Title: Some Fixed Point Results for Caristi Type Mappings in Modular Metric Spaces with an Application
Author(s): Duran Turkoglu, Emine Kilinc
Pages: 15-21
Cite as:
Duran Turkoglu, Emine Kilinc, Some Fixed Point Results for Caristi Type Mappings in Modular Metric Spaces with an Application, Int. J. Anal. Appl., 12 (1) (2016), 15-21.

Abstract


In this paper we give Caristi type fixed point theorem in complete modular metric spaces. Moreover we give a theorem which can be derived from Caristi type. Also an application for the bounded solution of funcional equations is investigated.

Full Text: PDF

 

References


  1. Afrah A.N. Abdou, On asymptotic pointwise contractions in modular metric spaces, Abstract and Applied Analysis 2013(2013), Art. ID 50163.

  2. Afrah A.N Abdou, Mohamed Khams, Fixed points of multivalued contraction mappings in modular metric spaces,Fixed Point Theory and Applications 2014(2014), Art. ID 249.

  3. B. Azadifar, M. Maramaei, Gh. Sadeghi, On the modular G-metric spaces and fixed point theorems, Journal of Nonlinear Sciences and Applications, 6(2013), 293-304.

  4. B. Azadifar, M. Maramaei, Gh. Sadeghi, Common fixed point theorems in modular G-metric spaces, Journal Non- linear Analysis and Application, 2013(2013), Art. ID jnaa-00175.

  5. B. Azadifar, Gh. Sadeghi, R. Saadati, C. Park, Integral type contractions in modular metric spaces, Journal of Inequalities and Applications, 2013(2013), Art. ID 483.

  6. S. Banach, Sur les op´ erations dans les ensembles abstraits et leur application aux ´ equations int´ egrales, Fund. Math., 3(1922), 133-181.

  7. P. Chaipunya, Y.J. Cho, P. Kumam, Geraghty-type theorems in modular metric spaces with an application to partial differential equation, Advances in Difference Equations, 2012(2012), Art. ID 83.

  8. V.V. Chistyakov, Modular metric spaces generated by F-modulars, Folia Math., 14(2008), 3-25.

  9. V.V. Chistyakov, Modular metric spaces I. basic conceps, Nonlinear Anal., 72(2010), 1-14.

  10. V.V. Chistyakov, Fixed points of modular contractive maps, Doklady Mathematics, 86(1)(2012), 515-518.

  11. Y.J. Cho, R. Saadati, Gh. Sadeghi, Quasi-contractive mappings in modular metric spaces, Journal of Applied Mathematics, 2012(2012), Art. ID 907951.

  12. H. Dehghan, M. Eshaghi Gordji, A. Ebadian, Comment on ’Fixed point theorems for contraction mappings in modular metric spaces, Fixed Point Theory and Applications, 2012(2012), Art. ID 144.

  13. I. Ekeland, On the variational principle,J. Math. Anal. Appl.47(1974),324-353.

  14. E. Kılın¸ c, C. Alaca, A fixed point theorem in modular metric spaces, Advances in Fixed Point Theory, 4(2)(2014), 199-206.

  15. E. Kılın¸ c, C. Alaca, Fixed point results for commuting mappings in modular metric spaces, Journal of Applied Functional Analysis,(10)(2015), 204-210

  16. Afrah AN Abdou, M. Khamsi, Fixed points of multivalued contraction mappings in modular metric spaces, Fixed Point Theory and Applications, 2014(2014), Art. ID 249.

  17. F. Khojasten, E. Karapınar, H. Khandani, Some applications of Caristi’s fixed point theorem in metric spaces,Fixed Pont Theory and Applications, (2016)2016, Art. ID 16.

  18. S. Koshi, T. Shimogaki, On F-norms of quasi-modular space, J. Fac. Sci. Hokkaido Univ. Ser 1., 15(3-4)(1961), 202-218.

  19. C. Mongkolkeha, W. Sintunavarat, P. Kumam, Fixed point theorems for contraction mappings in modular metric spaces, Fixed Point Theory and Applications, 2011(2011), Art. ID 93.

  20. H. Nakano, Modulared semi-ordered linear space, In Tokyo Math. Book Ser, vol.1, Maruzen Co, Tokyo (1950).

  21. S. Yamammuro, On conjugate space of Nakano space, Trans. Amer. Math. Soc., 90(1959), 291-311.