ON THE INTEGRAL REPRESENTATION OF STRICTLY CONTINUOUS SET-VALUED MAPS

ANATÉ K. LAKMON∗ AND KENNY K. SIGGINI

Abstract. Let T be a completely regular topological space and $C(T)$ be the space of bounded, continuous real-valued functions on T. $C(T)$ is endowed with the strict topology (the topology generated by seminorms determined by continuous functions vanishing at infinity). R. Giles ([13], p. 472, Theorem 4.6) proved in 1971 that the dual of $C(T)$ can be identified with the space of regular Borel measures on T. We prove this result for positive, additive set-valued maps with values in the space of convex weakly compact non-empty subsets of a Banach space and we deduce from this result the theorem of R. Giles ([13], theorem 4.6, p.473).

1. Introduction

The strict topology β was for the first time introduced by R. C. Buck ([1], [2]) on the space $C(T)$ of all bounded continuous functions on a locally compact space T. He has proved among others that the dual space of $(C(T), \beta)$ is the space of all finite signed regular Borel measures on T. After a large number of papers have appeared in the literature concerned with extending the results contained in Buck’s paper [1](see e.g. [4], [5], [6], [7], [8], [12],[14], [15], [17], [18], [19], [22], [25] and [27]). R. Giles has generalized this notion of the strict topology introduced by Buck for completely regular space T and has proved Buck’s results, particulary the theorem 2 in [1] for an arbitrary (not necessarily Hausdorff) completely regular space T. In this paper we generalize Giles’s result ([13], theorem 4.6, p.473) to additive, positive, positively homogeneous and strictly continuous set-valued maps defined on $C_+(T)$ with values in the space $cc(E)$ of all convex weakly compact non-empty subsets of a Banach space E. We deduce from this result the theorem of R. Giles.

2. Notations and definitions

Let T be a completely regular topological space and let $B(T)$ be the Borel σ-algebra of T and let $C(T)$ be the space of bounded continuous real-valued functions on T. Let $C_0(T)$ be the subspace of $C(T)$ consisting of functions f vanishing at infinity i.e. for any $\varepsilon > 0$ there is a compact set $K_\varepsilon \subset T$ such that $|f(x)| < \varepsilon$ for $x \in T \setminus K_\varepsilon$. We denote by $C_+(T)$ the subspace of $C(T)$ consisting of non-negative functions and by 1_A the characteristic function of each $A \subset T$. For all $f \in C(T)$, we put $f^+ = \sup(f, 0), f^- = \sup(-f, 0)$ and $\|f\|_\infty = \sup\{|f(t)|; t \in T\}$. We denote

2010 Mathematics Subject Classification. Primary 28B20, Secondary 54C60.

Key words and phrases. set-valued measure; strict topology; regular set-valued measure; additive and positive set-valued map.

©2015 Authors retain the copyrights of their papers, and all open access articles are distributed under the terms of the Creative Commons Attribution License.

114
by \mathbb{R} the set of real numbers. Let E be a Banach space, E' its dual and $cc(E)$ be the space of all non-empty, convex weakly compact subsets of E; we denote by $\|\cdot\|$ the norm on E and E'. If X and Y are subsets of E we shall denote by $X + Y$ the family of all elements of the form $x + y$ with $x \in X$ and $y \in Y$. The support function of X is the function $\delta^*(\cdot|X)$ from E' to $[-\infty; +\infty]$ defined by $\delta^*(y|X) = \sup\{y(x), x \in X\}$. We endow $cc(E)$ with a Hausdorff distance, denoted by δ. For all $K \in cc(E)$ and for all $K' \in cc(E), \delta(K, K') = \sup\{\|\delta^*(y|K) - \delta^*(y|K')\|: y \in E', \|y\| \leq 1\}$. Recall that $(cc(E), \delta)$ is a complete metric space ([16], theorem 9, p.185) and ([21], theorem 15, p.2-2).

Definition 2.1. (1) let $m : B(T) \to \mathbb{R}$ be a positive countable additive measure. We say that m is:

(i) inner regular if for all $A \in B(T)$ and $\varepsilon > 0$, there exists a compact $K_\varepsilon \subset A$ and $m(A \setminus K_\varepsilon) < \varepsilon$.

(ii) outer regular if for all $A \in B(T)$ and for all $\varepsilon > 0$, there exists an open subset O_ε of T such that $O_\varepsilon \supset A$ and $m(O_\varepsilon \setminus A) < \varepsilon$.

(iii) regular if it is inner regular and outer regular.

(2) A signed measure $\mu : B(T) \to \mathbb{R}$ is regular if and only if its total variation $v(\mu)$ is regular. Note that $v(\mu) : B(T) \to \mathbb{R}^+$ $(A \mapsto v(\mu)(A) = \sup\{\sum_i |\mu(A_i)|; (A_i)$ finite partition of $A, A_i \in B(T))$.

Definition 2.2. A map $M : B(T) \to cc(E)$ is a set-valued measure if $M(A \cup B) = M(A) + M(B)$ for every pair of disjoint sets A, B in $B(T)$, $M(\emptyset) = \{0\}$ and $M(\bigcup_{n=1}^{+\infty} A_n) = \sum_{n=1}^{+\infty} M(A_n)$ for every sequence (A_n) of mutually disjoint elements of $B(T)$; which amounts to saying that for all $y \in E'$ the map $\delta^*(y|M(\cdot)) : B(T) \to \mathbb{R}(A \mapsto \delta^*(y|M(A)))$ is a countably additive measure ([21], corollary p. 2-25). We say that a set-valued measure M is:

(i) positive if for all $A \in B(T), 0 \in M(A)$

(ii) regular if for all $y \in E'$, the measure $\delta^*(y|M(\cdot))$ is regular.

Let $\varphi \in C_0(T)$, let K be a compact subset of T. We denote by p_φ and p_K the semi-norms on $C(T)$ defined by $p_\varphi(f) = \sup\{|f(t)|\varphi(t)|; t \in T\}$ and $p_K(f) = \sup\{|f(t)|; t \in K\}$ for every $f \in C(T)$.

Definition 2.3. The topology determined by the set of semi-norms $\{p_\varphi; \varphi \in C_0(T)\}$ (resp. $\{p_K; K$ belongs to the family of compact subsets of T\}) is called the strict (resp. the compact convergence) topology. We say that a map defined on $C(T)$ is strictly continuous if it is continuous for this topology.

Definition 2.4. A map $L : C_+(T) \to cc(E)$ is:

(i) additive set-valued map if for all $f, g \in C_+(T) L(f + g) = L(f) + L(g)$

(ii) positively homogeneous if for $f \in C_+(T)$ and for $\lambda \geq 0$ $L(\lambda f) = \lambda L(f)$

(iii) positive if for every $f \in C_+(T), 0 \in L(f)$.

Definition 2.5. ([24], p. 04) Let m be a bounded linear functional on $C(T)$, and let $B(0,1)$ be the unit ball of $C(T)$. We say that m is tight if its restriction to $B(0,1)$ is continuous for the topology of compact convergence.
3. Main result

Lemma 3.1. Let m be a bounded linear functional on $C(T)$. If m is tight then for all $\varepsilon > 0$ there is a compact subset K_ε of T such that for all $f \in C(T)$ and $|f| \leq 1_{T\setminus K_\varepsilon}$, we have $|m(f)| < \varepsilon$.

Proof. Assume that m is tight. Then for every $\varepsilon > 0$ there is a compact subset K_ε of T and there is $\eta > 0$ such that for all $f \in B(0, 1)$ and $p_{K_\varepsilon}(f) = \sup \{|f(t)|; t \in K_\varepsilon\} < \eta$. We have $|m(f)| < \varepsilon$. In particular for all $f \in B(0, 1)$ such that $|f| \leq 1_{T\setminus K_\varepsilon}$, one has $|m(f)| < \varepsilon$. □

Lemma 3.2. Let $M : B(T) \to cc(E)$ be a positive, regular set-valued measure. Then the real-valued measure $\delta^*(y|M(.))$ are uniformly tight with respect to $y \in E'$, $\|y\| \leq 1$ and for every $A \in B(T)$ and for every $\varepsilon > 0$ there is a compact subset K_ε of T such that $K_\varepsilon \subset A$ and $\sup \{\delta^*(y|M(A\setminus K_\varepsilon)); y \in E', \|y\| \leq 1\} \leq \varepsilon$.

Proof. Let us consider the set $\{\delta^*(y|M(.)), y \in E', \|y\| \leq 1\}$ of countably additive real-valued measures. It is uniformly countable additive (see [9], theorem 10, p. 88–89; [28], lemma 3.1, p. 275). According to ([10], p. 443, Theorem 10.7) there is a sequence (c_n) of real numbers and there is a sequence $(\delta^*(y_n|M(.))), [y_n] \leq 1$ of measures such that $\mu(A) = \sum_{n=1}^{+\infty} c_n \delta^*(y_n|M(A))$ exists for each $A \in B(T)$ and such that the series $\sum |c_n| \delta^*(y_n|M(A))$ is uniformly convergent for $A \in B(T)$; moreover the countable additive measure $\nu : B(T) \to \mathbb{R}(A \mapsto \nu(A) = \sum_{n=1}^{+\infty} c_n \delta^*(y_n|M(A)))$ verifies the following relation: $\lim_{\nu(A) \to 0} \sup \{\delta^*(y|M(A)); y \in E', \|y\| \leq 1\} = 0$.

(*) We deduce from the uniform convergence of the series $\sum |c_n| \delta^*(y_n|M(A))$ for $A \in B(T)$, that ν is regular. Indeed, given $\varepsilon > 0$ choose $n_0 \in \mathbb{N}$ such that

$$\sup_{A \in B(T)} \left| \nu(A) - \sum_{k=1}^{n_0} c_k \delta^*(y_k|M(A)) \right| < \varepsilon/2.$$

For $A \in B(T)$, choose a compact subset K of T such that $K \subset A$ and for every $k \in \{1, 2, ..., n_0\}$ $\delta^*(y_k|M(A\setminus K)) \leq \frac{\varepsilon}{2(n_0+1)r_0}$ with $r_0 = \sup \{|c_k|; k \in \{1, 2, ..., n_0\}\}$ then $\sum_{k=1}^{n_0} |c_k| \delta^*(y_k|M(A\setminus K)) \leq \varepsilon/2$, therefore $\nu(A\setminus K) \leq \varepsilon$.

The relation (*) and the inner regularity of ν show that for each $\varepsilon > 0$ and each $A \in B(T)$ there exists a compact subset K of T such that $K \subset A$ and $\sup \{\delta^*(y|M(A\setminus K)); y \in E', \|y\| \leq 1\} \leq \varepsilon$. □

Let M be a positive set-valued measure defined on $B(T)$. For the construction of the integral $\int fM$, with $f \in C_+(T)$ we refer to ([23], p. 17).

Lemma 3.3. Let $M : B(T) \to cc(E)$ be a positive regular set-valued measure. Then the set-valued map $L : C_+(T) \to cc(E)(f \mapsto L(f) = \int fM)$ is additive, positively homogeneous, positive and strictly continuous.

Proof. We only prove the strict continuity. The other properties follow from the construction of the integral $\int fM, f \in C_+(T)$. For each $n \in \mathbb{N}^*$ there exists a compact subset K_n of T such that $\sup \{\delta^*(y|M(T\setminus K_n)); y \in E', \|y\| \leq 1\} \leq 2^{-2n}$ (Lemma 3.2). We then have a sequence (K_n) of compact subsets of T that we may assume monotone increasing. We repeat here the proof of R. Giles ([13], p. 471,
Lemma 4.2. Consider $\varphi = \sum_{n=1}^{+\infty} 2^{-n}K_n$, we have $2^{-n-1} \leq \varphi(x) \leq 2^{-n}$ for all $x \in K_{n+1} \setminus K_n$. The function $1/\varphi$ is measurable and is $\delta^*(y|M(.))$-integrable for each $y \in E', \|y\| \leq 1$. We have $\int 1/\varphi \delta^*(y|M(.)) = \int_{\cup_{n=1}^{+\infty}(K_{n+1} \setminus K_n)} 1/\varphi \delta^*(y|M(.)) = \sum_{n=1}^{+\infty} \int_{K_{n+1} \setminus K_n} 1/\varphi \delta^*(y|M(.))$

$$\leq \sum_{n=1}^{+\infty} 2^{n+1} [\delta^*(y|M(K_{n+1})) - \delta^*(y|M(K_n))] \leq \sum_{n=1}^{+\infty} 2^{n+1}2^{-2n} = 2. \text{ Let } \varepsilon > 0 \text{ and let } \psi_n \in C_0 \text{ such that } \psi_n(x) = 2^{-n} \text{ for } x \in K_n \text{ and } 0 \leq \psi_n \leq 2^{-n}1_T. \text{ Put } \psi = \sum_{n=1}^{+\infty} \psi_n. \text{ Then } \psi \in C_0 \text{ and } \varphi \leq \psi. \text{ For all } f \in \{g \in C_+(T), p_{2\psi/\varepsilon}(g) < 1\} \text{ we have } f < \varepsilon/2\varphi \text{ and } \int f \delta^*(y|M(.)) < \varepsilon \text{ for all } y \in E' \text{ with } \|y\| \leq 1. \text{ Since } \delta^*(y|\int fM) = \int f \delta^*(y|M(.)), \text{ one has } \delta(\int fM, \{0\}) < \varepsilon. \text{ Therefore the map } f \mapsto \int fM \text{ is strictly continuous at } 0. \text{ The equality } \delta^*(y|\int fM) = \int f \delta^*(y|M(.)) \text{ for each } f \in C_+(T) \text{ and each } y \in E' \text{ enable us to prove the continuity on } C_+(T). \tag*{□}

Definition 3.4. A map $S : E' \rightarrow \mathbb{R}$ is said to be sublinear if for every $y \in E'$ and $y' \in E'$ and for every $\lambda \geq 0$ one has $S(y + y') \leq S(y) + S(y')$ and $S(\lambda y) = \lambda S(y)$.

The lemme below is a particular case of L. Hörmander’s result ([16], Theorem 5, p. 182). We give here an alternative proof.

Lemma 3.5. Let E be a Banach space, and let E' its dual space endowed with the Mackey topology $\tau(E',E)$. Let $S : E' \rightarrow \mathbb{R}$ be a sublinear map. Then S is continuous if and only if there is $C \in cc(E)$ such that $S = \delta^*(\cdot|C)$.

Proof. Assume that S is continuous. Let $\nabla S = \{l : E' \rightarrow \mathbb{R}; \text{ linear and } l \leq S\}$. By the Hahn-Banach theorem ([11], theorem 10, p. 62), $S(y) = \sup\{l(y); l \in \nabla S\}$ for each $y \in E'$. Let $l \in \nabla S$; then l is continuous for the Mackey topology $\tau(E',E)$. Therefore l determines an element $x_l \in E$ that verifies $l(y) = y(x_l)$ for each $y \in E'$. Let $\nabla ES = \{x_l; l \in \nabla S\}$. Since ∇S is equicontinuous there is a neighborhood V of 0 in E' such that $\nabla ES \subset V^\circ$, where V° is the polar of V in E.

By the Alaoglu-Bourbaki’s theorem ([20], p. 248), one has $V^\circ \in cc(E)$. Since ∇ES is convex, its closure is one of elements of $cc(E)$ we want. The converse is obvious. Note that if S is non-negative then $0 \in \nabla ES$. \tag*{□}

Theorem 3.6. Let T be a completely regular topological space and let $C_+(T)$ be the space of bounded continuous non-negative functions defined on T endowed with the strict topology. Let E be a Banach space and $cc(E)$ be the space of convex weakly compact non-empty compact subsets of E endowed with the Hausdorff distance. Let $L : C_+(T) \rightarrow cc(E)$ be a positive, additive, positively homogeneous and strictly continuous set-valued map. Then there is a unique positive regular set-valued measure M defined on $B(T)$ to $cc(E)$ such that $L(f) = \int fM$ for all $f \in C_+(T)$.

Conversely for all positive regular set-valued measure $M : B(T) \rightarrow cc(E)$, the set-valued map $\theta : C_+(T) \rightarrow cc(E) (f \mapsto \theta(f) = \int fM)$ is positive, additive, positively homogeneous and strictly continuous.

Proof. Let $y \in E'$. The map $\delta^*(y|L(.)) : C_+(T) \rightarrow \mathbb{R} (f \mapsto \delta^*(y|L(f)))$ is additive, positively homogeneous and continuous. Then it can be extended to a continuous linear functional on $C(T)$. This extension is unique. It is denoted by $\delta^*(y|\bar{L}(.))$. Let $f \in C(T)$, one has $f = f^+ - f^-$ and $\delta^*(y|\bar{L}(.))$ is defined by $\delta^*(y|\bar{L}(.))(f) =$...
\[\delta^*(y\mid L(f^+)) - \delta^*(y\mid L(f^-)) \] Since \(\delta^*(y\mid L(.)) \) is strictly continuous it is tight ([26], p. 41). By the lemma 3.1 and ([3], Proposition 5, p.58) there exists a unique regular positive Borel measure \(\mu_y \) on \(T \) that verifies \(\delta^*(y\mid L(f)) = \int f\mu_y \) for all \(f \in C(T) \). Let 0 an open subset of \(T \) and let \(S_O \) the map defined on \(E' \) to \(\mathbb{R} \) by \(S_O(y) = \mu_y(O) \) for each \(y \in E' \). We have \(\mu_y(O) = \sup\{ \int f\mu_y; f \in C_+(T), f \leq 1_O \} = \sup\{ \delta^*(y\mid L(f)); f \in C_+(T), f \leq 1_O \} \), therefore \(S_O \) is a sublinear map. Let now \(A \in \mathcal{B}(T) \). We denote by \(S_A \) the map defined on \(E' \) to \(\mathbb{R} \) by \(S_A(y) = \mu_y(A) \) for each \(y \in E' \). Since the measure \(\mu_y \) is regular we have \(S_A(y) = \inf\{\mu_y(O); O \subset T, O \text{ open and } O \supset A \} = \inf\{S_O(y); O \subset T, O \text{ open and } O \supset A \} \). Let \(y, y' \in E' \) and let \(\varepsilon > 0 \), there exists two open subsets \(O_e \) and \(O_{e}' \) of \(T \) containing \(A \) and such that \(S_A(y) \geq \mu_y(O_e) - \varepsilon/2, S_A(y') \geq \mu_y(O_{e}') - \varepsilon/2 \). We have \(\mu_y(O_e) + \mu_y(O_{e}') \leq S_A(y) + S_A(y') + \varepsilon \), then \(\mu_y(O_e \cap O_{e}') \leq S_A(y) + S_A(y') + \varepsilon \), therefore \(\mu_y(y'+y') \leq S_A(y) + S_A(y') + \varepsilon \). We have \(\mu_y(y+y') \leq \mu_y(y'+y') \leq S_A(y) + S_A(y') + \varepsilon \). \(~\varepsilon \text{ follows from this}~ S_A(y+y') \leq S_A(y) + S_A(y') \). It is obvious that for all \(\lambda \geq 0 \) and for all \(y \in E' \), \(S_A(\lambda y) = \lambda S_A(y) \). So \(S_A \) is a non-negative sublinear map. Let us prove now that \(S_A \) is continuous for the Mackey topology \(\tau(E', E) \). We have \(S_A(y) \leq \mu_y(T) = \delta^*(y\mid L(1_T)) \). Let \(\overline{L(1_T)} \) be the closed absolutely convex cover of \(L(1_T) \), one has \(\overline{L(1_T)} \in \mathcal{C}(E) \) and \(S_A(y) \leq \delta^*(y\mid \overline{L(1_T)}) \) for each \(y \in E' \) and \(A \in \mathcal{B}(T) \). We deduce that \(S_A \) is continuous for the Mackey topology for each \(A \in \mathcal{B}(T) \). By the lemma 3.5 there is \(C_A \in \mathcal{C}(E) \) such that \(S_A(y) = \delta^*(y\mid C_A) \) for all \(y \in E' \). Let \(M : B(T) \to \mathcal{C}(E) (A \mapsto M(A) = C_A) \). We have \(\delta^*(y\mid M(A)) = \mu_y(A) \) for all \(y \in E' \), hence the map \(\delta^*(y\mid M(.)) : B(T) \to \mathbb{R} (A \mapsto \delta^*(y\mid M(A))) \) is a positive regular countably additive measure. Then \(M \) is a regular set-valued measure. Since \(S_A \) is non-negative then \(M \) is positive. Let \(f \in C_+(T) \) and let \(y \in E' \), \(\int \delta^*(y\mid M(.)) = \int M(f) \). It follows that \(L(f) = \int fM \) for all \(f \in C_+(T) \) because \(\int f\delta^*(y\mid M(.)) = \delta^*(y\mid \int fM) \). Let us prove that \(M \) is unique. Assume that there exist two regular positive set-valued measures \(M \) and \(M' \) which verify \(\int fM = L(f) = \int fM' \). Let 0 be an open subset of \(T \) and let \(y \in E' \). According to the inner regularity of \(\delta^*(y\mid M(.)) \) and ([3] Lemme 1 p. 55) we have \(\delta^*(y\mid M(O)) = \sup\{\delta^*(y\mid L(f)); f \in C_+(T), f \leq 1_O \} = \delta^*(y\mid M'(O)) \). Moreover the outer regularity of \(\delta^*(y\mid M(.)) \) shows that \(\delta^*(y\mid M(A)) = \delta^*(y\mid M'(A)) \) for all \(A \in \mathcal{B}(T) \) and \(y \in E' \), hence \(M(A) = M'(A) \) for all \(A \in \mathcal{B}(T) \). The second assertion of the theorem is justified by the lemma 3.3.

The following corollary is the result of R. Giles.

Corollary 3.7. ([13], Theorem 4.6) For any completely regular space \(T \) the dual of \(C(T) \) under the strict topology is the space of all bounded signed Borel regular measures on \(T \).

Proof. Let \(L \) be a strictly continuous linear functional on \(C(T) \); \(L \) is bounded. Therefore \(L \) is the difference of two non-negative linear functional. We may assume that \(L \) is non-negative. Let \(K_0 \) be an element of \(\mathcal{C}(E) \) that contains 0 and that is subset of the unit ball of \(E \). Consider the map \(L' : C_+(T) \to \mathcal{C}(E) \) defined by \(L'(f) = L(f)K_0 = \{L(f)k; k \in K_0 \} \) for all \(f \in C_+(T) \). The map \(L' \) is positive, positively homogeneous and strictly continuous. Let us prove that \(L' \) is additive. The inclusion \(L'(f+g) \subset L'(f) + L'(g) \) for all \(f, g \in C_+(T) \) is trivial. Let \(u \in K_0 \) and each let \(v \in K_0 \), \(L(f)u + L(g)v = L(f+g) \left[\frac{L(f)}{L(f+g)}u + \frac{L(g)}{L(f+g)}v \right] \). Since \(K_0 \) is convex and \(L \) positive, \(\frac{L(f)}{L(f+g)}u + \frac{L(g)}{L(f+g)}v \in K_0 \). Then \(L'(f) + L'(g) \subset L'(f+g) \).
By the Theorem 3.6, there is a unique positive regular set-valued measure $M : B(T) \to \text{cc}(E)$ that satisfies the condition $\int fM = L'(f)$ for all $f \in C_+(T)$.

Let $y_0 \in E'$ such that $\delta^*(y_0|L'(.)) = L$. Since $\delta^*(y_0|\int fM) = \int f\delta^*(y_0|M(.))$ for all $f \in C_+(T)$ we then have $\int f\delta^*(y_0|M(.)) = L(f)$ for all $f \in C_+(T)$ and therefore $\int f\delta^*(y_0|M(.)) = L(f)$ for all $f \in C(T)$. The uniqueness of $\delta^*(y_0|M(.))$ follows from the regularity of M. Taking the lemma 3.3 (for the scalar measures) into account we conclude that there is a bijection between the dual space of $(C(T), \beta)$ and the space of all bounded signed regular Borel measures on T. □

References

University of Lomé, Faculty of Sciences, Department of Mathematics, BP 1515 Lomé-Togo

Corresponding author