Title: On The Stabilization of the Linear Kawahara Equation with Periodic Boundary Conditions
Author(s): Patricia N. da Silva, Carlos F. Vasconcellos
Pages: 96-103
Cite as:
Patricia N. da Silva, Carlos F. Vasconcellos, On The Stabilization of the Linear Kawahara Equation with Periodic Boundary Conditions, Int. J. Anal. Appl., 7 (2) (2015), 96-103.

Abstract


We study the stabilization of global solutions of the linear Kawahara equation (K) with periodic boundary conditions under the effect of a localized damping mechanism. The Kawahara equation is a model for small amplitude long waves. Using separation of variables, the Ingham inequality, multiplier techniques and compactness arguments we prove the exponential decay of the solutions of the (K) model.

Full Text: PDF

 

References


  1. C. Baiocchi, V. Komornik, P. Loreti, Ingham-Beurling type theorems with weakened gap conditions Acta. Math. Hungar., 97 (2002), 55-95

  2. T.B.Benjamin, J.L.Bona and J.J.Mahony, Model equations for long waves in nonlinear dispersive systems, Philos. Trans. Roy. Soc. London, Ser. A 272 (1972), 47-78.

  3. N.G.Berloff, and L.N. Howard Solitary and Periodic Solutions for Nonlinear Nonintegrable Equations, Studies in Applied Mathematics, 99 (1997), 1-24.

  4. H.A.Biagioni and F.Linares, On the Benney-Lin and Kawahara Equations, J. Math. Anal. Appl., 211 (1997), 131-152.

  5. J.L.Bona and H.Chen, Comparision of model equations for small-amplitude long waves, Nonlinear Anal. 38 (1999), 625-647.

  6. T.J.Bridges and G. Derks, Linear instability of solitary wave solutions of the Kawahara equation and its generalizations. SIAM J.Math. Anal. 33 (2002), 1356-1378.

  7. S. Jaffard and S. Micu, Estimates of the constants in generalized Ingham’s inequality and applications to the control of the wave equation, Asymptot. Anal., 28 (2001), 181-214.

  8. H.Hasimoto, Water waves, Kagaku, 40 (1970), 401-408

  9. [Japanese].

  10. T. Kakutani and H. Ono, Weak Non-Linear Hydromagnetic Waves in a Cold Collision-Free Plasma, J. Phys. Soc. Japan, 26 (1969), 1305-1318.

  11. T.Kawahara, Oscillatory solitary waves in dispersive media, Phys. Soc. Japan 33 (1972), 260-264.

  12. V.Komornik and P.Loreti, Fourier Series in Control Theory, Springer-Verlag, New York, 2005.

  13. C. Laurent, L. Rosier and B.-Y. Zhang, Control and Stabilization of the Korteweg-de Vries Equation on a Periodic Domain, Comm. in P. D. E., 35 (2010), 707-744.

  14. F.Linares and A.F.Pazoto, On the exponential decay of the critical generalized Kortewegde Vries with localized damping, Proc. Amer. Math. Soc. 135 (2007), 1515-1522.

  15. F.Linares and J.H.Ortega, On the controllability and stabilization of the Benjamin-Ono equation, ESAIM Control Optim. Calc.Var. 11 (2005), 204-218.

  16. G.P.Menzala, C.F.Vasconcellos and E.Zuazua, Stabilization of the Korteweg-de Vries equation with localized damping, Quarterly Applied Math., 60 (2002), 111-129.

  17. L.Rosier, Exact boundary controllability for the Korteweg-de Vries equation on a bounded domain, ESAIM, Control. Optimization and Calculus of Variations, 2 (1997), 33-55.

  18. L.Rosier and B.Y.Zhang, Global Stabilization of the Generalized Korteweg-De Vries Equation Posed on a Finite Domain, SIAM Journal on Control and Optimization 45 (2006), 927-956.

  19. D.L.Russell and B.Y.Zhang, Exact controllability and stabilization of the Korteweg-de Vries equation, Trans.Amer.Math.Soc., 348 (1996), 1515-1522.

  20. G.Schneider and C.E.Wayne, The rigorous approximation of long-wavelenght capillarygravity waves, Arch.Rational Mech. Anal. 162 (2002), 247-285.

  21. C.F. Vasconcellos and P.N. Silva, Stabilization of the Linear Kawahara Equation with localized damping, Asymptotic Analysis 58 (2008), 229-252.

  22. C.F. Vasconcellos and P.N. Silva, Stabilization of the Kawahara equation with Localized Damping, ESAIM Control Optim. Calc. Var. 17 (2011), 102-116.

  23. Bing-Yu Zhang and Xiangqing Zhao, Control and stabilization of the Kawahara equation on a periodic domain. (English) Commun. Inf. Syst. 12 (2012), 77-95.