Title: Fixed Point Theorems for T-Ciric Quasi-contractive Operator in CAT(0) Spaces
Author(s): G. S. Saluja
Pages: 14-24
Cite as:
G. S. Saluja, Fixed Point Theorems for T-Ciric Quasi-contractive Operator in CAT(0) Spaces, Int. J. Anal. Appl., 3 (1) (2013), 14-24.

Abstract


The purpose of this paper to study a three-step iterative algorithm for T-Ciric quasi-contractive (TCQC) operator in the framework of CAT(0) spaces and establish strong convergence theorems for above said scheme and operator. Our results improve and extend the recent corresponding results from the existing literature (see, e.g., [28, 29, 30] and some others).

Full Text: PDF

 

References


  1. A. Akbar and M. Eslamian, Common fixed point results in CAT(0) spaces, Nonlinear Anal.: Theory, Method and Applications, Vol. 74(5) (2011), 1835-1840. Google Scholar

  2. A. Beiranvand, S. Moradi, M. Omid and H. Pazandeh, Two fixed point theorems for spcial mappings, arXiv:0903.1504v1 Google Scholar

  3. [math.FA]. Google Scholar

  4. M.R. Bridson and A. Haefliger, Metric spaces of non-positive curvature, Vol. 319 of Grundlehren der Mathematischen Wissenschaften, Springer, Berlin, Germany, 1999. Google Scholar

  5. K.S. Brown, Buildings, Springer, New York, NY, USA, 1989. Google Scholar

  6. F. Bruhat and J. Tits, ”Groups reductifs sur un corps local”, Institut des Hautes Etudes Scientifiques. Publications Mathematiques, 41 (1972), 5-251. Google Scholar

  7. L.B. Ciric, A generalization of Banach principle, Proc. Amer. Math. Soc. 45 (1974), 727-730. Google Scholar

  8. P. Chaoha and A. Phon-on, A note on fixed point sets in CAT(0) spaces, J. Math. Anal. Appl. 320(2) (2006), 983-987. Google Scholar

  9. S.K. Chatterjee, Fixed point theorems compactes, Rend. Acad. Bulgare Sci. 25 (1972), 727-730. Google Scholar

  10. S. Dhompongsa, A. Kaewkho and B. Panyanak, Lim’s theorems for multivalued mappings in CAT(0) spaces, J. Math. Anal. Appl. 312(2) (2005), 478-487. Google Scholar

  11. S. Dhompongsa and B. Panyanak, On 4-convergence theorem in CAT(0) spaces, Comput. Math. Appl. 56(10) (2008), 2572-2579. Google Scholar

  12. R. Espinola and A. Fernandez-Leon, CAT(k)-spaces, weak convergence and fixed point, J. Math. Anal. Appl. 353(1) (2009), 410-427. Google Scholar

  13. K. Goebel and S. Reich, Uniform convexity, hyperbolic geometry, and nonexpansive mappings, Vol. 83 of Monograph and Textbooks in Pure and Applied Mathematics, Marcel Dekker Inc., New York, NY, USA, 1984. Google Scholar

  14. N. Hussain and M.A. Khamsi, On asymptotic pointwise contractions in metric spaces, Nonlinear Anal.: Theory, Method and Applications, 71(10) (2009), 4423-4429. Google Scholar

  15. R. Kannan, Some results on fixed point theorems, Bull. Calcutta Math. Soc. 10 (1968), 71-76. Google Scholar

  16. M.A. Khamsi and W.A. Kirk, An introduction to metric spaces and fixed point theory, Pure Appl. Math, Wiley-Interscience, New York, NY, USA, 2001. Google Scholar

  17. S.H. Khan and M. Abbas, Strong and 4-convergence of some iterative schemes in CAT(0) spaces, Comput. Math. Appl. Vol. 61(1) (2011), 109-116. Google Scholar

  18. A.R. Khan, M.A. Khamsi and H. Fukhar-ud-din, Strong convergence of a general iteration scheme in CAT(0) spaces, Nonlinear Anal.: Theory, Method and Applications, Vol. 74(3) (2011), 783-791. Google Scholar

  19. W.A. Kirk, Fixed point theory in CAT(0) spaces and R-trees, Fixed Point and Applications, 2004(4) (2004), 309-316. Google Scholar

  20. W.A. Kirk, Geodesic geometry and fixed point theory, in Seminar of Mathematical Analysis (Malaga/Seville, 2002/2003), Vol. 64 of Coleccion Abierta, 195-225, University of Seville Secretary of Publications, Seville, Spain, 2003. Google Scholar

  21. W.A. Kirk, Geodesic geometry and fixed point theory II, in International Conference on Fixed point Theory and Applications, 113-142, Yokohama Publishers, Yokohama, Japan, 2004. Google Scholar

  22. W. Laowang and B. Panyanak, Strong and 4 convergence theorems for multivalued mappings in CAT(0) spaces, J. Inequal. Appl. Vol. 2009, Article ID 730132, 16 pages. Google Scholar

  23. L. Leustean, A quadratic rate of asymptotic regularity for CAT(0)-spaces, J. Math. Anal. Appl. 325(1) (2007), 386-399. Google Scholar

  24. S. Moradi, Kannan fixed point theorem on complete metric spaces and on generalized metric spaces depended on another function, arXiv:0903.1577v1 [math.FA]. Google Scholar

  25. J. Morales and E. Rojas, Some results on T-Zamfirescu operators, Revista Notas de Matematics, 5(1) (2009), 64-71. Google Scholar

  26. J. Morales and E. Rojas, Cone metric spaces and fixed point theorems of T-Kannan contractive mappings, Int. J. Math. Anal. 4(4) (2010), 175-184. Google Scholar

  27. J. Morales and E. Rojas, T-Zamfirescu and T-weak contraction mappings on cone metric spaces, arXiv:0909.1255v1 [math.FA]. Google Scholar

  28. Y. Niwongsa and B. Panyanak, Noor iterations for asymptotically nonexpansive mappings in CAT(0) spaces, Int. J. Math. Anal. 4(13) (2010), 645-656. Google Scholar

  29. A. Rafiq, Fixed points of Ciric quasi-contractive operators in generalized convex metric spaces, General Math. 14(3) (2006), 79-90. Google Scholar

  30. P. Raphael and S. Pulickakunnel, Fixed point theorems for T-Zamfirescu operators, Kragujevac J. Math. 36(2) (2012), 199-206. Google Scholar

  31. B.E. Rhoades, Fixed point iteration using infinite matrices, Trans. Amer. Math. Soc. 196 (1974), 161-176. Google Scholar

  32. S. Saejung, Halpern’s iteration in CAT(0) spaces, Fixed Point Theory and Applications, Vol. 2010, Article ID 471781, 13 pages, 2010. Google Scholar

  33. N. Shahzad, Fixed point results for multimaps in CAT(0) spaces, Topology and its Applications, Vol. 156(5) (2009), 997-1001. Google Scholar

  34. B.L. Xu and M.A. Noor, Fixed point iterations for asymptotically nonexpansive mappings in Banach spaces, J. Math. Anal. Appl. 267(2) (2002), 444-453. Google Scholar

  35. T. Zamfirescu, Fixed point theorems in metric space, Arch. Math. (Basel), 23 (1972), 292-298. Google Scholar