Title: Common Fixed Point Theorems for G–Contraction in C∗–Algebra–Valued Metric Spaces
Author(s): Akbar Zada, Shahid Saifullah, Zhenhua Ma
Pages: 23-27
Cite as:
Akbar Zada, Shahid Saifullah, Zhenhua Ma, Common Fixed Point Theorems for G–Contraction in C∗–Algebra–Valued Metric Spaces, Int. J. Anal. Appl., 11 (1) (2016), 23-27.

Abstract


In this paper we prove the common fixed point theorems for two mappings in complete C∗–valued metric space endowed with the graph G = (V,E), which satisfies G-contractive condition. Also, we provide an example in support of our main result.

Full Text: PDF

 

References


  1. M. Abbas, G. Jungck, Common fixed points results for noncommuting mapping without continuity in cone metric space, J. Math. Anal. Appl. 341 (2008), 416–420.

  2. M. Abbas, T. Nazir, H. Aydi, Fixed points of generalized graphic contraction mappings in partial metric spaces endowed with a graph. J. Adv. Math. Stud. 6 (2013), 130–139.

  3. S. Aleomraninejad, S. Rezapour, N. Shahzad, Some fixed point results on a metric space with a graph. Topol. Appl. 159 (2012), 659–663.

  4. M. Ali, T. Kamran, L. Khan, A new type of multivalued contraction in partial Hausdorff metric spaces endowed with a graph. J. Inequal. Appl. 2015 (2015), Article ID 205.

  5. S. Banach, Sur les op´ erations dans les ensembles abstraits et leurs applications aux ´ equations int´ egrales. Fundam. Math. 3 (1922), 133–181.

  6. B. Choudhury, N. Metiya, The point of coincidence and common fixed point for a pair of mappings in cone metric spaces, Comput. Math. Appl. 60 (2010), 1686–1695.

  7. L. Ciri´ c, B. Samet, H. Aydi, C. Vetro, Common fixed points of generalized contractions on partial metric spaces and an application, Appl. Math. Comput. 218 (2011), 2398–2406.

  8. L. Haung, X. Zhang, Cone metric space and fixed point theorems of contractive mappings, J. Math. Anal., Apal, Vol. 332 2007, 1468–1476.

  9. S. Jankovi´ c, Z. Golubovi´ c, S. Radenovi´ c, Common fixed point theorems for weakly compatible pairs on cone metric spaces, Fixed Point Theory Appl. 2009 (2009), Article ID 643840.

  10. J. Jachymski, The contraction principle for the mappings on a metric space with a graph. Proc. Am. Math. Soc. 136 (2008), 1359–1373.

  11. R. Johnsonbaugh, Discrete Mathematics, Prentice-Hall, Englewood Cliffs (1997).

  12. Z. Ma, L. Jiang, H. Sun, C∗–Algebra-valued metric spaces and related fixed point theorems. Fixed Point Theory Appl. 2014 (2014), Article ID 206.

  13. GJ. Murphy, C∗–Algebras and Operator Theory. Academic Press, London (1990).

  14. M. A. Osman, Fuzzy metric space and fixed fuzzy set theorem, Bull. Malaysian Math. Soc. 6 (1983), 1–4.

  15. M. Samreen, T. Kamran, Fixed point theorems for weakly contractive mappings on a metric space endowed with a graph. Filomat 28 (2014), 441–450.

  16. M. Samreen, T. Kamran, N. Shahzad, Some fixed point theorems in b-metric space endowed with graph. Abstr. Appl. Anal. 2013 (2013), Article ID 967132.

  17. W. Shatanawi, M. Postolache, Common fixed point theorems for dominating and weak annihilator mappings in ordered metric spaces. Fixed Point Theory Appl. 2013 (2013), Article ID 271.

  18. W. Shatanawi, M. Postolache, Common fixed point results of mappings for nonlinear contractions of cyclic form in ordered metric spaces. Fixed Point Theory Appl. 2013 (2013), Article ID 60.

  19. D. Shehwar, T. Kamran, C∗–valued G-contractions and fixed points, J. Inequal. Appl. 2015 (2015), Article ID 304.

  20. T. Sistani, M. Kazemipour, Fixed points for α-ψ-contractions on metric spaces with a graph. J. Adv. Math. Stud. 7 (2014), 65–79.

  21. E. Tarafdar, An approach to fixed-point theorems on uniform spaces, Trans. Amer. Math. Soc. 191 (1974), 209–225.

  22. Q. Xin, L. Jiang, Common fixed point theorems for generalized k-ordered contractions and B-contractions on noncommutative Banach spaces, Fixed Point Theory Appl. 2015 (2015), Article ID 77.

  23. A. Zada, R. Shah, T. Li, Integral Type Contraction and Coupled Coincidence Fixed Point Theorems for Two Pairs in G–metric Spaces, Hacet. J. Math. Stat., in press.