GLOBAL EXISTENCE AND BLOW-UP OF SOLUTIONS FOR A QUASILINEAR PARABOLIC EQUATION WITH ABSORPTION AND NONLINEAR BOUNDARY CONDITION

IFTIKHAR AHMED*, CHUNLAI MU AND PAN ZHENG

Abstract. This paper deals with the evolution r-Laplacian equation with absorption and nonlinear boundary condition. By using differential inequality techniques, global existence and blow-up criteria of nonnegative solutions are determined. Moreover, upper bound of the blow-up time for the blow-up solution is obtained.

1. Introduction

In this paper, we investigate the global existence and finite time blow-up of nonnegative solutions for the following initial-boundary value problem

$$
\begin{align*}
\begin{cases}
 u_t = \text{div}(|-u|^{r-2} \nabla u) - f(u), & (x, t) \in \Omega \times (0, t^*), \\
 |u|^{r-2} \frac{\partial u}{\partial n} = g(u), & (x, t) \in \partial \Omega \times (0, t^*), \\
 u(x, 0) = u_0(x) > 0, & x \in \Omega,
\end{cases}
\end{align*}
$$

(1.1)

where $r \geq 2$, $\frac{\partial u}{\partial n}$ is the outward normal derivative of u on the boundary $\partial \Omega$ assumed sufficiently smooth, Ω is a bounded star-shaped region in \mathbb{R}^N ($N \geq 2$) and t^* is the blow-up time if blow-up occurs, or else $t^* = \infty$. It is well known that the functions f and g may greatly affect the behavior of the solution $u(x, t)$ with the development of time. From the physical standpoint, $-f$ is the cold source function, g is the heat-conduction function transmitting into interior of Ω from the boundary of Ω.

The global existence and blow-up for nonlinear parabolic equations have been extensively investigated by many authors in the last decades (see [1–6] and the references therein). In recent years, many authors have also studied bounds for the blow-up time in nonlinear parabolic problems by using differential inequality techniques (see [7–12]). In particular, Payne et al. [13] considered the following semilinear heat equation with nonlinear boundary condition

$$
\begin{align*}
\begin{cases}
 u_t = \Delta u - f(u), & (x, t) \in \Omega \times (0, t^*), \\
 \frac{\partial u}{\partial n} = g(u), & (x, t) \in \partial \Omega \times (0, t^*), \\
 u(x, 0) = u_0(x), & x \in \Omega,
\end{cases}
\end{align*}
$$

(1.2)

2010 Mathematics Subject Classification. 35K55, 35K65.

Key words and phrases. Global existence; Blow-up; Quasilinear parabolic equation; Nonlinear boundary condition.
and established sufficient conditions on the nonlinearities to guarantee that the solution \(u(x, t) \) exists for all time \(t > 0 \) or blows up in finite time \(t^* \). Moreover, an upper bound for \(t^* \) was derived. Under more restrictive conditions, a lower bound for \(t^* \) was also obtained.

Moreover, in [14], Payne et al. also studied the following initial-boundary problem

\[
\begin{aligned}
 &u_t = \nabla(|\nabla u|^{2p} \nabla u), & (x, t) &\in \Omega \times (0, t^*), \\
 &|\nabla u|^{2p} \frac{\partial u}{\partial n} = f(u), & (x, t) &\in \partial \Omega \times (0, t^*), \\
 &u(x, 0) = u_0(x), & x &\in \Omega,
\end{aligned}
\]

and obtained upper and lower bounds for the blow-up time under some conditions when blow-up does occur at some finite time.

In the present work, by using differential inequality techniques, we give some sufficient conditions on the functions \(f \) and \(g \) for the global existence and blow-up of nonnegative solutions to problem (1.1). Our main results are stated as follows.

Theorem 1.1. (Conditions for global existence). Let \(u(x, t) \) be the solution of problem (1.1) and assume that the non-negative functions \(f \) and \(g \) satisfy the following conditions

\[
\begin{align*}
 f(\xi) &\geq k_1 \xi^p, & \xi &\geq 0, \\
 g(\xi) &\leq k_2 \xi^q, & \xi &\geq 0,
\end{align*}
\]

for some non-negative constants \(k_1 \) and \(k_2 \). Moreover suppose that the positive constants \(p \) and \(q \) satisfy the following conditions

\[
p > q > r - 1 \quad \text{and} \quad rq < (r - 1)(p + 1).
\]

Then the non-negative solution \(u(x, t) \) of problem (1.1) exists globally for all time \(t > 0 \).

Theorem 1.2. (Conditions for blow-up in finite time). Let \(u(x, t) \) be the solution of problem (1.1) and assume that the non-negative functions \(f \) and \(g \) satisfy the following conditions

\[
\begin{align*}
 \xi f(\xi) &\leq r F(\xi), & \xi &\geq 0, \\
 \xi g(\xi) &\geq r G(\xi), & \xi &\geq 0,
\end{align*}
\]

with

\[
F(\xi) = \int_0^\xi f(\eta) d\eta, \quad G(\xi) = \int_0^\xi g(\eta) d\eta.
\]

Moreover suppose that \(\Psi(0) > 0 \), where

\[
\Psi(t) = r \int_{\partial \Omega} G(u) ds - \int_\Omega |\nabla u|^r dx - r \int_\Omega F(u) dx.
\]

Then the solution \(u(x, t) \) of problem (1.1) blows up at time \(t^* < T \) with

\[
T = \frac{\Phi(0)}{(r - 2)\Psi(0)}, \quad \text{for} \ r > 2,
\]
where $\Phi(t) = \int_\Omega u^2 dx$. If $r = 2$, we have $T = \infty$.

This paper is organized as follows. In Section 2, we establish the conditions on the functions f and g, which guarantee that $u(x,t)$ exists globally, and prove Theorem 1.1. In Section 3, we obtain the blow-up condition of the solution and derive an upper bound estimate for the blow-up time t^*.

2. Conditions for global existence

In this section, we establish the sufficient conditions on the functions f and g, which guarantee that $u(x,t)$ exists globally, and prove Theorem 1.1. To do this, we need the following Lemma.

Lemma 2.1. Let Ω be a bounded star-shaped domain in \mathbb{R}^N, $N \geq 2$. Then for any non-negative C^1 function u and $\gamma > 0$, we have

$$
\int_{\partial \Omega} u^\gamma ds \leq \frac{N}{\rho_0} \int_\Omega u^\gamma dx + \frac{\gamma d}{\rho_0} \int_\Omega u^{\gamma-1} |\nabla u| dx,
$$

where

$$
\rho_0 = \min_{x \in \partial \Omega} (x \cdot n) \quad \text{and} \quad d = \max_{x \in \partial \Omega} |x|.
$$

Proof. As Ω is a bounded star-shaped domain, it is easy to see that $\rho_0 > 0$. Integrating the identity

$$
\text{div}(u^\gamma x) = Nu^\gamma + \gamma u^{\gamma-1}(x \cdot \nabla u)
$$

over Ω, it follows from the divergence theorem that

$$
\int_{\partial \Omega} u^\gamma (x \cdot n) ds = N \int_\Omega u^\gamma dx + \gamma \int_\Omega u^{\gamma-1}(x \cdot \nabla u) dx.
$$

By the definition of ρ_0 and d, we obtain

$$
\rho_0 \int_{\partial \Omega} u^\gamma ds \leq \int_{\partial \Omega} u^\gamma (x \cdot n) ds \leq N \int_\Omega u^\gamma dx + \gamma d \int_\Omega u^{\gamma-1} |\nabla u| dx,
$$

which implies the desired conclusion.

Proof of Theorem 1.1. Setting

$$
\Phi(t) = \int_\Omega u^2 dx,
$$

then it follows from (1.1), (1.4) and (1.5) that

$$
\Phi'(t) = 2 \int_\Omega uu_t dx = 2 \int_\Omega u [\text{div}(|\nabla u|^{r-2} \nabla u) - f(u)] dx
$$

$$
= 2 \int_{\partial \Omega} u |\nabla u|^{r-2} \frac{\partial u}{\partial n} ds - 2 \int_\Omega |\nabla u|^r dx - 2 \int_\Omega uf(u) dx
$$

$$
= 2 \int_{\partial \Omega} ug(u) ds - 2 \int_\Omega |\nabla u|^r dx - 2 \int_\Omega uf(u) dx
$$

$$
\leq 2k_2 \int_{\partial \Omega} u^{q+1} ds - 2 \int_\Omega |\nabla u|^r dx - 2k_1 \int_\Omega u^{p+1} dx.
$$
By Lemma 2.1, we have

\begin{equation}
\int_{\partial \Omega} u^{q+1} ds \leq \frac{N}{\rho_0} \int_{\Omega} u^{q+1} dx + \frac{(q+1)d}{\rho_0} \int_{\Omega} u^q |\nabla u| dx,
\end{equation}

where \(\rho_0 \) and \(d \) are given by (2.2). Combining (2.7) with (2.8), we obtain

\begin{equation}
\Phi'(t) \leq \frac{2k_2 N}{\rho_0} \int_{\Omega} u^{q+1} dx + \frac{2k_2(q+1)d}{\rho_0} \int_{\Omega} u^q |\nabla u| dx - 2k_1 \int_{\Omega} u^{p+1} dx.
\end{equation}

By using Young’s inequality with \(\varepsilon > 0 \), we derive

\begin{equation}
\int_{\Omega} u^q |\nabla u| dx \leq \frac{1}{r} \int_{\Omega} |\nabla u|^r dx + \frac{r-1}{r} \varepsilon^{\frac{1}{r}} \int_{\Omega} u^{\frac{r}{r-1}} dx,
\end{equation}

where \(\varepsilon = \frac{k_2(q+1)d}{r\rho_0} > 0 \). It follows from (2.9) and (2.10) that

\begin{equation}
\Phi'(t) \leq \frac{2k_2 N}{\rho_0} \int_{\Omega} u^{q+1} dx + 2(r-1) \left(\frac{k_2(q+1)d}{r\rho_0} \right)^{\frac{r}{r-1}} \int_{\Omega} u^{\frac{r}{r-1}} dx - 2k_1 \int_{\Omega} u^{p+1} dx.
\end{equation}

By Hölder’s inequality, we have

\begin{equation}
\int_{\Omega} u^{\frac{r}{r-1}} dx \leq \left(\int_{\Omega} u^{q+1} dx \right)^{\alpha} \left(\int_{\Omega} u^{p+1} dx \right)^{1-\alpha},
\end{equation}

where \(\alpha = \frac{(r-1)(p+1)-q}{r(p-q)} \in (0,1) \), due to (1.6). By using the fundamental inequality

\begin{equation}
a_1^2 + a_2^2 \leq r_1 a_1 + r_2 a_2, \quad a_1, a_2 > 0, \quad r_1, r_2 \geq 0 \quad \text{and} \quad r_1 + r_2 = 1,
\end{equation}

it follows from (2.12) that

\begin{equation}
\int_{\Omega} u^{\frac{r}{r-1}} dx \leq \left(\kappa^{\frac{a-1}{a}} \int_{\Omega} u^{q+1} dx \right)^{\alpha} \left(\kappa \int_{\Omega} u^{p+1} dx \right)^{1-\alpha}
\leq \alpha \kappa^{\frac{a-1}{a}} \int_{\Omega} u^{q+1} dx + (1-\alpha) \kappa \int_{\Omega} u^{p+1} dx,
\end{equation}

where

\begin{equation}
0 < \kappa < \frac{k_1}{(r-1)(1-\alpha)} \left(\frac{k_2(q+1)d}{r \rho_0} \right)^{\frac{r}{r-1}}.
\end{equation}

Combining (2.11) with (2.14), we obtain

\begin{equation}
\Phi'(t) \leq K_1 \int_{\Omega} u^{q+1} dx - K_2 \int_{\Omega} u^{p+1} dx,
\end{equation}

where

\begin{equation}
K_1 = \frac{2k_2 N}{\rho_0} + 2(r-1) \alpha \kappa^{\frac{a-1}{a}} \left(\frac{k_2(q+1)d}{r \rho_0} \right)^{\frac{r}{r-1}} > 0,
\end{equation}

and

\begin{equation}
K_2 = 2k_1 - 2(r-1)(1-\alpha) \kappa \left(\frac{k_2(q+1)d}{r \rho_0} \right)^{\frac{r}{r-1}} > 0,
\end{equation}

due to (2.15). According to Hölder’s inequality, we derive

\begin{equation}
\int_{\Omega} u^{q+1} dx \leq \left(\int_{\Omega} u^{p+1} dx \right)^{\frac{\alpha}{\alpha-1}} \left| \Omega \right|^\frac{p+1}{p+1},
\end{equation}

\end{proof}
where $|\Omega| = \int_{\Omega} dx$ is the N-volume of Ω. It follows from (2.16) and (2.19) that

\[
(2.20) \quad \Phi'(t) \leq \left(\int_{\Omega} u^{p+1} dx \right)^{\frac{p+1}{p+1}} \left[K_1 |\Omega|^{\frac{p-q}{p+1}} - K_2 \left(\int_{\Omega} u^{p+1} dx \right)^{\frac{p-q}{p+1}} \right].
\]

By Hölder’s inequality again, we have

\[
(2.21) \quad \Phi(t) = \int_{\Omega} u^2 dx \leq \left(\int_{\Omega} u^{p+1} dx \right)^{\frac{2}{p+1}} |\Omega|^{\frac{p-2}{p+1}}.
\]

Therefore, we deduce from (2.20) and (2.21) that

\[
(2.22) \quad \Phi'(t) \leq \left(\int_{\Omega} u^{p+1} dx \right)^{\frac{p+1}{p+1}} \left[K_1 |\Omega|^{\frac{p-q}{p+1}} - K_2 |\Omega|^{\frac{(1-p)(p-q)}{2(p+1)}} \Phi^{\frac{p-q}{2}} \right].
\]

Hence, we infer from (2.22) that $\Phi(t)$ is decreasing in each time interval on which we have

\[
(2.23) \quad \Phi(t) > \left(\frac{K_1}{K_2} \right)^{\frac{2}{p-q}} |\Omega|,
\]

so that $\Phi(t)$ remains bounded for all time under the conditions stated in Theorem 1.1, which completes the proof. □

3. CONDITIONS FOR BLOW-UP IN FINITE TIME

In this section, we obtain the blow-up condition of the solution and derive an upper bound estimate for the blow-up time t^*.

Proof of Theorem 1.2. Using Green formula and the assumptions stated in Theorem 1.2, we have

\[
(3.1) \quad \Phi'(t) = 2 \int_{\Omega} u u_t dx
\]

\[
= 2 \int_{\Omega} u |\nabla u|^r \nabla u - f(u)|dx
\]

\[
= 2 \int_{\partial \Omega} u |\nabla u|^r \frac{\partial u}{\partial n} ds - 2 \int_{\Omega} |\nabla u|^r dx - 2 \int_{\Omega} u f(u) dx
\]

\[
= 2 \int_{\partial \Omega} u g(u) ds - 2 \int_{\Omega} |\nabla u|^r dx - 2 \int_{\Omega} u f(u) dx
\]

\[
\geq 2r \int_{\partial \Omega} G(u) ds - 2 \int_{\Omega} |\nabla u|^r dx - 2r \int_{\Omega} F(u) dx
\]

\[
\geq 2 \Psi(t).
\]

Differentiating (1.10), we obtain

\[
(3.2) \quad \Psi'(t) = r \int_{\partial \Omega} u_t g(u) ds - \int_{\Omega} (|\nabla u|^r)_t dx - r \int_{\Omega} u_t f(u) dx
\]

\[
= r \int_{\Omega} u_t |\nabla u|^r \nabla u dx - r \int_{\Omega} u_t f(u) dx
\]

\[
= r \int_{\Omega} (u_t)^2 dx \geq 0.
\]
As $\Psi(0) > 0$, then $\Psi(t) > 0$ for all $t \in (0, t^*)$. By using Hölder’s inequality, we derive

$$
(\Phi'(t))^2 = 4 \left(\int_\Omega uu_t dx \right)^2 \leq 4 \int_\Omega u^2 dx \int_\Omega (u_t)^2 dx = \frac{4}{r} \Phi(t) \Psi'(t).
$$

(3.3)

It follows from (3.1) and (3.3) that

$$
\Phi(t) \Psi'(t) \geq \frac{r}{4}(\Phi'(t))^2 \geq \frac{r}{2} \Phi'(t) \Psi(t),
$$

that is

$$
(\Phi^\frac{r}{2} \Psi)'(t) \geq 0.
$$

Integrating from 0 to t, we have

$$
\Phi^\frac{r}{2} (t) \Psi(t) \geq \Phi^\frac{r}{2} (0) \Psi(0) =: K > 0.
$$

Therefore, we deduce from (3.1) that

$$
\Phi'(t) \geq 2 \Psi \geq 2K \Phi^\frac{r}{2} (t).
$$

(3.4)

If $r > 2$, it follows from integrating over $(0, t)$ that

$$
\Phi(t) \geq \left[\frac{\Phi^\frac{2-r}{2} (0)}{K (r-2)t} \right]^{-\frac{2}{r-2}},
$$

which implies $\Phi(t) \to +\infty$ as $t \to T = \frac{\Phi^\frac{2-r}{2} (0)}{K (r-2)}$. Hence, for $r > 2$, we have

$$
t^* \leq \frac{\Phi(0)}{(r-2) \Psi(0)}.
$$

(3.5)

If $r = 2$, we infer from (3.7) that

$$
\Phi(t) \geq \Phi(0) e^{2Kt}, \quad \text{for all} \quad t > 0,
$$

which implies $t^* = \infty$, this completes the proof. \qed

References

College of Mathematics and Statistics, Chongqing University, Chongqing 401331, China

*Corresponding author