)\)-closed set \(F \) and each \(g-(\Lambda, \alpha)\)-open set \(G \) containing \(F \), there exists a \((\Lambda, \alpha)\)-open set \(U \) such that \(F \subseteq U \subseteq U^{(\Lambda, \alpha)} \subseteq G_{(\Lambda, \alpha)} \).
\item For each \((\Lambda, \alpha)\)-closed set \(F \) and each \((\Lambda, \alpha)\)-open set \(G \) containing \(F \), there exists a \((\Lambda, \alpha)\)-open set \(U \) such that \(F^{(\Lambda, \alpha)} \subseteq U \subseteq U^{(\Lambda, \alpha)} \subseteq G \).
\item For each \(g-(\Lambda, \alpha)\)-closed set \(F \) and each \((\Lambda, \alpha)\)-open set \(G \) containing \(F \), there exists a \((\Lambda, \alpha)\)-open set \(U \) such that \(F^{(\Lambda, \alpha)} \subseteq U \subseteq U^{(\Lambda, \alpha)} \subseteq G \).
\end{enumerate}

Proof. (1) \implies (2): The proof is obvious.

(2) \implies (3): Let \(F \) be a \((\Lambda, \alpha)\)-closed set and \(G \) be a \((\Lambda, \alpha)\)-open set containing \(F \). Then, we have \(F \) and \(X - G \) are two disjoint \((\Lambda, \alpha)\)-closed sets. Hence by (2), there exist disjoint \(g-(\Lambda, \alpha)\)-open sets \(U \) and \(V \) of \(X \) such that \(F \subseteq U \) and \(X - G \subseteq V \). Since \(V \) is \(g-(\Lambda, \alpha)\)-open and \(X - G \) is \((\Lambda, \alpha)\)-closed, by Theorem 3.5, \(X - G \subseteq V_{(\Lambda, \alpha)} \). Thus, \([X - V]^{(\Lambda, \alpha)} = X - V_{(\Lambda, \alpha)} \subseteq G \) and hence \(F \subseteq U \subseteq U^{(\Lambda, \alpha)} \subseteq G \).

(3) \implies (1): Let \(F \) and \(H \) be two disjoint \((\Lambda, \alpha)\)-closed sets of \(X \). Then, \(F \) is a \((\Lambda, \alpha)\)-closed set and \(X - H \) is a \((\Lambda, \alpha)\)-open set containing \(F \). Thus by (3), there exists a \(g-(\Lambda, \alpha)\)-open set \(U \) such that \(F \subseteq U \subseteq U^{(\Lambda, \alpha)} \subseteq X - H \). By Theorem 3.5, \(F \subseteq U_{(\Lambda, \alpha)} \), \(H \subseteq X - U^{(\Lambda, \alpha)} \), where \(U_{(\Lambda, \alpha)} \) and \(X - U^{(\Lambda, \alpha)} \) are two disjoint \((\Lambda, \alpha)\)-open sets.

(4) \implies (5) and (5) \implies (2): The proofs are obvious.

(6) \implies (7) and (7) \implies (3): The proofs are obvious.

(3) \implies (5): Let \(F \) be a \((\Lambda, \alpha)\)-closed set and \(G \) be a \(g-(\Lambda, \alpha)\)-open set containing \(F \). Since \(G \) is \(g-(\Lambda, \alpha)\)-open and \(F \) is \((\Lambda, \alpha)\)-closed, by Theorem 3.5, \(F \subseteq G_{(\Lambda, \alpha)} \) and by (3), there exists a \(g-(\Lambda, \alpha)\)-open set \(U \) such that \(F \subseteq U \subseteq U^{(\Lambda, \alpha)} \subseteq G_{(\Lambda, \alpha)} \).
(5) ⇒ (6): Let F be a (Λ, α)-closed set and G be a (Λ, α)-open set containing F. Then, $F^{(\Lambda, \alpha)} \subseteq G$. Since G is $g-(\Lambda, \alpha)$-open, by (6), there exists a $g-(\Lambda, \alpha)$-open set U such that $F^{(\Lambda, \alpha)} \subseteq U \subseteq U^{(\Lambda, \alpha)} \subseteq G$. Since U is $g-(\Lambda, \alpha)$-open and $F^{(\Lambda, \alpha)} \subseteq U$, by Theorem 3.5, $F^{(\Lambda, \alpha)} \subseteq U^{(\Lambda, \alpha)}$. Put $V = U^{(\Lambda, \alpha)}$. Then, V is (Λ, α)-open and $F^{(\Lambda, \alpha)} \subseteq V \subseteq V^{(\Lambda, \alpha)} = [U^{(\Lambda, \alpha)}]^{(\Lambda, \alpha)} \subseteq U^{(\Lambda, \alpha)} \subseteq G$.

(6) ⇒ (4): Let F be a (Λ, α)-closed set and G be a $g-(\Lambda, \alpha)$-open set containing F. Then by Theorem 3.5, $F^{(\Lambda, \alpha)} = F \subseteq G^{(\Lambda, \alpha)}$. Since F is $g-(\Lambda, \alpha)$-closed and $G^{(\Lambda, \alpha)}$ is (Λ, α)-open, by (6), there exists a (Λ, α)-open set U such that $F^{(\Lambda, \alpha)} = F \subseteq U \subseteq U^{(\Lambda, \alpha)} \subseteq G^{(\Lambda, \alpha)}$. □

Definition 4.4. A topological space (X, τ) is said to be (Λ, α)-regular if for each (Λ, α)-closed set F of X not containing x, there exist disjoint (Λ, α)-closed sets U and V such that $x \in U$ and $F \subseteq V$.

Theorem 4.4. For a topological space (X, τ), the following properties are equivalent:

1. (X, τ) is (Λ, α)-regular.
2. For each $x \in X$ and each $U \in \Lambda_\alpha O(X, \tau)$ with $x \in U$, there exists $V \in \Lambda_\alpha O(X, \tau)$ such that $x \in V \subseteq V^{(\Lambda, \alpha)} \subseteq U$.
3. For each (Λ, α)-closed set F of X, $\bigcap \{V^{(\Lambda, \alpha)} \mid F \subseteq V \in \Lambda_\alpha O(X, \tau)\} = F$.
4. For each subset A of X and each $U \in \Lambda_\alpha O(X, \tau)$ with $A \cap U \neq \emptyset$, there exists $V \in \Lambda_\alpha O(X, \tau)$ such that $A \cap V \neq \emptyset$ and $V^{(\Lambda, \alpha)} \subseteq U$.
5. For each nonempty subset A of X and each (Λ, α)-closed set F of X with $A \cap F = \emptyset$, there exist $V, W \in \Lambda_\alpha O(X, \tau)$ such that $A \cap V \neq \emptyset$, $F \subseteq W$ and $V \cap W = \emptyset$.
6. For each (Λ, α)-closed set F of X and $x \notin F$, there exist $U \in \Lambda_\alpha O(X, \tau)$ and a $g-(\Lambda, \alpha)$-open set V such that $x \in U$, $F \subseteq V$ and $U \cap V = \emptyset$.
7. For each subset A of X and each (Λ, α)-closed set F with $A \cap F = \emptyset$, there exist $U \in \Lambda_\alpha O(X, \tau)$ and a $g-(\Lambda, \alpha)$-open set V such that $A \cap U \neq \emptyset$, $F \subseteq V$ and $U \cap V = \emptyset$.

Proof. (1) ⇒ (2): Let $G \in \Lambda_\alpha O(X, \tau)$ and $x \notin X - G$. Then, there exist disjoint $U, V \in \Lambda_\alpha O(X, \tau)$ such that $X - G \subseteq U$ and $x \in V$. Thus, $V \subseteq X - U$ and so $x \in V \subseteq V^{(\Lambda, \alpha)} \subseteq X - U \subseteq G$.

(2) ⇒ (3): Let $X - F \in \Lambda_\alpha O(X, \tau)$ with $x \in X - F$. Then by (2), there exists $U \in \Lambda_\alpha O(X, \tau)$ such that $x \in U \subseteq U^{(\Lambda, \alpha)} \subseteq X - F$. Thus, $F \subseteq X - U^{(\Lambda, \alpha)} = V \in \Lambda_\alpha O(X, \tau)$ and hence $U \cap V = \emptyset$. Then, we have $x \notin V^{(\Lambda, \alpha)}$. This shows that $F \supseteq \bigcap \{V^{(\Lambda, \alpha)} \mid F \subseteq V \in \Lambda_\alpha O(X, \tau)\}$.

(3) ⇒ (4): Let A be a subset of X and $U \in \Lambda_\alpha O(X, \tau)$ such that $A \cap U \neq \emptyset$. Let $x \in A \cap U$. Then, $x \notin X - U$. Hence by (3), there exists $W \in \Lambda_\alpha O(X, \tau)$ such that $X - U \subseteq W$ and $x \notin W^{(\Lambda, \alpha)}$. Put $V = X - W^{(\Lambda, \alpha)}$ which is a (Λ, α)-open set containing x and $A \cap V \neq \emptyset$. Now, $V \subseteq X - W$ and so $V^{(\Lambda, \alpha)} \subseteq X - W \subseteq U$.

(4) ⇒ (5): Let A be a nonempty subset of X and F be a (Λ, α)-closed set such that $A \cap F = \emptyset$. Then, $X - F \in \Lambda_\alpha O(X, \tau)$ with $A \cap (X - F) \neq \emptyset$ and hence by (4), there exists $V \in \Lambda_\alpha O(X, \tau)$ such that $A \cap V \neq \emptyset$ and $V^{(\Lambda, \alpha)} \subseteq X - F$. If we put $W = X - V^{(\Lambda, \alpha)}$, then $F \subseteq W$ and $W \cap V = \emptyset$.

(5) ⇒ (1): Let F be a (Λ, α)-closed set not containing x. Then, $F \cap \{x\} = \emptyset$. Thus by (5), there exist $V, W \in \Lambda_\alpha O(X, \tau)$ such that $x \in V$, $F \subseteq W$ and $V \cap W = \emptyset$.

(1) ⇒ (6): The proof is obvious.

(6) ⇒ (7): Let A be a subset of X and F be a (Λ, α)-closed set such that $A \cap F = \emptyset$. Then, for $x \in A$, $x \notin F$ and by (6), there exist $U \in \Lambda_\alpha O(X, \tau)$ and a g-(Λ, α)-open set V such that $x \in U$, $F \subseteq V$ and $U \cap V = \emptyset$. Thus, $A \cap U \neq \emptyset$, $F \subseteq V$ and $U \cap V = \emptyset$.

(7) ⇒ (1): Let F be a (Λ, α)-closed set such that $x \notin F$. Since $\{x\} \cap F = \emptyset$, by (7), there exist $U \in \Lambda_\alpha O(X, \tau)$ and a g-(Λ, α)-open set W such that $x \in U$, $F \subseteq V$ and $U \cap W = \emptyset$. Since W is g-(Λ, α)-open, by Theorem 3.5, we have $F \subseteq W(\Lambda, \alpha) = V \in \Lambda_\alpha O(X, \tau)$ and hence $U \cap V = \emptyset$. This shows that (X, τ) is (Λ, α)-regular. □

Acknowledgements: This research project was financially supported by Mahasarakham University.

Conflicts of Interest: The authors declare that there are no conflicts of interest regarding the publication of this paper.

References

