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Abstract. This article introduces a new model using the alpha power cosine transformed method for modeling complex

data used in hydrology and engineering studies. The alpha power novel distribution transformed the cosine moment

exponential model with two parameters. Its probability density function can be skewed and unimodal. Various

statistical and mathematical properties are established, and the unknown parameters of the suggested model are

determined using numerous estimation procedures. Also, the potential of these estimation techniques is calculated

via some simulation studies. In the end, two real data sets are made using the proposed model to make a practical

application in environmental and survival fields. The potential and utility of the recommended distribution are verified

with other well known models and it shows great superiority in fitting the proposed data sets.

1. Introduction

The transformation of classical model and the proposal of a novel version of the existing prob-

ability distributions are famed and motivating research topics in the literature. Further, the

approaches of the probability models using different techniques, including trigonometric, power

transformed, and compounding methods, have received great attention in the last few decades.

These new extensions of models represent more efficiency in fitting and modeling data in many

applied sciences areas, particularly hydrology, engineering, survival analysis, finance, economics,

and medical sciences. In this context, different techniques for obtaining a novel family of models

have been provided, for example, Hamedani et al. [12], Eugene et al. [10], Marshall and Olkin [16],

Cordeiro and Castro [7], Almetwally et al. [20], BuHamra et al. [6], and Alizadeh et al. [1].

The probability distribution functions (PDFs) defined on R+ are extensively implemented to

fit the period until a particular event or phenomenon occurs. The Moment exponential (ME)
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distribution has a special place provided by Dara and Ahmad [24]. The ME model is one of the

first selections of authors to implement for modeling data in the expiry times of patients, time to

performance failure, and recovery time after health injury see El Gazar et al. [8], Almetwally et

al. [3], Abonongo et al. [22], Iqbal et al. [32], Zafar Iqbal et al. [31], and Salem et al. [27].
Let X has the ME distribution denoted by X ∼ ME(θ), with cumulative distribution function

(CDF) and PDF can be obtained to be

H(x;θ) = 1− e−
x
θ

( x
θ
+ 1

)
, x, θ > 0, (1.1)

and

h(x;θ) =
xe−

x
θ

θ2 . (1.2)

Newly, Mahdavi and Kundu [15] proposed a novel extension family of probability distributions, which

are more efficient for exploring more data sets. These ewe family of distributions referred to alpha power

transformation (APT) family with CDF and PDF are defined, respectively, as

F(x) =
λK(x)

− 1
λ− 1

, x ∈ R,λ > 0; λ , 1, (1.3)

and

f (x) =
logλ
λ− 1

λK(x) k(x), (1.4)

where K(x) and k(x) represent the CDF and PDF of the baseline model. It is well documented that

different authors utilize the APT family of distributions to generate some exciting models. In this way, Eissa

and Sonar [11] defined the APT Extended power Lindley (APT-EPL) model by taking the extended power

Lindley baseline distribution, and they derived various distributional properties. Hassan et al. [13] proposed

APT Power Lindley (APT-PL) distribution. Also, the APT Extended Exponential (APT-EE) distribution is

studied by Hassan et al. [14] and they proved that the new model is better than some other well-known

distributions for modeling different kinds of data sets. In the same way, Shivanshi et al. [29] provided

the APT Xgamma (APT-XG) distribution and applied the suggested model to the reliability, survival, and

environmental data sets. Sin extension of the exponential distribution has been introduced by [19]. Reyad

et al. [21] introduced the APT Dagum (APT-D) model and established the various characterizations of the

recommended distributions. Abonongo et al. [22] discussed cosine Fréchet loss distribution with actuarial

measures and insurance applications.

Many researchers attempted to analyze and explain different data by employing generalized structures

of the ME distribution. However, the results were not credible. To overcome the issue and based on the

trigonometric function with the APT family, this article offers two main objectives: firstly, it introduced a

new version of ME distribution that can be applied in various applications, such as fitting the environmental

and engineering data sets. We referred to this novel suggested model as the alpha power transformed cosine

moment exponential (APCos-ME) model with two parameters. The APCos-ME distribution can be skewed

and unimodal. Secondly, the model parameters of APCos-ME have been estimated using various estimation

procedures.
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Suppose T follows the APTCos-T family. The corresponding CDF and PDF of T are expressed by

F(t;λ, η) =
λ

cos

π2 −πH(t; η)
2


− 1

λ− 1
, t, λ, η > 0, λ , 1, (1.5)

and

f (t;λ, η) =
π logλ h(t; η) sin

(
π
2
−
πH(t; η)

2

)
2(λ− 1)

λ
cos

π2 −πH(t; η)
2


. (1.6)

The article is structured and arranged in the following ways. Section 2 introduced the new version of ME

distribution and its corresponding reliability measures. Numerous statistical properties of the proposed

model are established in Section 3. Section 4 contains the estimation of the unknown parameters by applying

various procedures. Section 5 considers a Monte Carlo simulation study to conduct the comparison and

consistency properties of different proposed estimation methods. Finally, in Section 6, two real data sets

representing environmental and reliability areas are illustrated for validation. In the last section, closing

remarks are devoted.

2. Model formulation

In this part of the work, we establish numerous distributional properties of the APTCos-ME model,

likely CDF, PDF, and some reliability functions. Let T be a random variable following the APT-Cos-ME

with parameters λ and θ denoted by T ∼ APTCos-ME(λ,θ). According to Eq. (1.6) and (1.2), the CDF and

PDF of the APTCos-ME model are, respectively, given by

G(t) =
λ

cos


π
2
−

π

(
1− e−

t
θ

(
t
θ + 1

) )
2


− 1

λ− 1
, t, λ, θ > 0, λ , 1, (2.1)

and

g(t) =
1

2(λ− 1)


π log(λ)

te−
t
θ

θ2 sin


π
2
−

π

(
1− e−

t
θ

(
t
θ + 1

) )
2

 λ
cos


π
2
−

π

(
1− e−

t
θ

(
t
θ + 1

) )
2




. (2.2)

From Eq (2.1), it can be deduced that the proposed APCos-ME model reduces to ME distribution if λ tends

to be 1. Figure 1 depicts the PDF curves of the APCos-ME model. The PDF can take numerous shapes; it is

right-skewed, left-skewed, and always unimodal.
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Figure 1. Density Plots for APCos-ME distribution under different selected param-

eter values.

2.1. Reliability Measures. Suppose T ∼ APTCos-ME(λ,θ). The survival (SF) and hazard rate (HRF)

functions of T are written as

S(t) =
λ− λ

cos


π
2
−

π

(
1− e−

t
θ

(
t
θ + 1

) )
2


λ− 1

, (2.3)

and

h(t) = 2−1


λ− λ

cos


π
2
−

π

(
1− e−

t
θ

(
t
θ + 1

) )
2





−1

π log(λ)
te−

t
θ

θ2 sin


π
2
−

π

(
1− e−

t
θ

(
t
θ + 1

) )
2




× λ

cos


π
2
−

π

(
1− e−

t
θ

(
t
θ + 1

) )
2


. (2.4)

The APCos-ME’s cumulative hazard rate function (CHRF) is defined by

H(x) = = − log



λ− λ

cos


π
2
−

π

(
1− e−

t
θ

(
t
θ + 1

) )
2


λ− 1



. (2.5)
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The HRF plots of the proposed APCos-ME model are plotted in Figure 2. From this Figure, it can be seen

that the hazard function of the suggested model is increasing and reverse-J curves.
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Figure 2. Hazard Rate Plots for APCos-ME distribution under different selected

parameter values.

3. Mathematical properties

Here, in this Section, we provide different significant statistical features of the APCos-ME model, in-

cluding quantile function, k-moments, moment generating function (MGF), Coefficient of variation (CV),

Lorenz, and Bonferroni and order statistics distribution.

3.1. Quantile Function of APCos-ME model. Let T ∼ APTCos-ME(λ,θ). Based on inverting Eq (2.1), the

quantile function is expressed as

p =
λ

cos


π
2
−

π

(
1− e−

t
θ

(
t
θ + 1

) )
2


− 1

λ− 1
, (3.1)

for 0 ≤ p ≤ 1, that is,

Q(p) = −θ
{

1 + W
(
−

2e−1

π
cos−1

[
1 + p(λ− 1)

log(λ)

])}
, (3.2)

where W(.) represents the Lambert function.

Consequently, for generating random numbers from the APCos-ME model, Eq (3.2) can be used.

3.2. Moments with Related Connects. The moments of density function are of importance in statistical

analysis. They help us to find the mean, variance (Var), skewness (Skw), kurtosis (Kurt), and shape of any

given data set. The kth moment of the APCos-ME is presented by

µk =
π

2θ2(λ− 1)

∞∑
i=1

(logλ)i+1

i!

[
Φi,k(t) −Φi+1,k(t)

]
, (3.3)

where,

Φi,k(t) =
∫
∞

0
tk+1e−t/θ cos

(
π
2
−
π
2

[
1− e−t/θ(1 +

t
θ
)
])i

dt,
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and

Φi+1,k(t) =
∫
∞

0
tk+1e−t/θ cos

(
π
2
−
π
2

[
1− e−t/θ(1 +

t
θ
)
])i+1

dt.

Consequently, the mean (µ1), Var, and CV of T can be expressed as

µ1 =
π

2θ2(λ− 1)

∞∑
i=1

(logλ)i+1

i!
[Φi,1(t) −Φi+1,1(t)] , (3.4)

Var = µ2 − µ
2
1,

and

CV =

√
µ2 − µ2

1

µ1
.

The coefficients of Skw and Kurt measures of the proposed APCos-ME model are given as

Skw =
µ3 − 3µ2 + 2µ3

1

(µ2 − µ2
1)

3/2
,

and

Kurt =
µ4 − 4µ3 + 6µ2

1µ2 − 3µ4
1

(µ2 − µ2
1)

2
.

Table (1) summarizes numerous proposed statistical measures of the APCos-ME by applying varied param-

eter selections λ and θ. Clearly from Table (1) as θ is growing, the µ1 and Var of the APCos-ME model are

diminishing, whereas the CV, Skew, and Kurt are fixed, which ensures that these values are free parameters

of θ. Another remark from Table (1) is that both CV, Skw, and Kurt amounts are diminishing as λ is growing.

Hence, the APCos-ME is a flexible distribution for explaining more complex data. All these conclusions are

confirmed in Figure (3).

The kth incomplete moments of the APCos-ME is

ϕk(x) =
π

2θ2(λ− 1)

∞∑
j=1

(logλ) j+1

j!


∫ x

0
tk+1e−t/θ cos

(
π
2
−
π
2

[
1− e−t/θ

(
1 +

t
θ

)]) j

dt

−

∫ x

0
tk+1e−t/θ cos

(
π
2
−
π
2

[
1− e−t/θ

(
1 +

t
θ

)]) j+1

dt


=

π

2θ2(λ− 1)

∞∑
j=1

(logλ) j+1

j!

[
Ψ j,k(x) −Ψ j+1,k(x)

]
. (3.5)

Finally, the Bonferroni and Lorenz curves of T are defined by

B(p) =
1

pµ

∫ tp

0
tg(t)dt =

1
pµ
ϕ1(tp), G(tp) = p,

and

L(p) =
1
µ

∫ tp

0
tg(t)dt =

1
µ
ϕ1(tp).

Now, the MGF of the APCos-ME model is given by

M(x) = E(ext) =
π

2θ2(λ− 1)

∞∑
i=0

∞∑
j=0

x j(logλ)i+1

i! j!

[
Φi,k(t) −Φi+1,k(t)

]
. (3.6)

3.3. Order Statistics of APCos-ME model. Let T ∼APCos-ME(λ,θ) and t(1) < ... < t(n) represent the order

statistics of the random sample from T. Then the rth PDF of T is written as
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Table 1. Different statistical properties of APCos-ME with various parameter values.

θ µ1 Var CV Skw Kurt

λ=0.25 0.5 0.526 0.1380 0.7063 1.4990 3.3105

1.0 1.052 0.5521 0.7063 1.4990 3.3105

1.5 1.578 1.2422 0.7063 1.4990 3.3105

2.0 2.104 2.2084 0.7063 1.4990 3.3105

λ=0.5 0.5 0.5975 0.1624 0.6744 1.3173 2.4816

1.0 1.1950 0.6495 0.6744 1.3173 2.4816

1.5 1.7925 1.4614 0.6744 1.3173 2.4816

2.0 2.3900 2.5981 0.6744 1.3173 2.4816

λ=0.75 0.5 0.6425 0.1757 0.6524 1.2159 2.0923

1.0 1.2850 0.7029 0.6524 1.2159 2.0923

1.5 1.9276 1.5814 0.6524 1.2159 2.0923

2.0 2.5701 2.8114 0.6524 1.2159 2.0923

λ=1.25 0.5 0.7015 0.1907 0.6224 1.0976 1.7014

1.0 1.4031 0.7626 0.6224 1.0976 1.7014

1.5 2.1046 1.7159 0.6224 1.0976 1.7014

2.0 2.8061 3.0505 0.6224 1.0976 1.7014

λ=1.5 0.5 0.7230 0.1954 0.6113 1.0586 1.5874

1.0 1.446 0.7814 0.6113 1.0586 1.5874

1.5 2.1690 1.7582 0.6113 1.0586 1.5874

2.0 2.8919 3.1256 0.6113 1.0586 1.5874
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distribution using different parameter values of λ and θ.
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gr:n(t) =
n!g(t)

(r− 1)!(n− r)!
[G(t)]r−1[1−G(t)]n−r

=
n!g(t)

(r− 1)!(n− r)!

n−r∑
l=0

(−1)l
(
n− r

l

)
[G(t)]l+r−1

=
n!

2(r− 1)!(n− r)!

n−r∑
l=0

(−1)l

(λ− 1)l+r−2

(
n− r

l

)

λ

cos


π
2
−

π

(
1− e−

t
θ

(
t
θ + 1

) )
2


− 1



l+r−1

×π log(λ)
te−

t
θ

θ2 sin


π
2
−

π

(
1− e−

t
θ

(
t
θ + 1

) )
2

 λ
cos


π
2
−

π

(
1− e−

t
θ

(
t
θ + 1

) )
2


.

Respectively, we can be defined the first and latest order statistics of the random variable T as g1:n(t) =

min{T1, T2, ..., Tn} and gn:n(t) = max{T1, T2, ..., Tn}. Its pdf are given by

g1:n(t) =
n

2(λ− 1)n−2π log(λ)
te−

t
θ

θ2 sin


π
2
−

π

(
1− e−

t
θ

(
t
θ + 1

) )
2

 λ
n cos


π
2
−

π

(
1− e−

t
θ

(
t
θ + 1

) )
2


,

and

gn:n(t) =
n

2(λ− 1)n−2π log(λ)
te−

t
θ

θ2 sin


π
2
−

π

(
1− e−

t
θ

(
t
θ + 1

) )
2

 λ
cos


π
2
−

π

(
1− e−

t
θ

(
t
θ + 1

) )
2



×


λ

cos


π
2
−

π

(
1− e−

t
θ

(
t
θ + 1

) )
2


− 1



n−1
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4. Estimation methods of APCos-ME model

Here, various estimation techniques for determining the APCos-ME’s parameters are covered. For

additional information concerning the application of estimation techniques, see Alshawarbeh et al. [4],

Rahman et al. [18], Rodrigues et al. [23], Shama et al. [28], and Almetwally and Meraou [2].

4.1. Maximum Likelihood Estimation. Let {t1, . . . , tn} be observed random sample (RS) taken from APCos-

ME(λ,θ). The corresponding log-likelihood function may be expressed as

l(t, Ψ) =
n∑

i=1

log g(t, Ψ)

− n log(λ− 1) − 2n logθ−
1
θ

n∑
i=1

ti + logλ
n∑

i=1

cos


π
2
−

π

(
1− e−

ti
θ

( ti
θ + 1

) )
2


+

n∑
i=1

log sin


π
2
−

π

(
1− e−

ti
θ

( ti
θ + 1

) )
2

 , (4.1)

with Ψ = (λ,θ). Suppose λ̂MLE and θ̂MLE are the MLEs of λ and θ. They are obtained, respectively, by

solving the two non-linear equations

∂l(t, Ψ)

∂λ
= −

n
λ− 1

+
1
λ

n∑
i=1

cos


π
2
−

π

(
1− e−

ti
θ

( ti
θ + 1

) )
2

 = 0,

and

∂l(t, Ψ)

∂θ
= −

2n
θ

+
1
θ2

n∑
i=1

ti −
logλπ

2

n∑
i=1

[ ti

θ2 e−
ti
θ (1 +

ti
θ
) − e−

ti
θ

ti

θ2

]
sin


π
2
−

π

(
1− e−

ti
θ

( ti
θ + 1

) )
2


+

logλπ
2

n∑
i=1

[ ti

θ2 e−
ti
θ (1 +

ti
θ
) − e−

ti
θ

ti

θ2

]
cot


π
2
−

π

(
1− e−

ti
θ

( ti
θ + 1

) )
2

 = 0.

4.2. Least Square and Weighted Least Square Estimators. Let t1, ..., tn be an observed RS taking from the

APCos-ME model. The ordinary least square estimator(OLS) of λ and θ (note that, λ̂OLS and θ̂OLS) are

resulted with minimize the function
n∑

i=1

[
G(t(i)|Ψ) −

i
n + 1

]2

,

where G(t|Ψ) is (2.1). As a result, the estimate of λ and θ based on LSE can be obtained by resolving the

non-linear equations
n∑

i=1

[
G(t(i)|Ψ) −

i
n + 1

]
Θ1(t(i)|Ψ) = 0,
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and
n∑

i=1

[
G(t(i)|Ψ) −

i
n + 1

]
Θ2(t(i)|Ψ) = 0,

where

Θ1(t(i)|Ψ) =
∂
∂λ

G(t(i)|Ψ), (4.2)

and

Θ2(t(i)|Ψ) =
∂
∂θ

G(t(i)|Ψ). (4.3)

Further, the ordinary weighted least square estimators (OWLS) of λ and θ, note λ̂PWLS and θ̂OWLS are

defined with minimize the function
n∑

i=1

(n + 1)2(n + 2)
i(n− i + 1)

[
G(t(i)|Ψ) −

i
n + 1

]2

.

Consequently, λ̂OWLS and θ̂OWLS can be obtained as solution of
n∑

i=1

(n + 1)2(n + 2)
i(n− i + 1)

[
G(t(i)|Ψ) −

i
n + 1

]
Θ1(t(i)|Ψ) = 0,

and
n∑

i=1

(n + 1)2(n + 2)
i(n− i + 1)

[
G(t(i)|Ψ) −

i
n + 1

]
Θ2(t(i)|Ψ) = 0.

4.3. Maximum product of Spacings. The maximum product spacing (MPS) can be described as follows.

Let

MPi(Ψ) = G(t(i)|Ψ) −G(t(i−1)|Ψ); i = 1, ..., n + 1,

with

G(t(0)|Ψ) = 0, and G(t(n+1)|Ψ) = 1.

Evidently,
n+1∑
i=1

MPi(Ψ) = 1.

The MPS estimators of λ, and θ (λ̂MPS and θ̂MPS), can be obtained by maximizing

P(Ψ) =

n+1∏
i=1

MPi(Ψ)


1

n+1

. (4.4)

Also, they result by maximizing

R(Ψ) =
1

n + 1

n+1∑
i=1

logMPi(Ψ). (4.5)

The estimates λ̂MPS and θ̂MPS are obtained by solving the non-linear equations

∂R(Ψ)

∂α
=

1
n + 1

n+1∑
i=1

1
MPi(ψ)

{
Θ1(t(i)|Ψ) −Θ1(t(i−1)|Ψ)

}
= 0,

and
∂R(Ψ)

∂α
=

1
n + 1

n+1∑
i=1

1
MPi(ψ)

{
Θ2(t(i)|Ψ) −Θ2(t(i−1)|Ψ)

}
= 0.

with Θi(.|Ψ) for i = 1, 2 are given in (4.2)-(4.3).
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4.4. Cramer-Von Mises Minimum Distance Estimators. The Cramer-von Mises-type minimum distance

estimates (CVMs) λ̂CVM and θ̂CVM are obtained by minimizing

CV(Ψ) =
1

12n
+

n∑
i=1

[
G(t(i)|Ψ) −

2i− 1
2n

]2

. (4.6)

These estimates can also be obtained by solving the non-linear equations
n∑

i=1

[
G(x(i)|Ψ) −

2i− 1
2n

]
Θ1(t(i)|Ψ) = 0,

and
n∑

i=1

[
G(x(i)|Ψ) −

2i− 1
2n

]
Θ2(t(i)|Ψ) = 0.

4.5. Anderson-Darling Estimators. Anderson-Darling estimators (ADs) λ̂AD, and θ̂AD of λ and θ are

calculated by minimizing

AD(Ψ) = −n−
1
n

n∑
i=1

(2i− 1)
{
ln G(t(i)|Ψ) + ln S(t(n+1)|Ψ)

}
.

λ̂AD, and θ̂AD are calculated by resolving
n∑

i=1

(2i− 1)

Θ1(t(i)|Ψ)

G(t(i)|Ψ)
−

Θ1(t(n+1)|Ψ)

S(t(n+1)|Ψ)

 = 0,

and
n∑

i=1

(2i− 1)

Θ2(t(i)|Ψ)

G(t(i)|Ψ)
−

Θ2(t(n+1)|Ψ)

S(t(n+1)|Ψ)

 = 0.

5. Numerical simulation

Here, we provide some results from a Monte Carlo (MC) simulation study to see how the suggested

estimating technique working in the practice. Under selected values of λ and θ and over on N = 1000

times, We generate an observed sample from the APCos-ME model of size n using the quantile function (3.2)

and we calculate the average estimates (AEs), average biases (ABs), and the associated mean squared errors

(MSEs). The results are reported in Tables (2)-(4) represent the result. Tables (2)-(4) show that as the sample

size increases, the AEs, ABs and MSEs decrease based on all estimation methods. This guarantees the

consistency and asymptotic properties of all techniques. Further the MPSEs procedure can be considered

best technique of estimate for the APCos-ME model since it has a smaller MSE among other techniques.
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Table 2. AEs, ABs, and MSEs of (λ,θ)=(0.75, 0.25) considering different sample sizes.

n Method λ̂ θ̂

AE AB MSE AE AB MSE

300 MLE 0.9366 0.1866 0.2433 0.2656 0.0156 0.0042

OLS 0.8870 0.1370 0.4396 0.2647 0.0147 0.0052

OWLS 0.8019 0.0519 0.3359 0.2608 0.0108 0.0049

MPS 0.7790 0.0290 0.1964 0.2641 0.0141 0.0029

CVM 0.9466 0.1966 0.3996 0.2532 0.0032 0.0017

AD 0.8305 0.0805 0.2446 0.2572 0.0072 0.0012

500 MLE 0.8230 0.0730 0.1435 0.2519 0.0019 0.0007

OLS 0.8203 0.0703 0.1922 0.2567 0.0067 0.0014

OWLS 0.8105 0.0605 0.1525 0.2538 0.0038 0.0009

MPS 0.7257 0.0243 0.0962 0.2565 0.0065 0.0004

CVM 0.9074 0.1574 0.3008 0.2523 0.0023 0.0008

AD 0.7716 0.0216 0.1325 0.2564 0.0064 0.0006

700 MLE 0.8012 0.0512 0.0789 0.2498 0.0001 0.0002

OLS 0.7955 0.0455 0.1202 0.2530 0.0030 0.0005

OWLS 0.8064 0.0564 0.0826 0.2515 0.0015 0.0004

MPS 0.7380 0.012 0.0690 0.2548 0.0048 0.0003

CVM 0.783 0.0330 0.0992 0.2534 0.0034 0.0005

AD 0.7437 0.0063 0.0764 0.2563 0.0063 0.0005

1000 MLE 0.7612 0.0112 0.0409 0.2515 0.0015 0.0001

OLS 0.7605 0.0105 0.0767 0.2537 0.0037 0.0003

OWLS 0.7881 0.0381 0.0588 0.2509 0.0009 0.0002

MPS 0.7548 0.0048 0.0398 0.2542 0.0042 0.0001

CVM 0.7429 0.0071 0.0736 0.2548 0.0048 0.0004

AD 0.7671 0.0171 0.0573 0.2526 0.0026 0.0002
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Table 3. AEs, ABs, and MSEs of (λ,θ)=(0.5, 0.5) considering different sample sizes.

n Method λ̂ θ̂

AE AB MSE AE AB MSE

300 MLE 0.5626 0.0626 0.1051 0.5210 0.0210 0.1050

OLS 0.5557 0.0557 0.1495 0.5278 0.0278 0.1495

OWLS 0.5236 0.0236 0.1349 0.5328 0.0328 0.1348

MPS 0.4442 0.0558 0.0897 0.5677 0.0677 0.0896

CVM 0.6193 0.1193 0.3023 0.5237 0.0237 0.0105

AD 0.6084 0.1084 0.1619 0.5114 0.0114 0.0789

500 MLE 0.5518 0.0518 0.0552 0.5014 0.0014 0.0552

OLS 0.5439 0.0439 0.1221 0.5232 0.0232 0.1221

OWLS 0.5449 0.0449 0.0851 0.5083 0.0083 0.0851

MPS 0.4867 0.0133 0.0498 0.5435 0.0435 0.0498

CVM 0.5451 0.0451 0.1196 0.5223 0.0223 0.0775

AD 0.5091 0.0091 0.0699 0.5138 0.0138 0.0324

700 MLE 0.5540 0.0540 0.0368 0.4979 0.0021 0.0367

OLS 0.5440 0.0440 0.0814 0.5081 0.0081 0.0813

OWLS 0.5311 0.0311 0.0678 0.5073 0.0073 0.0678

MPS 0.4673 0.0327 0.0296 0.5234 0.0234 0.0296

CVM 0.4909 0.0091 0.0834 0.5242 0.0242 0.0599

AD 0.5402 0.0402 0.0666 0.5113 0.0113 0.0577

1000 MLE 0.5181 0.0181 0.0314 0.5050 0.0050 0.0313

OLS 0.5007 0.0007 0.0579 0.5163 0.0163 0.0578

OWLS 0.5320 0.0320 0.0529 0.5077 0.0077 0.0529

MPS 0.4938 0.0062 0.0210 0.5083 0.0083 0.0210

CVM 0.5317 0.0317 0.0514 0.5053 0.0053 0.0278

AD 0.5198 0.0198 0.0407 0.5039 0.0039 0.0447
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Table 4. AEs, ABs, and MSEs of (λ,θ)=(1.3, 1.5) considering different sample sizes.

n Method λ̂ θ̂

AE AB MSE AE AB MSE

300 MLE 1.3730 0.0730 0.4496 1.5393 0.0393 0.0393

OLS 1.2754 0.0246 0.6000 1.5798 0.0798 0.0426

OWLS 1.4171 0.1171 0.5646 1.5323 0.0323 0.0419

MPS 1.3197 0.0197 0.4026 1.5392 0.0392 0.0213

CVM 1.4010 0.1010 0.4656 1.5408 0.0408 0.0411

AD 1.4749 0.1749 0.8196 1.5215 0.0215 0.0633

500 MLE 1.4860 0.1860 0.2339 1.4863 0.0137 0.0079

OLS 1.4633 0.1633 0.5181 1.5049 0.0049 0.0203

OWLS 1.4749 0.1749 0.3690 1.4917 0.0083 0.0114

MPS 1.3334 0.0334 0.2017 1.5245 0.0245 0.0070

CVM 1.3486 0.0486 0.2724 1.5200 0.0200 0.0110

AD 1.4381 0.1381 0.6913 1.4972 0.0028 0.0309

700 MLE 1.3575 0.0575 0.2125 1.5036 0.0036 0.0071

OLS 1.2644 0.0356 0.3080 1.5294 0.0294 0.0110

OWLS 1.4335 0.1335 0.2235 1.4881 0.0119 0.0078

MPS 1.2501 0.0499 0.1378 1.531 0.0310 0.0065

CVM 1.4173 0.1173 0.2556 1.4937 0.0063 0.0075

AD 1.3871 0.0871 0.4120 1.4975 0.0025 0.0096

1000 MLE 1.3879 0.0879 0.1331 1.4919 0.0081 0.0053

OLS 1.3199 0.0199 0.1602 1.5119 0.0119 0.0078

OWLS 1.3005 0.0005 0.1365 1.5152 0.0152 0.0068

MPS 1.2342 0.0658 0.1029 1.5322 0.0322 0.0047

CVM 1.3359 0.0359 0.1349 1.5065 0.0065 0.0060

AD 1.3239 0.0239 0.1820 1.5089 0.0089 0.0089
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6. Real data analysis

6.1. Snowfall Application. Here, the data set contains the monthly maximum snowfall records for the

month February 2018. The values of the data set are picked from the National Centers for Environmental

Information (NCEI) https://www.ncdc.noaa.gov/cdoweb/datatools/records. The considered data is studied

by Meraou and Raqab [17] and its records are summarized in Table 5.

Table 5. The values for the monthly maximum snowfall data set.

7.99 5.98 2.52 5.98 7.99 7.01 7.01 7.99 4.21 8.5

7.99 7.99 7.99 10 3.5 6.30 10 9.02 12.01 15.98

7.52 7.01 12.01 9.09 4.41 10.71 7.99 5.98 7.01 7.99

12.01 5 7.99 12.01 12.99 12.01 7.99 10.12 5.98 4.69

10 0.98 7.99 12.01 12.01 7.01 5.98 14.02 5.51 2.99

2.52 15.98 17.01

6.2. Reliability Application. This data set provided the strengths measurements of 69 single carbon fibers

which is obtained in GPa. It is considered by workers at the UK National Physical Laboratory and it is

studeid by different reaserches such as Bader and Priest [5], Wani and Shafi [30], Alsadat [25] and Alsadat

et al. [26]. The considered data is given as

Table 6. The values of the second data set.

0.312 0.314 0.479 0.552 0.700 0.803 0.861 0.865 0.944 0.958 0.966 0.977 1.006 1.021 1.027

1.055 1.063 1.098 1.140 1.179 1.224 1.240 1.253 1.270 1.272 1.274 1.301 1.301 1.359 1.382

1.382 1.426 1.434 1.435 1.478 1.490 1.511 1.514 1.535 1.554 1.566 1.570 1.586 1.629 1.633

1.642 1.648 1.684 1.697 1.726 1.770 1.773 1.800 1.809 1.818 1.821 1.848 1.880 1.954 2.012

2.067 2.084 2.090 2.096 2.128 2.233 2.433 2.585 2.585

For checking the efficiency of the suggested model, the APCos-ME is compared with numerous models

including ME, Gompertz (Gomp), XLindley (XL), Two parameters Mira (TPM), and Extended Exponential

models. The PDFs of competing distributions are

(1) Gomp:

h(t) = αβe−β(e
αt
−1)+αt, t > 0, α, β > 0.

(2) XL:

h(t) =
θ2e−θt(θ+ t + 2)

(θ+ 1)2 ; t > 0, θ > 0.

(3) TPM:

h(t) =
δ3

(
αt2 + 2

)
e−δt

2 (α+ δ2)
., t > 0, α, δ > 0.

(4) EE:

h(t) = αθe−θt(1− e−θt)α−1; t > 0, α,θ > 0.

https://www.ncdc.noaa.gov/cdoweb/datatools/records
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Table 7. Parameter estimation for fitting models using the two considered datasets.

Data Model Par. Llik

APCos-ME λ̂=14.065 θ̂=4.1707 -143.411

ME θ̂=4.1250 -152.951

1 Gomp α̂ = 0.2228 β̂=0.0288 -146.194

XL θ̂=0.2040 -159.084

TPM α̂=0.3627 δ̂=41.970 -147.183

EE α̂=0.2858 θ̂=5.6428 -145.950

APCos-ME λ̂=242.670 θ̂=0.6042 -50.825

ME θ̂=0.7254 -73.087

2 Gomp α̂ = 1.8940 β̂=0.0825 -51.471

XL θ̂=0.8759 -92.176

TPM α̂=2.0238 δ̂=102.936 -64.736

EE α̂=1.8629 θ̂=8.3802 -56.705

Table (7) reported the obtained results of the MLEs for fitting model parameters with its negative log

likelihood Function (Llik). Now for checking the model validity, Table (8) summarized the values of

certain statistical measures notably Akaike Information Criterion (A1), Hannan Quinn Information Criterion

(A3), Akaike Information Criterion corrected (A2), Bayesian Information Criterion (A4) and Kolmogorov-

Smirnov (KS) statistics with associated p-values (P) which are reported in . Accordingly to these results,

the recommended APCos-ME distribution can be considered as the best choice i for modeling the data set.

In Figures (6)-(9), the estimated PDF, CDF, and SF of suggested models are sketched, while the scaled total

time on the test (TTT), the probability-probability (PP), and box plots are plotted in Figures (4)-(5) for the

two data sets.

Table 8. Comparison of suggested statistical measures for the two proposed datasets.

Data Model A1 A2 A3 A4 KS P

APCos-ME 290.830 291.065 292.364 294.808 0.1063 0.5742

ME 307.902 307.979 308.669 309.891 0.2214 0.0100

1 Gomp 296.389 296.624 297.923 300.367 0.1576 0.1367

XL 320.169 320.246 320.936 322.158 0.2527 0.0020

TPM 298.366 298.601 299.900 302.344 0.1668 0.0987

EE 295.900 296.135 297.434 299.878 0.1267 0.3505

APCos-ME 105.650 105.832 107.423 110.119 0.0615 0.9565

ME 148.175 148.235 149.061 150.409 0.2576 0.0002

2 Gomp 106.943 107.124 108.715 111.411 0.0790 0.7815

XL 186.353 186.412 187.239 188.587 0.3439 1.63×10−07

TPM 133.472 133.654 135.245 137.940 0.2043 0.0062

EE 117.418 117.600 119.190 121.886 0.1150 0.3202

Next Table (9) considered estimates of λ and θ employing the various estimation procedures.
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Figure 4. TTT, PP, and box curves for first data for different fitting models.
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Figure 5. TTT, PP, and box curves for second data.

Table 9. The estimates of unknown parameters for the APCos-ME model under

various methods of estimation.

Data Set Par MLE LSE WLSE MPS CME ADE

1 λ̂ 14.065 39.916 34.080 36.894 33.193 40.311

θ̂ 4.1707 3.8390 3.8993 3.9217 3.7448 3.8433

2 λ̂ 242.670 460.561 491.637 463.641 441.162 387.705

θ̂ 0.6042 0.5949 0.5881 0.5972 0.5854 0.5947
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Figure 6. Curves of density and cumulative function of the suggested fitting model

employing dataset 1.
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employing dataset 2.
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Figure 8. Estimated ESF using first data for different fitting models.
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Figure 9. Estimated ESF using second data for different fitting models.
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7. Conclusion

This work defined a novel extension of the moment exponential model using alpha power transformed

with trigonometric function technique. We have obtained numerous characteriscs of the proposed model.

Henceforth, Several estimation technique are applied to obtain the estimation of the unknown parameters.

We conducted some experiment studies for the simulation experiment and to check the utility and effec-

tiveness of suggested estimation techniques. At the end, two applications drown from environmental and

engineering fields to demonstrate the applicability of the recommended model, and it is shown that the

proposed APCos-ME is more appropriate to modeling the two considered data sets.
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