Title: Second Hankel Determinant for Analytic Functions Defined by Ruscheweyh Derivative
Author(s): T. Yavuz
Pages: 63-68
Cite as:
T. Yavuz, Second Hankel Determinant for Analytic Functions Defined by Ruscheweyh Derivative, Int. J. Anal. Appl., 8 (1) (2015), 63-68.

Abstract


Let S denote the class of analytic and univalent functions in the open unit disk D= {z:|z|<1} with the normalization conditions. In the present article an upper bound for the second Hankel determinant |a₂a₄-a₃²| is obtained for the analytic functions defined by Ruscheweyh derivative.

Full Text: PDF

 

References


  1. P. L. Duren, Univalent Functions, Springer-Verlag, New York, Berlin, Heidelberg, Tokyo, 1983.

  2. R. Ehrenborg, The Hankel determinant of exponantial polynomials. American Mathematical Monthly, 107 (2000), 557-560.

  3. M. Fekete and G. Szeg¨o, Eine Bemerkung uber ungerade schlichte Funktionen, J. London Math. Soc, 8 (1933), 85-89.

  4. U. Grenander and G. Szeg¨o, Toeplitz forms and their application, Univ. of Calofornia Press, Berkely and Los Angeles, (1958).

  5. T. Hayami and S. Owa, Hankel determinant for p-valently starlike and convex functions of order α, General Math., 17 (2009), 29-44.

  6. T. Hayami and S. Owa, Generalized Hankel determinant for certain classes, Int. J. Math. Anal., 4 (2010), 2573-2585.

  7. A. Janteng, S. A. Halim, and M. Darus, Coefficient inequality for a function whose derivative has positive real part, J. Ineq. Pure and Appl. Math, 7 (2) (2006), 1-5.

  8. A. Janteng, Halim, S. A. and Darus, M. : Hankel Determinant For Starlike and Convex Functions, Int. Journal of Math. Analysis, I (13) (2007), 619-625.

  9. J. W. Layman, The Hankel transform and some of its properties. J. of integer sequences, 4 (2001), 1-11.

  10. R.J. Libera, and E.J. Zlotkiewicz, Early coefficients of the inverse of a regular convex function, Proc. Amer. Math. Soc., 85(2) (1982), 225–230.

  11. R.J. Libera, and E.J. Zlotkiewicz, Coefficient bounds for the inverse of a function with derivative in P, Proc. Amer. Math. Soc., 87(2) (1983), 251–289.

  12. G. Murugusundaramoorthy and N. Magesh, Coefficient Inequalities For Certain Classes of Analytic Functions Associated with Hankel Determinant, Bulletin of Math. Anal. Appl., I (3) (2009), 85-89.

  13. J. W. Noonan and D. K. Thomas, On the second Hankel Determinant of a really mean p valent functions, Trans. Amer. Math. Soc, 223 (2) (1976), 337-346.

  14. K. I. Noor, Hankel determinant problem for the class of functions with bounded boundary rotation. Rev. Roum. Math. Pures Et Appl, 28 (8) (1983), 731-739.

  15. S. Ruscheweyh, New criteria for univalent functions, Proc. Amer. Math. Soc. 49 (1975) 109- 115.

  16. R. Singh, S. Singh, Integrals of certain univalent functions, Proc. Amer. Math. Soc. 77 (1979) 336-340.

  17. S. C. Soh and D. Mohamad, Coefficient Bounds For Certain Classes of Close-to-Convex Functions, Int. Journal of Math. Analysis, 2 (27) (2008), 1343-1351.

  18. T. Yavuz, Second hankel determinant problem for a certain subclass of univalent functions, International Journal of Mathematical Analysis Vol. 9(10), (2015), 493 - 498.