Title: A Note on Fixed Point Theory for Cyclic Weaker Meir-Keeler Function in Complete Metric Spaces
Author(s): Stojan Radenovic
Pages: 16-21
Cite as:
Stojan Radenovic, A Note on Fixed Point Theory for Cyclic Weaker Meir-Keeler Function in Complete Metric Spaces, Int. J. Anal. Appl., 7 (1) (2015), 16-21.

Abstract


In this paper we consider, discuss, improve and complement recent fixed points results for so-called cyclical weaker Meir-Keeler functions, established by Chi-Ming Chen [Chi-Ming Chen, Fixed point theory for the cyclic weaker Meir-Keeler function in complete metric spaces, Fixed Point Theory Appl., 2012, 2012:17]. In fact, we prove that weaker Meir-Keeler notion is superuous in results.

Full Text: PDF

 

References


  1. S. Banach, Sur les operations dans les ensembles abstraits et leur applications aux equations integrales, Fund. Math. 3 (1922) 133-181.

  2. M. A. Alghamdi, A. Petrusel and N. Shahzad, A fixed point theorem for cyclic generalized contractions in metric spaces, Fixed Point Theory Appl., 2012 (2012), Article ID 122.

  3. R. P. Agarwal, M. A. Alghamdi, D. O’Regan and N. Shahzad, Fixed point theory for cyclic weak Kannan type mappings, Journal of Indian Math. Soc. 81 (2014), 01-11.

  4. Chi-Ming Chen, Fixed point theory for the cyclic weaker Meir-Keeler function in complete metric spaces, Fixed Point Theory Appl., 2012 (2012), Article ID 17.

  5. M. S. Jovanovi´c, Generalized contractive mappings on compact metric spaces, Third mathematical conference of the Republic of Srpska, Trebinje 7 and 8 June 2013.

  6. E. Karapinar, Fixed point theory for cyclic weak φ−contraction, Appl. Math. Lett., 24 (2011) 822-825.

  7. E. Karapinar, K. Sadarangani, Corrigendum to ”Fixed point theory for cyclic weak φ−contraction” [Appl. Math. Lett. 24 (6)(2011) 822-825], Appl. Math. Lett., 25 (2012) 1582- 1584.

  8. S. Karpagam, S. Agarwal, Best proximity point theorems for cyclic orbital Meir-Keeler contractions maps, Nonlinear Anal., 74 (2011) 1040-1046.

  9. W. A. Kirk, P. S. Srinavasan, P. Veeramani, Fixed points for mapping satisfying cyclical contractive conditions, Fixed Point Theory 4 (2003), 79-89.

  10. L. Mili´cevi´c, Contractive families on compact spaces, arXiv:1312.0587v1 [math.MG], 2, December 2013.

  11. H. K. Nashine, Cyclic generalized ψ−weakly contractive mappings and fixed point results with applications to integral equations, Nonlinear Anal., 75 (2012) 6160-6169.

  12. H. K. Nashine, Z. Kadelburg, and P. Kumam, Implicit-Relation-Type Cyclic Contractive Mappings and Applications to Integral Equations, Abstr. Appl. Anal., 2012 (2012), Article ID 386253, 15 pages.

  13. M. Pacurar, Ioan A. Rus, Fixed point theory for cyclic ϕ−contractions, Nonlinear Anal., 72 (2010) 1181-1187.

  14. M. A. Petric, Some results concerning cyclical contractive mappings, General Math., 18 (2010), 213-226.

  15. S. Radenovi´c, Z. Kadelburg, D. Jandrli´c and A. Jandrli´c, Some results on weak contraction maps, Bull. Iranian Math. Soc. 38 (2012), 625-645.

  16. S. Radenovi´c, Some remarks on mappings satisfying cyclical contractive conditions, Fixed Point Theory Appl. submitted.

  17. S. Radenovi´c, A note on fixed point theory for cyclic ϕ−contractions, Demonstratio Matematica, submitted.

  18. S. Radenovic, Some results on cyclic generalized weakly C-contractions on partial metric spaces, in Bull. Allahabad Math. Soc. submitted.

  19. B. E. Rhoades, A comparison of various definitions of contractive mappings, Trans. Amer. Math. Soc. 226 (1977), 257-290.