Title: Coupled Best Proximity Point Theorem in Metric Spaces
Author(s): Animesh Gupta, S.S. Rajput, P.S. Kaurav
Pages: 201-215
Cite as:
Animesh Gupta, S.S. Rajput, P.S. Kaurav, Coupled Best Proximity Point Theorem in Metric Spaces, Int. J. Anal. Appl., 4 (2) (2014), 201-215.

Abstract


The purpose of this article is to generalized the result of W. Sintunavarat and P. Kumam [29]. We also give an example in support of our theorem for which result of W. Sintunavarat and P. Kumam [29] is not true. Moreover we establish the existence and convergence theorems of coupled best proximity points in metric spaces, we apply this results in a uniformly convex Banach space.

Full Text: PDF

 

References


  1. M. Abbas, W. Sintunavarat, P. Kumam, Coupled fixed point in partially ordered G metric spaces. Fixed Point Theory Appl. 2012, 31 (2012)

  2. A. D. Arvanitakis, A proof of the generalized Banach contraction conjecture. Proc. Am. Math. Soc. 131(12), 3647–3656 (2003)

  3. R. P. Agarwal, M. A. Alghamdi, N. Shahzad, Fixed point theory for cyclic generalized contractions in partial metric spaces, Fixed Point Theory Appl., 2012, 2012:40

  4. S. Banach, Sur les op´erations dans les ensembles abstraits et leurs applications aux ´equations int´egrales, Fund. Math. 3 (1922) 133-181.

  5. S. S. Basha, Best proximity point theorems generalizing the contraction principle. Nonlinear Anal. 74, 5844–5850 (2011)

  6. S. S. Basha, P. Veeramani, Best approximations and best proximity pairs. Acta. Sci. Math. (Szeged) 63, 289–300 (1997)

  7. S. S. Basha, P. Veeramani, Best proximity pair theorems for multifunctions with open fibres. J. Approx. Theory 103, 119–129 (2000)

  8. S. S. Basha, P. Veeramani, D.V. Pai, Best proximity pair theorems. Indian J. Pure Appl. Math. 32, 1237–1246 (2001)

  9. D. W. Boyd, J. S. W. Wong, On nonlinear contractions. Proc. Am. Math. Soc. 20, 458–464 (1969)

  10. B. S. Choudhury, K. P. Das, A new contraction principle in Menger spaces. Acta Math. Sin. 24(8), 1379–1386 (2008)

  11. A. A. Eldred, P. Veeramani, Existence and convergence of best proximity points. J. Math. Anal. Appl. 323, 1001–1006 (2006)

  12. K. Fan, Extensions of two fixed point theorems of F. E. Browder. Math. Z. 112, 234–240 (1969)

  13. T. Gnana-Bhaskar, V. Lakshmikantham, Fixed point theorems in partially ordered metric spaces and applications. Nonlinear Anal. TMA 65, 1379–1393 (2006)

  14. D. Guo, V. Lakshmikantham, Coupled fixed points of nonlinear operators with applications. Nonlinear Anal., Theory Methods Appl. 11 (1987) 623–632.

  15. E. Karapınar, Fixed point theory for cyclic weak φ-contraction, Appl. Math. Lett., 24 (2011) 822?825.

  16. E. Karapinar, K. Sadarangani, Fixed point theory for cyclic (phi,psi) contractions Fixed Point Theory Appl., 2011:69 ,(2011)

  17. E. Karapinar, I.M. Erhan, A.Y. Ulus, Fixed Point Theorem for Cyclic Maps on Partial Metric Spaces, Appl. Math. Inf. Sci. 6 (2012), no:1, 239-244.

  18. E. Karapinar, I.M. Erhan, Cyclic Contractions and Fixed Point Theorems, Filomat, 26 (2012),no:4, 777-782

  19. E. Karapinar, Best Proximity Points Of Cyclic Mappings, Appl. Math. Lett., 25 (2012), 1761–1766.

  20. S. Karpagam and S. Agrawal: Best proximity points theorems for cyclic Meir-Keeler contraction maps, Nonlinear Anal.,74,(2011) 1040–1046.

  21. W. A. Kirk, P. S. Srinavasan and P. Veeramani: Fixed points for mapping satisfying cylical contractive conditions, Fixed Point Theory, 4(2003), 79-89.

  22. G. S. R. Kosuru and P. Veeramani, Cyclic contractions and best proximity pair theorems, arXiv:1012.1434v2

  23. [math.FA] 29 May 2011, 14 pages.

  24. J. Merryfield, B. Rothschild, J.D.Jr. Stein, An application of Ramsey’s theorem to the Banach contraction principle. Proc. Am. Math. Soc. 130(4), 927–33 (2002)

  25. C. Mongkolkeha, W. Sintunavarat, P. Kumam,: Fixed point theorems for contraction mappings in modular metric spaces. Fixed Point Theory Appl. 2011, 93 (2011)

  26. C. Mongkolkeha, P. Kumam, Best proximity point Theorems for generalized cyclic contractions in ordered metric spaces. J. Opt. Theory Appl. (2012) (in press), http://dx.doi.org/10.1007/s10957-012-9991-y

  27. J.P. Prolla, Fixed point theorems for set valued mappings and existence of best approximations. Numer. Funct. Anal. Optim. 5, 449–455 (1983)

  28. V. M. Sehgal, S. P. Singh, A generalization to multifunctions of Fan’s best approximation theorem. Proc. Am. Math. Soc. 102, 534–537 (1988)

  29. V. M. Sehgal, S. P. Singh, A theorem on best approximations. Numer. Funct. Anal. Optim.10, 181–184 (1989)

  30. W. Sintunavarat, P. Kumam, Coupled best proxitmity point theorem in metric spaces. Fixed Point Theory Appl.2012/1/93 (2012).

  31. W. Sintunavarat, Y.J. Cho, P. Kumam, Coupled coincidence point theorems for contractions without commutative condition in intuitionistic fuzzy normed spaces. Fixed Point Theory Appl. 2011, 81 (2011)

  32. W. Sintunavarat, Y.J. Cho, P. Kumam, Coupled fixed point theorems for weak contraction mapping under F-invariant set. Abstr. Appl. Anal. 2012, 15 (Article ID 324874) (2012)

  33. W. Sintunavarat, P. Kumam,: Weak condition for generalized multi-valued (f, α, β)-weak contraction mappings. Appl. Math. Lett. 24, 460–465 (2011)

  34. W. Sintunavarat, P. Kumam,: Gregus type fixed points for a tangential multi-valued mappings satisfying contractive conditions of integral type. J. Inequal. Appl. 2011, 3 (2011)

  35. W. Sintunavarat, Y.J. Cho, Kumam, P: Common fixed point theorems for c-distance in ordered cone metric spaces. Comput. Math. Appl. 62, 1969–1978 (2011)

  36. W. Sintunavarat, P. Kumam,: Common fixed point theorems for a pair of weakly compatible mappings in fuzzy metric spaces. J. Appl. Math. 2011, 14 (Article ID 637958) (2011)

  37. W. Sintunavarat, P. Kumam,: Common fixed point theorems for hybrid generalized multivalued contraction mappings. Appl. Math. Lett. 25, 52–57 (2012)

  38. W. Sintunavarat, P. Kumam,: Common fixed point theorems for generalized operator classes and invariant approximations. J. Inequal. Appl. 2011, 67 (2011)

  39. W. Sintunavarat, P. Kumam,: Generalized common fixed point theorems in complex valued metric spaces and applications. J. Inequal. Appl. 2012, 84 (2012)

  40. W. Sintunavarat, P. Kumam, Coupled best proximity point theorem in metric spaces. Fixed Point Theory Appl. 2012, 93 (2012)

  41. T. Suzuki,: A generalized Banach contraction principle that characterizes metric completeness. Proc. Am. Math. Soc. 136(5), 1861–1869 (2008)

  42. T. Suzuki, M. Kikkawa, C. Vetro, The existence of best proximity points in metric spaces with the property UC, Nonlinear Analysis: Theory, Methods & Applications 71 (7?), 2918-2926 (2009)

  43. V. Vetrivel, P. Veeramani, P. Bhattacharyya, Some extensions of Fan’s best approximation theorem. Numer. Funct. Anal. Optim. 13, 397–402 (1992)

  44. K. Wlodarczyk, R. Plebaniak, A. Banach, Best proximity points for cyclic and noncyclic set-valued relatively quasi-asymptotic contractions in uniform spaces. Nonlinear Anal. 70(9), 3332–3342 (2009)

  45. K. Wlodarczyk, R. Plebaniak, A. Banach, Erratum to: best proximity points for cyclic and noncyclic set-valued relatively quasi-asymptotic contractions in uniform spaces. Nonlinear Anal. 71, 3583–3586 (2009)

  46. K. Wlodarczyk, R. Plebaniak, A. Banach, Best proximity points for cyclic and noncyclic set-valued relatively quasi-asymptotic contractions in uniform spaces. Nonlinear Anal. 70, 3332–3341 (2009)

  47. K. Wlodarczyk, R. Plebaniak, C. Obczynski, Convergence theorems, best approximation and best proximity for set-valued dynamic systems of relatively quasi-asymptotic contractions in cone uniform spaces. Nonlinear Anal. 72, 794–805 (2010)