Title: Presic-Boyd-Wong Type Results in Ordered Metric Spaces
Author(s): Satish Shukla, Stojan Radenovic
Pages: 154-166
Cite as:
Satish Shukla, Stojan Radenovic, Presic-Boyd-Wong Type Results in Ordered Metric Spaces, Int. J. Anal. Appl., 5 (2) (2014), 154-166.


The purpose of this paper is to prove some Presic-Boyd-Wong type fixed point theorems in ordered metric spaces. The results of this paper generalize the famous results of Presic and Boyd-Wong in ordered metric spaces. We also initiate the homotopy result in product spaces. Some examples are provided which illustrate the results proved herein.

Full Text: PDF



  1. A.C.M. Ran, M.C.B. Reurings, A fixed point theorem in partially ordered sets and some application to matrix equations, Proc. Am. Math. Soc. 132(2004), 1435-1443.

  2. C.M. Chen, Fixed Point Theorems for ψ-Contractive Mappings in Ordered Metric Spaces, J. Appl. Math. Volume 2012(2012), Article ID 756453, 10 pages

  3. D. O’Regan, A. Petrusel, Fixed point theorems for generalized contractions in ordered metric spaces, J. Math. Anal. Appl. 341(2008), 1241-1252.

  4. D.W. Boyd, J.S. Wong, On nonlinear contractions, Proc. Am. Math. Soc. 20(1969), 458C464.

  5. H. Aydi, Some fixed point results in ordered partial metric spaces, J. Nonlinear Sci. Appl. 4(2011):210-217.

  6. I. Altun A. Erduran, Fixed point theorems for monotone mappings on partial metric spaces, Fixed Point Theory Appl., 2011(2011), Article ID 508730.

  7. J.J. Nieto, R.R. Lopez, Contractive mapping theorems in partially ordered sets and applications to ordinary differential equations, Order 22(2005), 223-239.

  8. J.J. Nieto., R.R. Lopez, Existence and uniqueness of fixed point in partially ordered sets and applications to ordinary differential equations, Acta. Math. Sinica, English Ser. 23(12)(2007), 2205-2212.

  9. J.R. Morales, Generalizations of some fixed point theorems, Notas de Mathem´atica, No. 199 M´erida, 1999

  10. J. Mar´ın, S. Romaguera and P. Tirado, Weakly contractive multivalued maps and w-distances on complete quasi-metric spaces, Fixed Point Theory Appl. 2011 (2011),Article ID 2.

  11. K.P.R. Rao, G. N. V. Kishore, M. Md. Ali, A generalization of the Banach contraction principle of Preˇsi´c type for three maps, Math. Sci. 3(3)(2009), 273-280.

  12. L.B. Ciri´c and S. B. Preˇsi´c, ´ On Preˇsi´c type generalisation of Banach contraction principle, Acta. Math. Univ. Com. 76, No. 2(2007), 143-147

  13. M. Akkouchi, On a fixed point theorem of D. W. Boyd and J. S. Wong, Acta Math. Vietnam. 27, Number 2 (2002), 231-237.

  14. M.R. Taskovi´c, A generalization of Banach’s contraction principle, Publ. Inst. Math. Beograd, 23(37)(1978), pp. 179-191.

  15. M.S. Khan, M. Berzig and B. Samet, Some convergence results for iterative sequences of Preˇsi´c type and applications, Adv. Difference Equ. 2012, 2012:38 doi:10.1186/1687-1847-2012- 38

  16. M. Pˇacurar, A multi-step iterative method for approximating common fixed points of Preˇsi´cRus type operators on metric spaces, Studia Univ. “Babe¸s-Bolyai”, Mathematica, Volume LV, Number 1, March 2010.

  17. M. Pˇacurar, Approximating common fixed points of Preˇsi´c-Kannan type operators by a multistep iterative method, An. S¸t. Univ. Ovidius Constant¸a 17(1)(2009), 153-168.

  18. M. Pˇacurar, Common fixed points for almost Preˇsi´c type operators, Carpathian J. Math. 28 No. 1 (2012), 117-126.

  19. N.V. Luong, N.X. Thuan, Some fixed point theorems of Preˇsi´c-Ciri´c type ´ , Acta Univ. Apulensis Math. Inform. 2012(2012), no. 30, 237-249.

  20. P. Das, L.K. Dey, Fixed point of contractive mappings in generalized metric spaces, Math. Slovaca 59 no. 4 (2009), 499-504.

  21. R. George, K. P. Reshma and R. Rajagopalan, A generalised fixed point theorem of Preˇsi´c type in cone metric spaces and application to Morkov process, Fixed Point Theory Appl. 2011(2011):85, doi:10.1186/1687-1812-2011-85.

  22. R.P. Agarwal, M. A. El-Gebeily, D. O’Regan, Generalized contractions in partially ordered metric spaces, Appl. Anal. 87(2008), 109-116.

  23. R.P. Pant, V. Pant, V.P. Pandey, Generalization of Meir-Keeler type fixed point theorems, Tamkang J. Math. 35, no. 3(2004), 179-187. 24] S.B. Preˇsi´c, Sur une classe dinequations aux differences finite et sur la convergence de certaines suites, Publ. de lInst. Math. Belgrade 5(19)(1965), 75-78.

  24. S.B. Preˇsi´c, Sur la convergence des suites, Comptes. Rendus. de l’Acad. de Paris 260(1965), 3828-3830.

  25. S. Banach, Sur les op´erations dans les ensembles abstraits et leur application aux ´equations int´egrales, Fund Math., 3(1922), 133-181.

  26. S. Radenovi´c, Z. Kadelburg, Generalized weak contractions in partially ordered metric spaces, Comput. Math. Appl. 60(2010), 1776- 1783. doi:10.1016/j.camwa.2010.07.008

  27. S. Shukla, Preˇsi´c type results in 2-Banach spaces, Afrika Matematika, (2013) DOI 10.1007/s13370-013-0174-2

  28. S. Shukla, Set-valued Preˇsi´c-Ciri´c type contraction in 0-complete partial metric spaces ´ , Matemati´cki Vesnik, In press, (2013).

  29. S. Shukla, B. Fisher, A generalization of Preˇsi´c type mappings in metric-like spaces, Journal of Operators, 2013 (2013), Article ID 368501, 5 pages.

  30. S. Shukla, R. Sen, Set-valued Preˇsi´c-Reich type mappings in metric spaces, Revista de la Real Academia de Ciencias Exactas, Fisicas y Naturales. Serie A. Matematicas (2012). DOI 10.1007/s13398-012-0114-2

  31. S. Shukla, R. Sen, S. Radenovi´c, Set-valued Preˇsi´c type contraction in metric spaces, An. S¸tiint¸. Univ. Al. I. Cuza Ia¸si. Mat. (N.S.) (Accepted)(2012).

  32. S. Shukla, S. Radenovi´c, A generalization of Preˇsi´c type mappings in 0-Complete ordered partial metric spaces, Chinese Journal of Mathematics 2013 Article ID 859531, 8 pages.

  33. S. Shukla, S. Radojevi´c, Z.A. Veljkovi´c, S. Radenovi´c, Some coincidence and common fixed point theorems for ordered Preˇsi´c-Reich type contractions, Journal of Inequalities and Applications, 2013 2013:520. doi: 10.1186/1029-242X-2013-520

  34. S. Shukla, M. Abbas, Fixed point results of cyclic contractions in product spaces, Carpathian J. Math., In press (2014).

  35. S.K. Malhotra, S. Shukla, R. Sen, A generalization of Banach contraction principle in ordered cone metric spaces, J. Adv. Math. Stud., 5(2) (2012), 59–67.

  36. S. K. Malhotra, S. Shukla, and R. Sen, Some fixed point theorems for ordered Reich type contractions in cone rectangular metric spaces. Acta Mathematica Universitatis Comenianae, LXXXII 2 (2013), 165C175.

  37. W.A. Kirk, Fixed points of asymptotic contractions, J. Math. Anal. Appl. 277(2003), 645-650.

  38. W. Shatanawi, B. Samet, M. Abbas, Coupled fixed point theorems for mixed monotone mappings in ordered partial metric spaces, Math. Comput. Model. 55(2012), 680-687.

  39. Y.Z. Chen, A Preˇsi´c type contractive condition and its applications, Nonlinear Anal. 71, 2012-2017 (2009). doi:10.1016/j.na.2009.03.006

  40. Z. Kadelburg, M. Pavlovi´c, S. Radenovi´c, Common fixed point theorems for ordered contractions and quasicontractions in ordered cone metric spaces, Comput. Math. Appl. 59(2010), 3148-3159.