Title: General Stability of a Reciprocal Type Functional Equation in Three Variables
Author(s): K. Ravi, J.M. Rassias, B.V. Senthil Kumar
Pages: 130-147
Cite as:
K. Ravi, J.M. Rassias, B.V. Senthil Kumar, General Stability of a Reciprocal Type Functional Equation in Three Variables, Int. J. Anal. Appl., 4 (2) (2014), 130-147.

Abstract


In this paper, we obtain the solution of a reciprocal type functional equation in three variables…

Full Text: PDF

 

References


  1. J. Aczel, Lectures on Functional Equations and their Applications, Vol. 19, Academic Press, New York, 1966.

  2. J. Aczel, Functional Equations, History, Applications and Theory, D. Reidel Publ. Company, 1984.

  3. C. Alsina, On the stability of a functional equation, General Inequalities, Vol. 5, Oberwolfach, Birkhauser, Basel, (1987), 263-271.

  4. T. Aoki, On the stability of the linear transformation in Banach spaces, J. Math.Soc. Japan, 2(1950), 64-66.

  5. C. Baak and M.S. Moslehian, On the stability of J ∗-homomorphisms, Nonlinear Analysis-TMA 63 (2005), 42-48.

  6. L. Cadariu and V. Radu, Fixed points and the stability of Jensen’s functional equation, J. Inequal.Pure and Appl. Math., 4 (2003), no.1, Art. 4.

  7. L. Cadariu and V. Radu, On the stability of the Cauchy functional equation: a fixed point approach , Grazer Math. Ber., 346(2004), 43-52.

  8. I.S. Chang and H.M. Kim, On the Hyers-Ulam stability of quadratic functional equations, J. Ineq. Appl. Math. 33(2002), 1-12.

  9. I.S. Chang and Y.S. Jung, Stability of functional equations deriving from cubic and quadratic functions, J. Math. Anal. Appl. 283(2003), 491-500.

  10. S. Czerwik, Functional Equations and Inequalities in Several Variables, World Scientific Publishing Co., Singapore, New Jersey, London, 2002.

  11. M. Eshaghi Gordji, S. Zolfaghari, J.M. Rassias and M.B. Savadkouhi, Solution and stability of a mixed type cubic and quartic functional equation in quasi-Banach spaces, Abst. Appl. Anal. Vol. 2009, Article ID 417473(2009), 1-14.

  12. G.L. Forti, Comments on the core of the direct method for proving Hyers-Ulam stability of functional equations, J. Math. Anal. Appl. 295(2004), 127-133.

  13. P. Gavruta, A generalization of the Hyers-Ulam-Rassias stability of approximately additive mapppings, J. Math. Anal. Appl. 184(1994), 431-436.

  14. N. Ghobadipour and C. Park, Cubic-quartic functional equations in fuzzy normed spaces, Int. J. Nonlinear Anal. Appl. 1(2010), 12-21.

  15. D.H. Hyers, On the stability of the linear functional equation, Proc. Nat. Acad. Sci. U.S.A. 27(1941), 222-224.

  16. D.H. Hyers, G. Isac and Th.M. Rassias, Stability of Functional Equations in Several Variables, Birkhauser, Basel, 1998.

  17. G. Isac and Th.M. Rassias, Stability of ψ-additive mappings: applications to nonlinear analysis, Int. J. Math. Math. Sci., 19(2)(1996), 219-228.

  18. S.M. Jung, Hyers-Ulam-Rassias stability of Jensen’s equation and its application, Proc. Amer. Math. Soc. 126(11)(1998), 3137-3143.

  19. S.M. Jung, Hyers-Ulam-Rassias stability of functional equations in Mathematical Analysis, Hardonic press, Palm Harbor, 2001.

  20. S.M. Jung, A fixed point approach to the stability of isometries, J. Math. Anal. Appl., 329 (2007), 879-890.

  21. S.M. Jung, A fixed point approach to the stability of a Volterra integral equation, Fixed Point Theory and Applications, Vol. 2007 (2007), Article ID 57064, 9 pages.

  22. S.M. Jung, A fixed point approach to the stability of the equation f(x + y) = f(x)f(y) f(x)+f(y) , The Australian J. Math. Anal. Appl., 6(8) (2009), 1-6.

  23. Y.S. Jung and I.S. Chang, The stability of a cubic type functional equation with the fixed point alternative, J. Math. Ana.l Appl., 306(2)(2005), 752-760.

  24. Pl. Kannappan, Quadratic Functional Equation Inner Product Spaces, Results Math. 27(3-4)(1995), 368-372.

  25. H. Khodaei and Th.M. Rassias, Approximately generalized additive functions in several variables, Int. J. Nonlinear Anal. Appl. 1(2010), 22-41.

  26. B. Margolis and J. Diaz, A fixed point theorem of the alternative for contractions on a generalized complete metric space, Bull. Amer. Math. Soc., 74 (1968), 305-309.

  27. M. Mirzavaziri and M.S. Moslehian, A fixed point approach to stability of a quadratic equation, Bull. Braz. Math. Soc., 37(3)(2006), 361-376.

  28. C. Park, Fixed points and Hyers-Ulam-Rassias stability of Cauchy-Jensen functional equations in Banach algebras, Fixed Point Theory and Applications, Vol. 2007 (2007), Article ID 13437, 6 pages.

  29. W.G. Park and J.H. Bae, A functional equation originating from elliptic curves, Abst. Appl. Anal. Vol. 2008, Article ID 135237, 10 pages.

  30. V. Radu, The fixed point alternative and the stability of functional equations, Fixed Point Theory, 4 (2003), 91-96.

  31. J.M. Rassias, On approximation of approximately linear mappings by linear mappings, J. Funct. Anal. 46(1982), 126-130.

  32. J.M. Rassias, On approximation of approximately linear mappings by linear mappings, Bull. Sci. Math. 108(1984), 445-446.

  33. J.M. Rassias, Solution of a problem of Ulam, J. Approx. Theory, 57(1989), 268-273.

  34. K. Ravi, M. Arunkumar and J.M. Rassias, Ulam stability for the orthogonally general Euler-Lagrange type functional equation, Int. J. Math. Stat. 3(A08)(2008), 36-46.

  35. K. Ravi, J.M. Rassias, M. Arunkumar and R. Kodandan, Stability of a generalized mixed type additive, quadratic, cubic and quartic functional equation, J. Ineq. Pure & Appl. Math. 10(4)(2009), 1-29.

  36. K. Ravi and B.V. Senthil Kumar, Ulam-Gavruta-Rassias stability of Rassias Reciprocal functional equation, Global J. of Appl. Math. and Math. Sci. 3(1-2) (Jan-Dec 2010), 57-79.

  37. K. Ravi, J.M. Rassias and B.V. Senthil Kumar, Ulam stability of Generalized Reciprocal Functional Equation in Several Variables, Int. J. App. Math. Stat. 19(D10) 2010, 1-19.

  38. K. Ravi, J.M. Rassias and B.V. Senthil Kumar, Ulam stability of Reciprocal Difference and Adjoint Functional Equations, The Australian J. Math. Anal. Appl., 8(1), Art. 13 (2011), 1-18.

  39. K. Ravi, J.M. Rassias and B.V. Senthil Kumar, A fixed point approach to the generalized Hyers-Ulam stability of Reciprocal Difference and Adjoint Functional Equations, Thai J. Math., 8(3) (2010), 469-481.

  40. Th.M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72(1978), 297-300.

  41. F. Skof, Proprieta locali e approssimazione di operatori, Rend. Sem. Mat. Fis. Milano 53(1983), 113-129.

  42. S.M. Ulam, Problems in Modern Mathematics, Chapter VI, Wiley-Interscience, New York, 1964.