Title: Fixed Point Theorems for α−ψ−Quasi Contractive Mappings in Metric-Like Spaces
Author(s): Vildan Ozturk
Pages: 79-86
Cite as:
Vildan Ozturk, Fixed Point Theorems for α−ψ−Quasi Contractive Mappings in Metric-Like Spaces, Int. J. Anal. Appl., 8 (2) (2015), 79-86.

Abstract


In this paper, we give fixed point theorems for α − ψ−quasi contractions and α − ψ − p−quasi contractions in complete metric-like spaces.

Full Text: PDF

 

References


  1. T. Abdeljawad, Fixed points for generalized weakly contractive mappings in partial metric spaces, Mathematical and Computer Modelling 54 (2011), no.11-12, 2923–2927.

  2. I. Altun, F. Sola, H. Simsek, Generalized contractions on partial metric spaces. Topol. Appl. 157 (2010), no 18, 2778-2785.

  3. A. Amini-Harandi, Metric-like spaces, partial metric spaces and fixed points. Fixed Point Theory Appl. 2012 (2012), Article ID 204.

  4. A. Amini-Harandi, p−quasi contraction maps and fixed points in metric spaces. Journal of Nonlinear and Convex Analysis 15 (2014), no. 4, 727-731.

  5. G.V.R. Babu, K.T. Kidane, Fixed points of almost generalized α − ψ contractive maps. Int. J. Math. Sci. Comput. 3 (2013), no. 1, 30-38.

  6. S.H. Cho, J.S. Bae, Fixed points of weak α−contraction type maps. Fixed Point Theory Appl. 2014 (2014) Article ID 175.

  7. S.H. Cho, J.S. Bae, Fixed points theorems for α − ψ-quasi contractive mappings in metric spaces. Fixed Point Theory Appl. 2013 (2013), Article ID 268.

  8. L. Ciri´c, B. Samet, H. Aydi, C. Vetro, Common fixed points of generalized contractions on partial metric spaces and an application. Appl. Math. Comput. 218 (2011), no. 6, 2398-2406.

  9. S. Fathollahi, N. Hussain, L.A. Khan, Fixed point results for modified weak and rational α − ψ−contractions in ordered 2-metric spaces. Fixed Point Theory Appl. 2014 (2014), Article ID 6.

  10. J. Hassanzadeasl, Common fixed point theorems for α − ψ contractive type mappings. International Journal of Analysis 2013 (2013), Article ID 654659.

  11. N. Hussain, E. Karapınar, P. Salimi, F. Akbar, α−admissible mappings and related fixed point theorems. J. ˙Ineq. Appl. 2013 (2013),Article ID 114.

  12. M. Jleli, E. Karapınar, B. Samet, Fixed Point Results for α − ψλ-contractions on gauge spaces and applications. Abstract Appl. Anal. 2013 (2013) Article ID 730825.

  13. E. Karapınar, B. Samet, Generalized α − ψ contractive mappings and related fixed point theorems with applications. Abstract Appl. Anal. 2012 (2012), Article ID 793486.

  14. P. Kumam, C. Vetro, P. Vetro, Fixed points for weak α − ψ−contractions in partial metric spaces. Abstract Appl. Anal. 2013 (2013) Article ID 986028.

  15. S.G. Matthews, Partial metric topology. In: Proc. 8th Summer Conference on General Topology and Applications. Ann. New York Acad. Sci. 728 (1994),183-197.

  16. S. Oltra, O. Valero, Banach’s fixed theorem for partial metric spaces. Rend. Ist. Mat. Univ. Trieste 36 (2004),17-26.

  17. B. Samet, C. Vetro, P. Vetro, Fixed point theorems for α − ψ−contractive type mappings. Nonlinear Analysis 75 (2012), no. 4, 2154–2165.

  18. W. Sintunavarat, S. Plubtieng, P. Katchang, Fixed point result and applications on a b−metric space endowed with an arbitrary binary relation. Fixed Point Theory Appl. 2013 (2013) Article ID 296.

  19. S. Shukla, S. Radenovi´c, V.C. Raji´c, ´ Some common fixed point theorems in 0-σ−complete metric-like spaces. Vietnam J Math. 41 (2013) 341-352.

  20. O. Valero, On Banach fixed point theorems for partial metric spaces. Applied General Topology 6 (2005), no. 2, 229–240.