Title: Weak Solution and Weakly Uniformly Bounded Solution of Impulsive Heat Equations Containing “Maximum” Temperature
Author(s): Oyelami, Benjamin Oyediran
Pages: 131-150
Cite as:
Oyelami, Benjamin Oyediran, Weak Solution and Weakly Uniformly Bounded Solution of Impulsive Heat Equations Containing “Maximum” Temperature, Int. J. Anal. Appl., 3 (2) (2013), 131-150.

Abstract


In this paper, criteria for the existence of weak solutions and uniformly weak bounded solution of impulsive heat equation containing maximum temperature are investigated and results obtained. An example is given for heat flow system with impulsive temperature using maximum temperature simulator and criteria for the uniformly weak bounded of solutions of the system are obtained.

Full Text: PDF

 

References


  1. Erbe L.H., Freedman H.I., Liu X., Wu J.H., Comparison principles for impulsive parabolic equations with applications to models of single species growth, J. Austral. Math. Soc Ser. B.32 (1991) 382-400.

  2. Bainov D. D., Minchev E., Oscillation of the Solution of impulsive parabolic equations, J. Comput. Appli.Math. 69 (1996) 207-214.

  3. Bainov D.D., Kamont Z. and Minchev E., Monotone Iterative Methods for impulsive hyperbolic differential functional equations, J. Comput. Appl. Math. 70 (1996) 329-347.

  4. Bainov D. D., Minchev E., Estimates of solutions of impulsive parabolic systems, Applications to the population dynamics, Publ. Math. 40 (1996) 85-94.

  5. Bainov D. D., Minchev E. and Kiyokerizu Nakagawa. Asymptotic behavior of solution of impulsive Semilinear Parabolic equations. Nonlinear Analysis, Vol. 30, issues, Dec 1997, pp 2725 – 2734.

  6. Calderon A.P., Zygmund A. On the existence of certain singular integral Acta Mathematica 88(1), 1952, pp85-139.

  7. Calderon A.P., Zygmund A. On singular journal of Mathematics. The John Hopkins University press 78(2), 1956, pp 289-309.

  8. Cui B. T., Liu Y., Deng F., Some oscillation problems for impulsive hyperbolic differential systems with several delays Appl. Math. Comput. 146 (2003) 667 – 679.

  9. Gao W., Wang J., Estimates of solutions of impulsive parabolic equations under Neumann boundary conditions, J. Math. Anal. Appl. 283 (2003) 478-490.

  10. Lakshikantham V., Drici Z. Positive and boundedness of solutions of impulsive-diffusion equations.J.Computation and Applied Math (1998), 175-184.

  11. Lax Peter D. Milgram Arthur N (1954) parabolic equation. Contribution to the theory of partial differential equations. Anals of maths studia, no. 33, Princeton University press pp 167 – 190.

  12. Luo J. Oscillation of hyperbolic PDE with Impulses. Applic Math. Computation 2002.

  13. Oyelami B O and Ale Impulsive differential equations and applications to some models. Lambert Academic Publisher Germany, Mar 2012, ISBN 978-3-8484-4740-4.

  14. Oyelami B O and Ale, On existence of solution, oscillation and non-oscillation properties of delay equations containing ‘Maximum' Acta Applicandae Mathematicae, 2010, 109,683-701.

  15. Oyelami B O, Studies on impulsive Systems: Theory and Modeling Lambert Academic Publisher Germany, Dec. 2012, ISBN 978-3-659-20724-2.

  16. Remaswamy J. The Lax-Milgram theorem for Banach Space.Proc. Jpm Acad. Ser A, 56, 462 – 464 (1980)

  17. Fu X., Liu X., Sivaloganathan S., Oscillation criteria for impulsive parabolic systems, Appl. Anal. 79 (2001) 239-255.

  18. Fu X., Liu X., Sivaloganathan S., Oscillation criteria for impulsive parabolic differential equations with delay, J. Math. Anal. Appl. 268 (2002) 647 – 664.