ON A TYPE OF PROJECTIVE SEMI-SYMMETRIC CONNECTION

S. K. PAL1,∗, M. K. PANDEY2 AND R. N. SINGH1

Abstract. In the present paper, we have studied some properties of curvature tensors of special projective semi-symmetric connection. We have shown that curvature tensor of such a connection satisfies Bianchi’s identities.

1. Introduction

The idea of semi-symmetric connection was introduced by A. Friedmann and J. A. Schouten [2] in 1924. In 1932, H. A. Hayden [4] studied semi-symmetric metric connection. It was K. Yano [10] who started systematic study of semi-symmetric metric connection and this was further studied by T. Imai [6], R. S. Mishra and S. N. Pandey [9], U. C. De and B. K. De [1] and several other mathematicians ([7], [11]). In 2001, P. Zhao and H. Song [12] studied a semi-symmetric connection which is projectively equivalent to Levi-Civita connection and such a connection is called as projective semi-symmetric connection. They found an invariant under the transformation of projective semi-symmetric connection and showed that this invariant could degenerate into the Weyl projective curvature tensor under certain conditions. After this various papers ([3], [5], [13]) on projective semi-symmetric metric connection have appeared.

The organization of the paper is as follows. After introduction we give some preliminary results in section 2. In sections 3, we present a brief account of special projective semi-symmetric connection. Section 4 is devoted to the study of special projective semi symmetric connection with recurrent curvature tensor.

2. Preliminaries

Let \(M^n \) be an \(n \)-dimensional \((n > 2)\) Riemannian manifold equipped with a Riemannian metric \(g \) and \(\nabla \) be the Levi-Civita connection associated with metric \(g \). A linear connection \(\nabla \) on \(M^n \) is called the semi symmetric metric connection [10], if the torsion tensor \(\tilde{T} \) of the connection \(\nabla \), given by

\[
\tilde{T}(X,Y) = \nabla_X Y - \nabla_Y X - [X,Y]
\]

satisfies the condition

\[
\tilde{T}(X,Y) = \pi(Y)X - \pi(X)Y
\]
and
\begin{equation}
(\bar{\nabla}_X g)(Y, Z) = 0,
\end{equation}
where \(\pi \) is a 1-form on \(M^n \) associated with vector field \(\rho \), i.e.,
\begin{equation}
\pi(X) = g(X, \rho).
\end{equation}
If the geodesic with respect to \(\bar{\nabla} \) are always consistent with those of \(\nabla \), then \(\bar{\nabla} \) is called a connection projectively equivalent to \(\nabla \). If \(\bar{\nabla} \) is projective equivalent connection to \(\nabla \) as well as the semi-symmetric, then \(\bar{\nabla} \) is called projective semi-symmetric connection. We also call \(\bar{\nabla} \) as projective semi-symmetric transformation.

In this paper, we study a type of projective semi-symmetric connection \(\bar{\nabla} \) introduced by P. Zhao and H. Song [12]. The connection is given by
\begin{equation}
\bar{\nabla}_X Y = \nabla_X Y + \psi(Y)X + \psi(X)Y + \phi(Y)X - \phi(X)Y,
\end{equation}
where 1-forms \(\phi \) and \(\psi \) are given as
\begin{equation}
\phi(X) = \frac{1}{2} \pi(X) \quad \text{and} \quad \psi(X) = \frac{n-1}{2(n+1)} \pi(X).
\end{equation}
It is easy to observe that torsion tensor of projective semi-symmetric transformation is same as given by the equation (2.2) and also that
\begin{equation}
(\bar{\nabla}_X g)(Y, Z) = \frac{1}{n+1}[2\pi(X)g(Y, Z) - n\pi(Y)g(Z, X) - n\pi(Z)g(X, Y)],
\end{equation}
i.e., the connection \(\bar{\nabla} \) is a non metric one.

Let \(\bar{R} \) and \(R \) be the curvature tensor of the manifold relative to the projective semi-symmetric connection \(\bar{\nabla} \) and Levi-Civita connection \(\nabla \) respectively. It is known that [12]
\begin{equation}
\bar{R}(X, Y, Z) = R(X, Y, Z) + \beta(X, Y)Z + \alpha(X, Z)Y - \alpha(Y, Z)X,
\end{equation}
where \(\beta(X, Y) \) and \(\alpha(X, Y) \) are given by the following relations
\begin{equation}
\beta(X, Y) = \Psi'(X, Y) - \Psi'(Y, X) + \Phi'(Y, X) - \Phi'(X, Y),
\end{equation}
\begin{equation}
\alpha(X, Y) = \Psi'(X, Y) + \Phi'(Y, X) - \psi(X)\phi(Y) - \phi(X)\psi(Y),
\end{equation}
and
\begin{equation}
\Phi'(X, Y) = (\nabla_X \psi)(Y) - \psi(X)\psi(Y).
\end{equation}
Contracting \(X \) in the equation (2.8), we get a relation between Ricci tensors \(\bar{Ric}(Y, Z) \) and \(Ric(Y, Z) \) of manifold with respect to connections \(\bar{\nabla} \) and \(\nabla \) respectively
\begin{equation}
\bar{Ric}(Y, Z) = Ric(Y, Z) + \beta(Y, Z) - (n-1)\alpha(Y, Z).
\end{equation}
If \(\bar{r} \) and \(r \) are scalar curvatures of manifold with respect to connection \(\bar{\nabla} \) and \(\nabla \) respectively, then from the equation (2.13), we get
\begin{equation}
\bar{r} = r + b - (n-1)a,
\end{equation}
where
\[b = \sum_{i=1}^{n} \beta(e_i, e_i) \quad \text{and} \quad a = \sum_{i=1}^{n} \alpha(e_i, e_i). \]

The Weyl-projective curvature tensor \(W \), conharmonic curvature tensor \(P \) and concircular curvature tensor \(I \) are given by [9]

\[W(X, Y, Z) = R(X, Y, Z) + \frac{1}{n-1} \{ Ric(X, Z)Y - Ric(Y, Z)X \}, \tag{2.15} \]

\[P(X, Y, Z) = R(X, Y, Z) - \frac{1}{n-2} \left[Ric(Y, Z)X - Ric(X, Z)Y \right. \]
\[+ g(Y, Z)QX - g(X, Z)QY \left]. \tag{2.16} \]

where
\[g(QX, Y) = Ric(X, Y) \tag{2.17} \]

and
\[I(X, Y, Z) = R(X, Y, Z) - \frac{r}{n-1} \{ g(Y, Z)X - g(X, Z)Y \}. \tag{2.18} \]

3. Special Projective Semi-Symmetric Connection

In this section, we consider a projective semi-symmetric connection \(\bar{\nabla} \) given by the equation (2.5) whose associated 1-form \(\pi \) is closed, i.e.,

\[(\bar{\nabla}_X \pi)Y = (\bar{\nabla}_Y \pi)X. \tag{3.1} \]

Such a connection \(\bar{\nabla} \) is called special projective semi-symmetric connection [12]. It is easy to verify that both the 1-forms \(\phi \) and \(\psi \) are closed as the 1-form \(\pi \) is closed and also that the tensors \(\Phi' \) and \(\Psi' \) are symmetric. Consequently, we get

\[\beta(X, Y) = 0 \tag{3.2} \]

and

\[\alpha(X, Y) = \alpha(Y, X). \tag{3.3} \]

In view of the equations (3.1) and (3.2), the expressions (2.8), (2.13) and (2.14) reduces to

\[\bar{R}(X, Y, Z) = R(X, Y, Z) + \alpha(X, Z)Y - \alpha(Y, Z)X, \tag{3.4} \]

\[\bar{Ric}(Y, Z) = Ric(Y, Z) - (n-1)\alpha(Y, Z) \tag{3.5} \]

and

\[\bar{r} = r - (n-1)a. \tag{3.6} \]

It is easy to observe that the Ricci tensor \(\bar{Ric}(Y, Z) \) is symmetric.

Now, we prove the following theorems:

Theorem 3.1. Curvature tensor of special projective semi-symmetric connection satisfies Bianchi’s first identity.
Proof: Writing two more equations by cyclic permutations of X, Y and Z from equation (3.4), we get

\[\bar{R}(Y, Z, X) = R(Y, Z, X) + \alpha(Y, X)Z - \alpha(Z, X)Y, \]

and

\[\bar{R}(Z, X, Y) = R(Z, X, Y) + \alpha(Z, Y)X - \alpha(X, Y)Z. \]

Adding these equations to the equation (3.4), we get result.

Theorem 3.2. Curvature tensor of special projective semi-symmetric connection satisfies Bianchi’s second identity if α is parallel tensor with respect to Levi-Civita connection ∇.

Proof: Suppose α is a parallel tensor with respect to Levi-Civita connection ∇, i.e., $\nabla \alpha = 0$. Now differentiating the equation (3.4) covariantly with respect to the connection ∇, we have

\[(\nabla X\bar{R})(Y, Z, U) = (\nabla X R)(Y, Z, U). \]

Writing two more equations by cyclic permutations of X, Y and Z in above equation, we get

\[(\nabla Y\bar{R})(Z, X, U) = (\nabla Y R)(Z, X, U), \]

and

\[(\nabla Z\bar{R})(X, Y, U) = (\nabla Z R)(X, Y, U). \]

Adding the equations (3.7), (3.8) and (3.9), we get

\[(\nabla X\bar{R})(Y, Z, U) + (\nabla Y\bar{R})(Z, X, U) + (\nabla Z\bar{R})(X, Y, U) = 0. \]

This shows that the curvature tensor of special projective semi-symmetric connection satisfies Bianchi’s second identity.

Theorem 3.3. The Weyl-projective curvature tensor of Riemannian manifold with respect to the special projective semi-symmetric connection $\bar{\nabla}$ satisfies

\[\bar{W}(X, Y, Z) + \bar{W}(Y, Z, X) + \bar{W}(Z, X, Y) = 0. \]

Proof: The Weyl-projective curvature tensor of Riemannian Manifold with respect to special projective semi-symmetric connection $\bar{\nabla}$ is given by

\[\bar{W}(X, Y, Z) = \bar{R}(X, Y, Z) - \frac{1}{n-1} [\bar{Ric}(Y, Z)X - \bar{Ric}(X, Z)Y]. \]

Writing two more equations by cyclic permutations of X, Y and Z in above equation, we get

\[\bar{W}(Y, Z, X) = \bar{R}(Y, Z, X) - \frac{1}{n-1} [\bar{Ric}(Z, X)Y - \bar{Ric}(X, Z)Y], \]

\[\bar{W}(Z, X, Y) = \bar{R}(Z, X, Y) - \frac{1}{n-1} [\bar{Ric}(X, Y)Z - \bar{Ric}(Z, Y)X]. \]

Adding the equations (3.10), (3.11) and (3.12), we get

\[\bar{W}(X, Y, Z) + \bar{W}(Y, Z, X) + \bar{W}(Z, X, Y) = 0. \]
4. Special Projective Semi-Symmetric Connection with Recurrent Curvature Tensor

In this section, we consider a special projective semi-symmetric connection \(\tilde{\nabla} \) whose curvature tensor \(\tilde{R} \) is recurrent with respect to the Levi-Civita connection \(\nabla \), i.e.,

\[
(4.1) \quad (\nabla_U \tilde{R})(X, Y, Z) = B(U)\tilde{R}(X, Y, Z),
\]

where \(B \) is a non-zero 1-form.

Differentiating the equation (3.4) covariantly with respect to the Levi-Civita connection \(\nabla \), we get

\[
(4.2) \quad (\nabla_U \tilde{R})(X, Y, Z) = (\nabla_U \tilde{R})(X, Y, Z) + (\nabla_U \alpha)(X, Z)Y - (\nabla_U \alpha)(Y, Z)X.
\]

Contracting \(X \) in above, we have

\[
(4.3) \quad (\nabla_U \tilde{Ric})(Y, Z) = (\nabla_U \tilde{Ric})(Y, Z) - (n - 1)(\nabla_U \alpha)(Y, Z).
\]

Putting \(Y = Z = e_i \) in the above equation and taking summation over \(i \), \(1 \leq i \leq n \), we get

\[
(4.4) \quad (\nabla_U \tilde{r}) = (\nabla_U r) - (n - 1)(\nabla_U \alpha).
\]

Now the equations (3.4) and (4.2) together give

\[
(4.5) \quad (\nabla_U \tilde{R})(X, Y, Z) - B(U)\tilde{R}(X, Y, Z) = (\nabla_U \tilde{R})(X, Y, Z) - B(U)\tilde{R}(X, Y, Z)
\]

\[
+ [(\nabla_U \alpha)(X, Y) - B(U)\alpha(X, Z)]Y - [(\nabla_U \alpha)(Y, Z) - B(U)\alpha(Y, Z)]X,
\]

which, in view of the equation (4.1), reduces to

\[
(4.6) \quad (\nabla_U \tilde{R})(X, Y, Z) - B(U)\tilde{R}(X, Y, Z) = [\tilde{\nabla}_U \alpha](Y, Z) - B(U)\alpha(Y, Z)]X
\]

\[
- [\tilde{\nabla}_U \alpha](X, Z) - B(U)\alpha(X, Z)]Y.
\]

Contracting \(X \) in above, we get

\[
(4.7) \quad (\nabla_U \tilde{Ric})(Y, Z) - B(U)\tilde{Ric}(Y, Z) = (n - 1)[(\nabla_U \alpha)(Y, Z) - B(U)\alpha(Y, Z)].
\]

Further, we obtain

\[
(4.8) \quad (\nabla_U r) - B(U)r = (n - 1)[(\nabla_U \alpha) - B(U)a].
\]

Also, from the equation (2.17), we have

\[
(4.9) \quad g((\nabla_U \tilde{Q})X, Y) = (\nabla_U \tilde{Ric})(X, Y),
\]

which can be written as

\[
(4.10) \quad g((\nabla_U \tilde{Q})X - B(U)\tilde{Q}X, Y) = (\nabla_U \tilde{Ric})(X, Y) - B(U)\tilde{Ric}(X, Y).
\]

Now we prove following theorems:

Theorem 4.1. If the curvature tensor of special projective semi-symmetric connection on a Riemannian manifold \(M^n \) is recurrent with respect to the Levi-Civita connection then manifold \(M^n \) is projectively recurrent.

Proof: Differentiating the projective curvature tensor \(W \) given by (2.15) covariantly with respect to Levi-Civita connection \(\nabla \), we have

\[
(4.11) \quad (\nabla_U W)(X, Y, Z) = (\nabla_U \tilde{R})(X, Y, Z) + \frac{1}{n - 1} [(\nabla_U \tilde{Ric})(X, Z)Y - (\nabla_U \tilde{Ric})(Y, Z)X].
\]
The above equation gives
\begin{equation}
(\nabla_{U}W)(X,Y,Z) - B(U)W(X,Y,Z) = (\nabla_{U}R)(X,Y,Z) - B(U)R(X,Y,Z)
\end{equation}
\begin{align*}
&+ \frac{1}{n-1}\{[(\nabla_{U}Ric)(X,Y,Z) - B(U)Ric(X,Y,Z)]Y
\neg{[(\nabla_{U}Ric)(Y,Z) - B(U)Ric(Y,Z)]X}.\end{align*}

Using equation (4.6) and (4.7) in above, we get
\begin{equation}
(\nabla_{U}W)(X,Y,Z) = B(U)W(X,Y,Z),
\end{equation}
which proves the statement.

Theorem 4.2. A Riemannian manifold M^n admitting a special projective semi-symmetric connection whose curvature tensor and tensor α are recurrent with respect to the Levi-Civita connection, is conharmonically recurrent.

Proof: Differentiating covariantly the equation (2.16) with respect to the Levi-Civita connection, we get
\begin{equation}
(\nabla_{U}P)(X,Y,Z) = (\nabla_{U}R)(X,Y,Z) - \frac{1}{n-2}\{[(\nabla_{U}Ric)(Y,Z)X - (\nabla_{U}Ric)(X,Z)Y
\neg{g(Y,Z)(\nabla_{U}Q)X - g(X,Z)(\nabla_{U}Q)Y}],
\end{equation}
From above, we have
\begin{equation}
(\nabla_{U}P)(X,Y,Z) - B(U)P(X,Y,Z) = (\nabla_{U}R)(X,Y,Z) - B(U)R(X,Y,Z)
\end{equation}
\begin{align*}
&+ \frac{1}{n-2}\{[(\nabla_{U}Ric)(Y,Z) - B(U)Ric(Y,Z)]X
\neg{[(\nabla_{U}Ric)(X,Z) - B(U)Ric(X,Z)]Y
\neg{g(Y,Z)((\nabla_{U}Q)X - B(U)QX)
\neg{g(X,Z)((\nabla_{U}Q)Y - B(U)QY)].
\end{align*}
If the tensor α and the curvature tensor of the special projective semi-symmetric connection ∇ are recurrent with respect to the Levi-Civita connection ∇, then from the equations (4.6), (4.7) and (4.10), we get
\begin{equation}
(\nabla_{U}P)(X,Y,Z) = B(U)P(X,Y,Z),
\end{equation}
which shows that manifold is conharmonically recurrent.

Theorem 4.3. A Riemannian manifold M^n admitting a special projective semi-symmetric connection whose curvature tensor and tensor α are recurrent with respect to Levi-Civita connection, is concircular recurrent.

Proof: Differentiating the concircular curvature tensor I of M^n given by the equation (2.18) covariantly with respect to the Levi-Civita connection ∇, we have
\begin{equation}
(\nabla_{U}I)(X,Y,Z) = (\nabla_{U}R)(X,Y,Z) - \frac{\nabla_{UR}}{(n-1)}\{g(Y,Z)X - g(X,Z)Y].
\end{equation}
From this, we have
\[(\nabla_U I)(X, Y, Z) - B(U)I(X, Y, Z) = (\nabla_U R)(X, Y, Z) - B(U)R(X, Y, Z) \]
\[-\frac{\nabla_U r - B(U)r}{(n - 1)} \{g(Y, Z)X - g(X, Z)Y\}.\]

If the tensor \(\alpha \) and the curvature tensor of the special projective semi-symmetric connection \(\bar{\nabla} \) are recurrent with respect to the Levi-Civita connection \(\nabla \), then from the equations (4.6), (4.7) and (4.8), we get
\[(\nabla_U I)(X, Y, Z) = B(U)I(X, Y, Z).\]

Theorem 4.4. Let \(M^n \) be a Riemannian manifold admitting a special projective semi-symmetric connection whose Ricci-tensor is recurrent with respect to the Levi-Civita connection. If the manifold is projectively recurrent with respect to Levi-Civita connection, then the curvature tensor of the special projective semi-symmetric connection is recurrent.

Proof: Let the manifold \(M^n \) be projectively recurrent with respect to Levi Civita connection \(\nabla \). Then from the equation (4.12), we have
\[(\nabla_U R)(X, Y, Z) - B(U)R(X, Y, Z) = \frac{1}{n - 1}\{(\nabla_U \nabla)(Y, Z) - B(U)Ric(Y, Z)X\} \]
\[-\{(\nabla_U Ric)(X, Z) - B(U)Ric(X, Z)Y\}.\]

Now, from equations (3.5) and (4.3), we get
\[(\nabla_U \nabla)(Y, Z) - B(U)Ric(Y, Z) = (\nabla_U Ric)(Y, Z) - B(U)Ric(Y, Z)\]
\[-(n - 1)\{(\nabla_U \alpha)(Y, Z) - B(U)\alpha(Y, Z)\}.\]

Since the Ricci tensor of the special projective semi-symmetric connection \(\nabla \) is recurrent with respect to the Levi-Civita connection \(\nabla \), hence the above equation gives
\[(\nabla_U Ric)(Y, Z) - B(U)Ric(Y, Z) = (n - 1)\{(\nabla_U \alpha)(Y, Z) - B(U)\alpha(Y, Z)\}.\]

Thus, from the equations (4.17) and (4.19), we get
\[(\nabla_U R)(X, Y, Z) - B(U)R(X, Y, Z) = \{(\nabla_U \alpha)(Y, Z) - B(U)\alpha(Y, Z)\}X \]
\[-\{(\nabla_U \alpha)(X, Z) - B(U)\alpha(X, Z)\}Y,\]

which, on using in the equation (4.5), gives
\[(\nabla_U \bar{\nabla})(X, Y, Z) = B(U)\bar{\nabla}(X, Y, Z).\]

This proves the statement.

Theorem 4.5. Let \(M^n \) be a Riemannian manifold admitting a special projective semi-symmetric connection whose Ricci-tensor is recurrent with respect to the Levi-Civita connection. If the manifold is of constant curvature, then the curvature tensor of the special projective semi-symmetric connection is recurrent with respect to the Levi-Civita connection.
Proof: If the Riemannian manifold M^n is of constant curvature, then we have [9]

\[R(X, Y, Z) = \frac{1}{n-1} \{ \text{Ric}(Y, Z)X - \text{Ric}(X, Z)Y \}. \]

(4.22)

Using the above equation in the equation (3.4), we have

\[\bar{R}(X, Y, Z) = \frac{1}{n-1} \{ [\text{Ric}(Y, Z) - (n-1)\alpha(Y, Z)]X - [\text{Ric}(X, Z) - (n-1)\alpha(X, Z)]Y \}, \]

which, on using the equation (3.5), gives

\[\bar{R}(X, Y, Z) = \frac{1}{n-1} \{ \text{Ric}(Y, Z)X - \text{Ric}(X, Z)Y \}. \]

(4.23)

Differentiating the above equation covariantly with respect to the Levi-Civita connection, we have

\[(\nabla_U \bar{R})(X, Y, Z) = \frac{1}{n-1} \{ (\nabla_U \text{Ric})(Y, Z)X - (\nabla_U \text{Ric})(X, Z)Y \}, \]

which can be written as

\[(\nabla_U \bar{R})(X, Y, Z) - B(U)\bar{R}(X, Y, Z) = \frac{1}{n-1} \{ [(\nabla_U \text{Ric})(Y, Z) - B(U)\text{Ric}(Y, Z)]X - [(\nabla_U \text{Ric})(X, Z) - B(U)\text{Ric}(X, Z)]Y \}. \]

(4.25)

Since the Ricci tensor of special projective semi-symmetric connection is recurrent with respect to the Levi-Civita connection ∇, hence from the above equation, we have

\[(\nabla_U \bar{R})(X, Y, Z) = B(U)\bar{R}(X, Y, Z), \]

which proves the statement.

References

1Department of Mathematical Sciences, A. P. S. University, Rewa, (M.P.), India, 486003

2Department of Mathematics, University Institute of Technology, Rajiv Gandhi Proudyogiki Vishwavidyalaya Bhopal, (M.P.), India, 462036

*Corresponding author