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Abstract. In this paper, we have introduced the concept of the set of rough I3-lacunary limit points for triple sequences

in 2-normed spaces. We have established statistical convergence requirements associated with this set. Furthermore,

we have introduced the idea of rough I3-lacunary statistical convergence for triple sequences. Additionally, we have

demonstrated that this set of rough I3-lacunary limit points is both convex and closed within the context of a 2-

normed space. We have also explored the relationships between a sequence’s rough I3-lacunary statistical cluster points

and its rough I3-lacunary statistical limit points in the same 2-normed space. Expanding upon the concept of triple

sequence spaces, we have introduced the notion of Wijsman I3-Cesáro summability for triple sequences. In doing so, we

have investigated the connections between Wijsman strongly I3-Cesáro summability and Wijsman statistical I3-Cesáro

summability. Furthermore, we have introduced the concepts of Wijsman rough strongly p-lacunary summability of

order α and Wijsman rough lacunary statistical convergence of order α for triple sequences. These new concepts

have been subjected to a thorough examination to understand their characteristics, and we have explored potential

connections between them. Additionally, we have investigated how these newly introduced concepts relate to existing

notions in the literature.

1. Introduction

Fast [22] and Schoenberg [42] independently extended the concept of series of real numbers

converging to statistical convergence. Mursaleen and Edely [34] further extended this idea to

double sequences. Fridy and Orhan’s definition of lacunary statistical convergence can be found

in [25], and Akan and Altay [9] presented multidimensional analogs of their findings.

I-convergence, a generalization of statistical convergence based on the ideal I of subsets of natural

numbers, was initially proposed by Kostyrko et al. [28]. Kostyrko et al. [29] also conducted research

on extremal I-limit points and the concept of I-convergence. Das et al. [12] defined I-convergence
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for double sequences in a metric space and explored some of its properties. Subsequent to the work

of [22,30,35,42], there have been substantial advancements in the fields of statistical convergence,

I-convergence, and triple sequences.

In [44], Tripathy et al. introduced the concept of lacunary ideal convergence for real sequences.

The ideas of I-statistical convergence and I-lacunary statistical convergence were introduced by

Das et al. [12] and Savaş et al. [41] using the ideal. Belen et al. [11] developed the concept of

ideal statistical convergence for double sequences, offering a new generalization of statistical

convergence and classical convergence. Kumar et al. [31] were the first to describe I-lacunary

statistical convergence for double sequences, and further research and applications in this direction

can be found in [21].

In the 1960s, Gähler [15] introduced the concept of 2-normed spaces, which has since been

explored by various authors. Gürdal and Pehlivan [18] examined statistical convergence, statistical

Cauchy sequences, and other aspects of statistical convergence in 2-normed spaces. Gürdal and

Açk [19] studied I-Cauchy and I∗-Cauchy sequences in 2-normed spaces. Arslan and Dündar [6]

investigated I-convergence, I∗-convergence, I-Cauchy, and I∗-Cauchy sequences of functions in

2-normed spaces. Significant developments in this field have also occurred (see [30, 35]).

Phu [46] was the first to delve into rough convergence in finite-dimensional normed spaces. In

his work [46], he demonstrated the closedness, convexity, and boundedness of the set LIMr
x and

introduced the concept of a rough Cauchy sequence. He also explored the relationships between

rough convergence, various forms of convergence, and the dependence of LIMr
x on the degree of

roughness r. In a related study [48], he established the rough continuity of linear operators and

proved that, given dim Y > 0 and r > 0, with X and Y being normed spaces, every linear operator

f : X→ Y is r-continuous at every point x ∈ X. He extended these findings to infinite-dimensional

normed spaces in [47].

Aytar [4] investigated rough statistical convergence and identified the set of rough statistical

limit points of a sequence. He then derived two statistical convergence criteria related to this set

and showed that it is both closed and convex. Aytar’s [5] research revealed that the r-limit set of

the sequence equals the intersection of these sets, while the r-core of the sequence is equal to the

union of these sets.

The concepts of rough I-convergence and the set of rough I-limit points for a sequence were

recently introduced by Dündar and Çakan [13], and Dündar [14] examined the concepts of rough

convergence, I2-convergence, and the sets of rough limit points and rough I2-limit points for double

sequences. In the context of 2-normed spaces, Arslan and Dündar [7,8] developed several concepts

related to rough convergence.

The relationship between the strongly Cesáro summable sequences space |σ1| and the strongly

lacunary summable sequences space Nθ defined by a lacunary sequence was demonstrated by

Freedman et al. in [26]. Subsequently, Fridy and Orhan [25] introduced the concept of lacu-

nary statistical convergence using the concept of lacunary sequences. Engül and Et [43] recently
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explored the ideas of substantially p-lacunary summability of order and lacunary statistical con-

vergence of order α (see also [2]).

The notion of convergence for double sequences was initially presented by Pringsheim in [49]

and expanded to include statistical convergence by Mursaleen and Edely [34]. Moreover, Patterson

and Savaş [45] investigated the concept of lacunary statistical convergence using the concept of

double lacunary sequences.

Many authors have extended the concepts of convergence from number sequences to set se-

quences. Two notable extensions are the ideas of Wijsman convergence and Hausdorff convergence

(see [1, 23, 36, 37]). Nuray and Rhoades [32] extended Wijsman convergence and Hausdorff con-

vergence to statistical convergence for set sequences and provided several fundamental theorems.

Ulusu and Nuray introduced the concept of lacunary statistical convergence for set sequences

using the concept of lacunary sequences.

Recently, Savaş [40] and Şengül and Et [43] independently explored the notion of Wijsman

I-lacunary statistical convergence of order utilizing the concept of ideals.

In this paper, we introduce the concept of rough I3-lacunary statistical convergence for triple

sequences in normed linear spaces and conduct a thorough investigation of it. We examine the

properties of rough I3-lacunary statistical cluster points and rough I3-lacunary statistical limit

points in 2-normed spaces. Additionally, we establish a standard statistical convergence criterion

associated with rough I3-lacunary statistical cluster points for sequences in 2-normed spaces.

Furthermore, we explore the concepts of Wijsman rough I3-lacunary statistical convergence,

Wijsman rough I3-lacunary statistical convergence, and Wijsman extremely rough I3-lacunary

convergence for triple sequences in this paper. We also investigate the relationships between

these novel concepts. The introduction of lacunary triple sequences serves as the basis for these

definitions. Following the definitions, we present natural inclusion theorems.

2. Definitions and Notions

Before delving deeper, let’s familiarize ourselves with the concept of a 2-normed space, rough

convergence, and several fundamental concepts and notations that will be employed in the fol-

lowing sections (Refer to citations such as [3–8, 15, 17, 20, 21, 25, 36, 37, 50, 51]).

The concept of a 2-normed space was first introduced by Gähler [15].

Definition 2.1. Let X is a linear space of a dimension d, where 2 ≤ d < ∞. A 2-norm on X is a
function ‖·, ·‖ : X ×X → R satisfying the following conditions: for every ξ, ζ ∈ X, (i) ‖ξ, ζ‖ = 0 if
and only if ξ and ζ are linearly dependent; (ii) ‖ξ, ζ‖ = ‖ζ, ξ‖; (iii) ‖αξ, ζ‖ = |α| ‖ξ, ζ‖, α ∈ R; (iv)∥∥∥ξ+ ζ, η

∥∥∥ ≤ ∥∥∥ξ, η
∥∥∥+ ∥∥∥ζ, η

∥∥∥. In this case, (X , ‖., .‖ is called a 2-normed space.

Example 2.1. Take X = R2 being equipped with the 2-norm ‖ξ, ζ‖ = the area of the parallelogram spanned
by the vectors ξ and ζ, which may be given explicitly by the formula

‖ξ, ζ‖ = |ξ1ζ2 − ξ2ζ1|, where ξ = (ξ1, ξ2), ζ = (ζ1, ζ2).
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A triple sequence x = {%mnk} in 2-normed space (X , ‖., .‖) is said to be convergent to ξ in X if

lim
m,n,k→∞

∥∥∥%mnk − ξ, z
∥∥∥ = 0 for each z ∈ X . In such a case, we write lim

m,n,k→∞
%mnk = ξ and ξ is called

the limit of x.

Example 2.2. Let x = {%mnk} =

{(
2nmk

mnk + 3
,
(−1)mnk

nmk + 1

)}
and ξ = (2, 0). Then clearly that x = {%mnk} is

convergent to ξ = (2, 0) in 2-normed space X .

Let r be a non-negative real number. A triple sequence x = {%mnk} is said to be r-convergent to ξ

in a 2-normed space X, denoted by x r
−→ ξ, provided that for each z ∈ X

∀ε > 0 ∃mε, nε, kε ∈N : m > mε, n > nε and k > kε =⇒ ‖x− ξ, z‖ < r + ε

for each z ∈ X.

The set

LIMr
x =

{
ξ ∈ X : x r

−→ ξ
}

is called the r-limit set of the triple sequence x = {%mnk}. A triple sequence x = {%mnk} is said to be

rough convergent (r-convergent) if LIMr
x , ∅. In this case, r is called the rough convergence degree

of the sequence x = {%mnk}. For r = 0, we get the ordinary convergence.

We recall that a subset E of N×N×N is said to have natural density δ(E) if

δ(K) = lim
m,n,k→∞

K(m, n, k)
mnk

,

where E(m, n, k) =
∣∣∣{(i, j, l) ∈N×N×N : i ≤ m, j ≤ n, l ≤ k

}∣∣∣.
Let x = {%mnk} be a triple sequence in a 2-normed space (X, ‖., .‖) and r be a non negative real

number. x is said to be r-statistically convergent to ξ, denoted by x
str

3
−−→ ξ, if for ε > 0 and each

z ∈ X we have δ(K(ε)) = 0, where K(ε) = {(m, n, k) ∈N×N×N : ‖x− ξ, z‖ ≥ r + ε}. In this case,

ξ is called the r-statistical limit of x.

A family I ⊂ 2N is said to be an ideal provided the following conditions hold:

(i) ∅ ∈ I;
(ii) A, B ∈ I imply A∪ B ∈ I;

(iii) A ∈ I, B ⊂ A imply B ∈ I.

An ideal is called non-trivial if N , I and a non-trivial ideal is called admissible if {n} ∈ I for each

n ∈N.

A non-empty family F ⊂ 2N is said to be a filter if the following conditions are hold:

(i) ∅ < F;

(ii) A, B ∈ F imply A∩ B ∈ F;

(iii) A ∈ F, A ⊂ B ⊂ Y imply B ∈ F.

Definition 2.2. [16] A non trivial ideal I3 of N×N×N is said to be strongly admissible if {i} ×N×N,
N × {i} ×N and N ×N × {i} belong to I3 for each i ∈ N. It is clear that a strongly admissible ideal is an
admissible ideal.
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If I0
3 =

{
A ⊂N×N×N : (∃m(A) ∈N) (i, j, k ≥ m(A))⇒ (i, j, k) < A

}
. Then, I0

3 is a non-trivial

strongly admissible ideal and we can see that I3 is a strongly admissible ideal if and only if I0
3 ⊂ I3.

Let x = {%mnk} be a triple sequence in a 2-normed space (X, ‖., .‖) and r be a non negative real

number. x is said to be rough I3-convergent (Ir
3-convergent) to ξ with the roughness degree r,

denoted by x
Ir
3
−→ ξ provided that{

(m, n, k) ∈N×N×N : ‖x− ξ, z‖ ≥ r + ε
}
∈ I3

for every ε > 0 and each z ∈ X; or equivalently, if the condition

I3 − lim sup ‖x− ξ, z‖ ≤ r

is satisfied for each z ∈ X. Moreover, we can write x
Ir
3
−→ ξ if and only the inequality ‖x− ξ, z‖ < r+ ε

holds for every ε > 0 and each z ∈ X and almost all (m, n, k).
A subset E ⊂N×N×N is said to be have I3-asymptotic density δI3(E) if

δI3(E) = I3 − lim
m,n,k→∞

∣∣∣E(m, n, k)
∣∣∣

mnk

where E(m, n, k) = {(i, j, l) ∈ N ×N ×N : i ≤ m, j ≤ n, l ≤ k; (i, j, l) ∈ E} and
∣∣∣E(m, n, k)

∣∣∣ denotes

number of elements of the set E(m, n, k).
A triple sequence x = {%mnk} in a 2-normed space (X, ‖., .‖) is I3-statistically convergent to ξ, and

we write x
I3−st3
−−−−→ ξ, provided that for any ε > 0, δ > 0 and each z ∈ X{

(m, n, k) ∈N×N×N :
1

mnk

∣∣∣{(i, j, l) : ‖x− ξ, z‖ ≥ ε, i ≤ m, j ≤ n, l ≤ k
}∣∣∣ ≥ δ} ∈ I3.

Let x = {%mnk} be a triple sequence in a 2-normed linear space (X, ‖., .‖ and r be a non-negative real

number. Then x is said to be rough I3-statistical convergent to ξ or Ir
3-statistical convergent to ξ if

for any ε > 0, δ > 0 and each z ∈ X{
(m, n, k) ∈N×N×N :

1
mnk

∣∣∣{(i, j, l), i ≤ m, j ≤ n, l ≤ k : ‖x− ξ, z‖ ≥ ε+ r
}∣∣∣ ≥ δ} ∈ I3.

In this case, ξ is called the rough I3-statistical limit of x = {%mnk} and we denote it by x
Ir
3−st3
−−−−→ ξ.

The triple sequence θ3 = θr,s,t = {(ir, js, lt)} is called triple lacunary sequence if there exist three

increasing sequences of integers such that

i0 = 0, h̄u = iu − iu−1 →∞ as r→∞,

j0 = 0, h̄v = jv − jv−1 →∞ as s→∞ and

l0 = 0, h̄w = lw − lw−1 →∞ as t→∞.

Let zuvw = iu jvlw, h̄uvw = h̄uh̄vh̄w and θu,v,w is determined by

℘uvw = {(i, j, l) : iu−1 < i ≤ iu, jv−1 < j ≤ jv, lw−1 < l ≤ lw},

qu =
iu

iu−1
, qv =

jv
jv−1

, qw =
lw

lw−1
and quvw = quqvqw.
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Throughout the study, θ3 = {(iu, jv, lw)}will be taken as a triple lacunary sequence.

A triple sequence x = {%mnk} in a 2-normed space (X, ‖., .‖) is said to be I3-lacunary statistical

convergent or Sθ3(I3)-convergent to ξ, if for each ε > 0, δ > 0 and each z ∈ X,{
(u, v, w) ∈N×N×N :

1
h̄uvw

∣∣∣∣{(m, n, k) ∈ ℘uvw :
∥∥∥%mnk − ξ, z

∥∥∥ ≥ ε}∣∣∣∣ ≥ δ} ∈ I3.

In this case, we write x→ ξ(Sθ3(I3)) or Sθ3(I3)- lim
m,n,k→∞

x = ξ.

3. Rough I3-Lacunary Statistical Convergence of Triple Sequences

In this section, we delve into the concept of rough I3-lacunary statistical convergence within

2-normed linear spaces for triple sequences. Furthermore, we provide a definition for the rough

I3-lacunary statistical limit set of a triple sequence and explore some of its key characteristics.

Definition 3.1. A triple sequence x = {%mnk} in a 2-normed space (X, ‖., .‖) and r be a non-negative real
number. Then x is said to be rough lacunary statistical convergent to ξ or r-lacunary statistical convergent
to ξ if for any ε > 0 and each z ∈ X,

lim
u,v,w→∞

1
h̄uvw

∣∣∣∣{(m, n, k) ∈ ℘uvw :
∥∥∥%mnk − ξ, z

∥∥∥ ≥ ε+ r
}∣∣∣∣ = 0.

In this case ξ is called the rough lacunary statistical limit of x = {%mnk} and we denote it by

x
S

r
θ3
−−→ ξ

Definition 3.2. A triple sequence x = {%mnk} in a 2-normed space (X, ‖., .‖) and r be a non-negative
real number. Then x is said to be rough I3-lacunary statistical convergent to ξ or Ir

3-lacunary statistical
convergent to ξ if for any ε > 0, δ > 0 and each z ∈ X,{

(u, v, w) ∈N×N×N :
1

h̄uvw

∣∣∣∣{(m, n, k) ∈ ℘uvw :
∥∥∥%mnk − ξ, z

∥∥∥ ≥ ε+ r
}∣∣∣∣ ≥ δ} ∈ I3.

In this case, ξ is called the rough I3-lacunary statistical limit of x = {%mnk} and we denote it by x
Ir
θ3
−st3

−−−−−→ ξ.

In the aforementioned definition, we designate the degree of roughness for rough I3-lacunary

statistical convergence as r. When r equals zero, we obtain the concept of I3-lacunary convergence.

However, our primary focus lies in cases where r is greater than zero. It is conceivable that

a triple sequence denoted as y = ymnk satisfies the conditions of being I3-lacunary statistically

convergent and meeting the requirement
∥∥∥%mnk − ymnk, z

∥∥∥ ≤ r for all (m, n, k) and each z ∈ X, yet it

does not conform to the conventional notion of I3-lacunary statistical convergence. In such cases,

statistically, x is roughly I3-lacunary and converges to the same limit. As described earlier, the

rough I3-lacunary statistical limit of a triple sequence is not unique.

To denote the set of approximate I3-lacunary statistical limits for a triple sequence x, we use the

notation Iθ3-st3-LIMr
x. This set represents all potential approximate upper statistical bounds for

I3-lacunary statistical convergence of a triple sequence x. If a triple sequence x is not unique, and
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Iθ3-st3-LIMr
x , ∅, we refer to it as roughly I3-lacunary statistically convergent. In this paper, we

consistently represent a 2-normed linear space as X = (X, ‖·, ·‖), and we use the symbol x to refer

to the triple sequence denoted as %mnk within this space.

Theorem 3.1. Let x = {%mnk} be a triple sequence and r ≥ 0. Then Iθ3-st3-LIMr
x ≤ 2r. In particular if

x is rough I3-lacunary statistically convergent to ξ, then Iθ3-st3-LIMr
x = Br(ξ), where Br(ξ) = {y ∈ X :∥∥∥y− ξ, z

∥∥∥ ≤ r} for eah z ∈ X and so diam(Iθ3 − st3 − LIMr
x) = 2r.

Proof. Let diam(Iθ3 − st3−LIMr
x) > 2r. Then there exist y, p ∈ Iθ3 − st3−LIMr

x such that
∥∥∥y− p, z

∥∥∥ > 2r

for each z ∈ X. Now, we select ε > 0 so that ε <

∥∥∥y− p, z
∥∥∥

2
− r for each z ∈ X. Let

A =
{
(m, n, k) ∈ ℘uvw :

∥∥∥%mnk − y, z
∥∥∥ ≥ r + ε

}
and

B =
{
(m, n, k) ∈ ℘uvw :

∥∥∥%mnk − p, z
∥∥∥ ≥ r + ε

}
for each z ∈ X. Then

1
h̄uvw

∣∣∣{(m, n, k) ∈ ℘uvw : (m, n, k) ∈ A∪ B
}∣∣∣ ≤ 1

h̄uvw

∣∣∣{(m, n, k) ∈ ℘uvw : (m, n, k) ∈ A
}∣∣∣

+
1

h̄uvw

∣∣∣{(m, n, k) ∈ ℘uvw : (m, n, k) ∈ B
}∣∣∣

and so by the property of I3-convergence

lim
u,v,w→∞

1
h̄uvw

∣∣∣{(m, n, k) ∈ ℘uvw : (m, n, k) ∈ A∪ B
}∣∣∣

≤ lim
u,v,w→∞

1
h̄uvw

∣∣∣{(m, n, k) ∈ ℘uvw : (m, n, k) ∈ A
}∣∣∣

+ lim
u,v,w→∞

1
h̄uvw

∣∣∣{(m, n, k) ∈ ℘uvw : (m, n, k) ∈ B
}∣∣∣ = 0

Hence {
(u, v, w) ∈N×N×N :

1
h̄uvw

∣∣∣{(m, n, k) ∈ ℘uvw : (m, n, k) ∈ A∪ B
}∣∣∣ ≥ δ} ∈ I3

for each δ > 0 and each z ∈ X. Let

M =
{
(u, v, w) ∈N×N×N :

1
h̄uvw

∣∣∣{(m, n, k) ∈ ℘uvw : (m, n, k) ∈ A∪ B
}∣∣∣ ≥ 1

2

}
clearly M ∈ I3, so choose (u0, v0, w0) ∈N×N×N \M. Then

1
h̄u0v0w0

∣∣∣{(m, n, k) ∈ ℘uvw : (m, n, k) ∈ A∪ B
}∣∣∣ < 1

2
.

Consequently,
1

h̄u0v0w0

∣∣∣{(m, n, k) ∈ ℘uvw : (m, n, k) < A∪ B
}∣∣∣ ≥ 1

2
,

that is,
{
(m, n, k) ∈ ℘uvw : (m, n, k) < A∪ B

}
, ∅.

Take (m0, n0, k0) ∈ ℘uvw such that (m0, n0, k0) < A ∪ B. Then (m0, n0, k0) ∈ Ac
∩ Bc and so∥∥∥%m0n0k0 − y, z

∥∥∥ < r + ε and
∥∥∥%m0n0k0 − p, z

∥∥∥ < r + ε for each z ∈ X. Hence, we have∥∥∥y− p, z
∥∥∥ ≤ ∥∥∥%m0n0k0 − y, z

∥∥∥+ ∥∥∥%m0n0k0 − p, z
∥∥∥ < 2r + 2ε ≤

∥∥∥y− p, z
∥∥∥
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for each z ∈ X. This is impossible and so diam(Iθ3 − st3 − LIMr
x) ≤ 2r.

If Iθ3 − st3 − LIMr
x = ξ, then we proceed as follows. Let ε > 0 and δ > 0 be given. Then for each

z ∈ X

A =
{
(u, v, w) ∈N×N×N :

1
h̄uvw

∣∣∣∣{(m, n, k) ∈ ℘uvw :
∥∥∥%mnk − ξ, z

∥∥∥ ≥ ε}∣∣∣∣ ≥ δ} ∈ I3.

Then for (u, v, w) < A we have

1
h̄uvw

∣∣∣∣{(m, n, k) ∈ ℘uvw :
∥∥∥%mnk − ξ, z

∥∥∥ ≥ ε}∣∣∣∣ < δ,

i.e.,
1

h̄uvw

∣∣∣∣{(m, n, k) ∈ ℘uvw :
∥∥∥%mnk − ξ, z

∥∥∥ ≥ ε}∣∣∣∣ ≥ 1− δ.

Now for each y ∈ Br(ξ) we have∥∥∥%mnk − y, z
∥∥∥ ≤ ∥∥∥%mnk − ξ, z

∥∥∥+ ∥∥∥ξ− y, z
∥∥∥ ≤ ∥∥∥%mnk − ξ, z

∥∥∥+ r

for each z ∈ X. Let Buvw = {(m, n, k) ∈ ℘uvw :
∥∥∥%mnk − ξ, z

∥∥∥ < ε} for each z ∈ X. Then for

(m, n, k) ∈ Buvw we have
∥∥∥%mnk − y, z

∥∥∥ < r + ε for each z ∈ X. Hence we have

Buvw = {(m, n, k) ∈ ℘uvw :
∥∥∥%mnk − y, z

∥∥∥ < r + ε}

for each z ∈ X. This yields

|Buvw|

h̄uvw
≤

1
h̄uvw

∣∣∣{(m, n, k) ∈ ℘uvw :
∥∥∥%mnk − y, z

∥∥∥ < r + ε}
∣∣∣

i.e.,
1

h̄uvw

∣∣∣{(m, n, k) ∈ ℘uvw :
∥∥∥%mnk − y, z

∥∥∥ < r + ε}
∣∣∣ ≥ 1− δ.

Thus, for all (m, n, k) < A we have

1
h̄uvw

∣∣∣{(m, n, k) ∈ ℘uvw :
∥∥∥%mnk − y, z

∥∥∥ ≥ r + ε}
∣∣∣ ≥ 1− (1− δ) = δ.

Therefore

B =
{
(u, v, w) ∈N×N×N :

1
h̄uvw

∣∣∣{(m, n, k) ∈ ℘uvw :
∥∥∥%mnk − y, z

∥∥∥ ≥ r + ε}
∣∣∣ ≥ δ} ⊂ A.

Since A ∈ I3 we get B ∈ I3. This shows that y ∈ Iθ3 − st3 − LIMr
x and so Br(ξ) ⊂ Iθ3 − st3 − LIMr

x.

Conversely, let y ∈ Iθ3 − st3 − LIMr
x,

∥∥∥y− ξ, z
∥∥∥ > r and ε =

∥∥∥y− ξ, z
∥∥∥− r

2
for each z ∈ X. Now, we

take for each z ∈ X
M1 =

{
(m, n, k) ∈ ℘uvw :

∥∥∥%mnk − y, z
∥∥∥ ≥ r + ε

}
and

M2 =
{
(m, n, k) ∈ ℘uvw :

∥∥∥%mnk − y, z
∥∥∥ ≥ ε} .

Then
1

h̄uvw

∣∣∣{(m, n, k) ∈ ℘uvw : (m, n, k) ∈M1 ∪M2
}∣∣∣

≤
1

h̄uvw

∣∣∣{(m, n, k) ∈ ℘uvw : (m, n, k) ∈M1
}∣∣∣+ 1

h̄uvw

∣∣∣{(m, n, k) ∈ ℘uvw : (m, n, k) ∈M2
}∣∣∣
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and by the property of I3-convergence

I3 − lim
u,v,w→∞

1
h̄uvw

∣∣∣{(m, n, k) ∈ ℘uvw : (m, n, k) ∈M1 ∪M2
}∣∣∣

≤ I3 − lim
u,v,w→∞

1
h̄uvw

∣∣∣{(m, n, k) ∈ ℘uvw : (m, n, k) ∈M1
}∣∣∣

+I3 − lim
u,v,w→∞

1
h̄uvw

∣∣∣{(m, n, k) ∈ ℘uvw : (m, n, k) ∈M2
}∣∣∣ = 0

Now,let

M =
{
(u, v, w) ∈N×N×N :

1
h̄uvw

∣∣∣{(m, n, k) ∈ ℘uvw : (m, n, k) ∈M1 ∪M2
}∣∣∣ ≥ 1

2

}
.

Clearly M ∈ I3 and we choose (u0, v0, w0) ∈N×N×N \M. Then we have

1
h̄uvw

∣∣∣{(m, n, k) ∈ ℘uvw : (m, n, k) ∈M1 ∪M2
}∣∣∣ < 1

2

and so
1

h̄uvw

∣∣∣{(m, n, k) ∈ ℘uvw : (m, n, k) <M1 ∪M2
}∣∣∣ ≥ 1−

1
2
=

1
2

,

i.e., {(m, n, k) : (m, n, k) <M1 ∪M2} is a nonempty set. Let (m0, n0, k0) ∈ ℘uvw such that (m0, n0, k0) <

M1 ∪M2. Then (m0, n0, k0) ∈ Mc
1 ∩Mc

2 and hence
∥∥∥%m0n0k0 − y, z

∥∥∥ < r + ε and
∥∥∥%m0n0k0 − ξ, z

∥∥∥ < ε for

each z ∈ X. Hence∥∥∥y− ξ, z
∥∥∥ ≤ ∥∥∥%m0n0k0 − y, z

∥∥∥+ ∥∥∥%m0n0k0 − ξ, z
∥∥∥ ≤ r + 2ε ≤

∥∥∥y− ξ, z
∥∥∥

for each z ∈ X, which is impossible. Consequently,
∥∥∥y− ξ, z

∥∥∥ ≤ r and so y ∈ Br(ξ) and so

Iθ3 − st3 − LIMr
x = Br(ξ). �

Theorem 3.2. Let x = {%mnk} be a triple sequence and r ≥ 0 be a real number. Then the rough I3-lacunary
statistical limit set of the triple sequence x, i.e., the set Iθ3 − st3 − LIMr

x is closed.

Proof. If Iθ3 − st3 − LIMr
x = ∅, then there is nothing to prove. Let us assume that Iθ3 − st3 − LIMr

x , ∅.

Now, consider a double sequence {ymnk} in Iθ3 − st3 − LIMr
x with lim

m,n,k→∞
ymnk = y. Choose ε > 0

and δ > 0. Then there exists iε/2 such that for all m, n, k ≥ iε/2 and each z ∈ X∥∥∥ymnk − y, z
∥∥∥ < ε

2
.

Let m0, n0, k0 > iε/2. Then ym0n0k0 ∈ Iθ3 − st3 − LIMr
x. Therefore, we have

A =
{
(u, v, w) ∈N×N×N :

1
h̄uvw

∣∣∣∣∣{(m, n, k) ∈ ℘uvw :
∥∥∥%mnk − ym0n0k0,z

∥∥∥ ≥ r +
ε
2

}∣∣∣∣∣ ≥ δ} ∈ I3.

Clearly M = N×N×N \A is nonempty, choose (u, v, w) ∈M. We have

1
h̄uvw

∣∣∣∣∣{(m, n, k) ∈ ℘uvw :
∥∥∥%mnk − ym0n0k0,z

∥∥∥ ≥ r +
ε
2

}∣∣∣∣∣ < δ
and so

1
h̄uvw

∣∣∣∣∣{(m, n, k) ∈ ℘uvw :
∥∥∥%mnk − ym0n0k0,z

∥∥∥ < r +
ε
2

}∣∣∣∣∣ ≥ 1− δ.
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Put

Buvw =
{
(m, n, k) ∈ ℘uvw :

∥∥∥%mnk − ym0n0k0,z

∥∥∥ < r +
ε
2

}
and select (m, n, k) ∈ Buvw. Then we have for each z ∈ X∥∥∥%mnk − y, z

∥∥∥ ≤ ∥∥∥%mnk − ym0n0k0,z

∥∥∥+ ∥∥∥y− ym0n0k0,z

∥∥∥ < r + ε

and so for each z ∈ X

Buvw ⊂
{
(m, n, k) ∈ ℘uvw :

∥∥∥%mnk − y, z
∥∥∥ < r + ε

}
= K

which implies that

1− δ ≤
|Buvw|

h̄uvw
≤
|K|

h̄uvw
.

Therefore,
1

h̄uvw

∣∣∣∣{(m, n, k) ∈ ℘uvw :
∥∥∥%mnk − y, z

∥∥∥ ≥ r + ε
}∣∣∣∣ < 1− (1− δ) = δ

and so we have{
(u, v, w) ∈N×N×N :

1
h̄uvw

∣∣∣∣{(m, n, k) ∈ ℘uvw :
∥∥∥%mnk − y, z

∥∥∥ ≥ r + ε
}
≥ δ

∣∣∣∣} ⊂ A ∈ I3.

Consequently, y ∈ Iθ3 − st3 − LIMr
x and so Iθ3 − st3 − LIMr

x is closed. �

Theorem 3.3. Let x = {%mnk} be a triple sequence and r ≥ 0 be a real number. Then the rough I3-lacunary
statistical limit set Iθ3 − st3 − LIMr

x of the triple sequence x is a convex set.

Proof. Let y0, y1 ∈ Iθ3 − st3 − LIMr
x and ε > 0 be given. Define

A1 =
{
(m, n, k) ∈ ℘uvw :

∥∥∥%mnk − y0, z
∥∥∥ ≥ r + ε

}
and

A2 =
{
(m, n, k) ∈ ℘uvw :

∥∥∥%mnk − y1, z
∥∥∥ ≥ r + ε

}
for each z ∈ X. Then by Theorem 3.1, for δ > 0 and each z ∈ x we have{

(u, v, w) ∈N×N×N :
1

h̄uvw

∣∣∣{(m, n, k) ∈ ℘uvw : (m, n, k) ∈ A1 ∪A2
}∣∣∣ ≥ δ} ∈ I3.

Now, we choose 0 < δ1 < 1 such that 0 < 1− δ1 < δ and let

A =
{
(u, v, w) ∈N×N×N :

1
h̄uvw

∣∣∣{(m, n, k) ∈ ℘uvw : (m, n, k) ∈ A1 ∪A2
}∣∣∣ ≥ 1− δ1

}
.

Then A ∈ I3. For all (u, v, w) < A, we have

1
h̄uvw

∣∣∣{(m, n, k) ∈ ℘uvw : (m, n, k) ∈ A1 ∪A2
}∣∣∣ < 1− δ1

and so
1

h̄uvw

∣∣∣{(m, n, k) ∈ ℘uvw : (m, n, k) < A1 ∪A2
}∣∣∣ ≥ 1− (1− δ1) = δ1.
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Therefore,
{
(m, n, k) ∈ ℘uvw : (m, n, k) < A1 ∪A2

}
is a nonempty set. Let us take (m0, n0, k0) ∈ Ac

1∩Ac
2

and µ ∈ [0, 1]. Then for each z ∈ X∥∥∥%m0n0k0 − (µy0 + (1− µ)y1) , z
∥∥∥ =

∥∥∥µ%m0n0k0 + (1− µ)%m0n0k0 − (µy0 + (1− µ)y1) , z
∥∥∥

≤ µ
∥∥∥%m0n0k0 − y0, z

∥∥∥+ (1− µ)
∥∥∥%m0n0k0 − y0, z

∥∥∥
< µ(r + ε) + (1− µ)(r + ε) = r + ε.

Let

M =
{
(m, n, k) ∈ ℘uvw :

∥∥∥%mnk − (µy0 + (1− µ)y1) , z
∥∥∥ ≥ r + ε

}
for all z ∈ X. Then clearly Ac

1 ∩Ac
2 ⊂Mc. So for (u, v, w) < Ac, we have

δ1 ≤
1

h̄uvw

∣∣∣{(m, n, k) ∈ ℘uvw : (m, n, k) < A1 ∪A2
}∣∣∣ ≤ 1

h̄uvw

∣∣∣{(m, n, k) ∈ ℘uvw : (m, n, k) <M
}∣∣∣

and so
1

h̄uvw

∣∣∣{(m, n, k) ∈ ℘uvw : (m, n, k) ∈M
}∣∣∣ < 1− δ1 < δ.

Consequently,

Ac
⊂ K =

{
(u, v, w) ∈N×N×N :

1
h̄uvw

∣∣∣{(m, n, k) ∈ ℘uvw : (m, n, k) ∈M
}∣∣∣ < δ} .

Since Ac
∈ F(I3), we have K ∈ F(I3) and so{

(u, v, w) ∈N×N×N :
1

h̄uvw

∣∣∣{(m, n, k) ∈ ℘uvw : (m, n, k) ∈M
}∣∣∣ ≥ δ} ∈ I3.

Therefore, Iθ3 − st3 − LIMr
x is convex. �

Theorem 3.4. A triple sequence x = {%mnk} is rough I3-lacunary statistical convergent to ξ if and only
if there exists a triple sequence y = {ymnk} such that Iθ3 − st3 − y = ξ and

∥∥∥%mnk − ymnk, z
∥∥∥ ≤ r for all

(m, n, k) ∈N×N×N and each z ∈ X.

Proof. Let y = {ymnk} be a triple sequence in X, which is I3-lacunary statistically convergent to ξ

and
∥∥∥%mnk − ymnk, z

∥∥∥ ≤ r for all (m, n, k) ∈N×N×N and each z ∈ X. Then for any ε > 0, δ > 0 and

each z ∈ X

A =
{
(u, v, w) ∈N×N×N :

1
h̄uvw

∣∣∣∣{(m, n, k) ∈ ℘uvw :
∥∥∥ymnk − ξ, z

∥∥∥ ≥ ε}∣∣∣∣ ≥ δ} ∈ I3.

Let (u, v, w) < A. Then we have for each z ∈ X

1
h̄uvw

∣∣∣∣{(m, n, k) ∈ ℘uvw :
∥∥∥ymnk − ξ, z

∥∥∥ ≥ ε}∣∣∣∣ < δ
=⇒

1
h̄uvw

∣∣∣∣{(m, n, k) ∈ ℘uvw :
∥∥∥ymnk − ξ, z

∥∥∥ < ε}∣∣∣∣ ≥ 1− δ.

Now, we let for each z ∈ X

Buvw =
{
(m, n, k) ∈ ℘uvw :

∥∥∥ymnk − ξ, z
∥∥∥ < ε} .

Then, for (m, n, k) ∈ Buvw, we have∥∥∥%mnk − ξ, z
∥∥∥ ≤ ∥∥∥%mnk − ymnk, z

∥∥∥+ ∥∥∥ymnk − ξ, z
∥∥∥ < r + ε,
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for each z ∈ X. So, for each z ∈ X

Buvw ⊂ E =
{
(m, n, k) ∈ ℘uvw :

∥∥∥ymnk − ξ, z
∥∥∥ < r + ε

}
=⇒

|Buvw|

h̄uvw
≤
|E|

h̄uvw

=⇒
1

h̄uvw

∣∣∣∣{(m, n, k) ∈ ℘uvw :
∥∥∥ymnk − ξ, z

∥∥∥ < r + ε
}∣∣∣∣ ≥ 1− δ

=⇒
1

h̄uvw

∣∣∣∣{(m, n, k) ∈ ℘uvw :
∥∥∥ymnk − ξ, z

∥∥∥ ≥ r + ε
}∣∣∣∣ < δ.

Thus, we have for each z ∈ X

Q =
{
(u, v, w) ∈N×N×N :

1
h̄uvw

∣∣∣∣{(m, n, k) ∈ ℘uvw :
∥∥∥ymnk − ξ, z

∥∥∥ ≥ r + ε
}∣∣∣∣ ≥ δ} ⊂ A

and since A ∈ I3, we have Q ∈ I3. Therefore, Iθ3 − st3 − y = ξ.

Conversely, suppose that Iθ3 − st3 − y = ξ. Then, for ε > 0, δ > 0 and each z ∈ X,

Q =
{
(u, v, w) ∈N×N×N :

1
h̄uvw

∣∣∣∣{(m, n, k) ∈ ℘uvw :
∥∥∥ymnk − ξ, z

∥∥∥ ≥ r + ε
}∣∣∣∣ ≥ δ} ∈ I3.

Let (u, v, w) < Q. Then we have for z ∈ X,

1
h̄uvw

∣∣∣∣{(m, n, k) ∈ ℘uvw :
∥∥∥ymnk − ξ, z

∥∥∥ ≥ r + ε
}∣∣∣∣ < δ

and so for z ∈ X,
1

h̄uvw

∣∣∣∣{(m, n, k) ∈ ℘uvw :
∥∥∥ymnk − ξ, z

∥∥∥ < r + ε
}∣∣∣∣ ≥ 1− δ.

Let

Buvw =
{
(m, n, k) ∈ ℘uvw :

∥∥∥%mnk − ξ, z
∥∥∥ < r + ε

}
.

Now, we define a triple sequence y = {ymnk} for each z ∈ X as follows:

ymnk =


ξ, if

∥∥∥%mnk − ξ, z
∥∥∥ ≤ r ;

%mnk + r
ξ− %mnk∥∥∥%mnk − ξ, z

∥∥∥ , otherwise.

Then for each z ∈ X ∥∥∥ymnk − ξ, z
∥∥∥ =  0, if

∥∥∥%mnk − ξ, z
∥∥∥ ≤ r ;∥∥∥%mnk − ξ, z

∥∥∥− r, otherwise.

Let (u, v, w) ∈ Buvw. Then for each z ∈ X, we have∥∥∥ymnk − ξ, z
∥∥∥ =  0, if

∥∥∥%mnk − ξ, z
∥∥∥ ≤ r;

< ε, if r <
∥∥∥%mnk − ξ, z

∥∥∥ < r + ε .

and so for each z ∈ X

Buvw ⊂ E =
{
(m, n, k) ∈ ℘uvw :

∥∥∥ymnk − ξ, z
∥∥∥ < ε} .

This implies
|Buvw|

h̄uvw
≤
|E|

h̄uvw
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for each z ∈ X. Hence we have
|E|

h̄uvw
≥ 1− δ =⇒

{
(m, n, k) ∈ ℘uvw :

∥∥∥ymnk − ξ, z
∥∥∥ ≥ ε} < δ,

and so for each z ∈ X{
(u, v, w) ∈N×N×N :

1
h̄uvw

∣∣∣∣{(m, n, k) ∈ ℘uvw :
∥∥∥ymnk − ξ, z

∥∥∥ ≥ ε}∣∣∣∣ ≥ δ} ⊂ Q.

Since Q ∈ I3, we have for each z ∈ X{
(u, v, w) ∈N×N×N :

1
h̄uvw

∣∣∣∣{(m, n, k) ∈ ℘uvw :
∥∥∥ymnk − ξ, z

∥∥∥ ≥ ε}∣∣∣∣ ≥ δ} ∈ I3.

Therefore, Iθ3 − st3 − y = ξ. �

The next result provides a relationship between boundedness and rough Iθ3-statistical conver-

gence of triple sequences.

Theorem 3.5. If a triple sequence x = {%mnk} is bounded then there exists r ≥ 0 such that Iθ3 − st3 −LIMr
x ,

∅.

Proof. Let x = {%mnk} be bounded triple sequence. There exists a positive real number M such that∥∥∥%mnk, z
∥∥∥ < M, for all (m, n, k) ∈ ℘uvw and each z ∈ X. Let ε > 0 be given. Then for each z ∈ X{

(u, v, w) ∈ ℘uvw :
∥∥∥%mnk, z

∥∥∥ ≥M + ε
}
= ∅.

Consequently, 0 ∈ Iθ3 − st3 − LIMM
x and so Iθ3 − st3 − LIMM

x , ∅. �

The converse of Theorem 3.5 is not true as shown by the following example.

Example 3.1. Consider the triple sequence x = {%mnk} in R defined by

%mnk =

 mnk, if m, n and k are square;
1, otherwise.

Then Iθ3 − st3 − LIM0
x = {1}. But x = {%mnk} is unbounded.

Definition 3.3. A point c ∈ X is said to be an I3-lacunary statistical cluster point of a triple sequence
x = {%mnk} in X if for any ε > 0 and each z ∈ X

δI3

({
(m, n, k) ∈ ℘uvw :

∥∥∥%mnk − c, z
∥∥∥ < ε}) , 0

where

δI3 (A) = I3 − lim
u,v,w→∞

1
h̄uvw

∣∣∣{(m, n, k) ∈ ℘uvw : (m, n, k) ∈ A
}∣∣∣ ,

if it exists. The set of I3-lacunary statistical cluster points of x is denoted by Λ
Sθ3
x (I3).

Definition 3.4. A point c ∈ X is said to be an I3-lacunary rough statistical cluster point of a triple sequence
x = {%mnk} in X for a non-negative real number r ≥ 0 if for any ε > 0 and each z ∈ X

δI3

({
(m, n, k) ∈ ℘uvw :

∥∥∥%mnk − c, z
∥∥∥ < r + ε

})
, 0
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where
δI3 (A) = I3 − lim

u,v,w→∞

1
h̄uvw

∣∣∣{(m, n, k) ∈ ℘uvw : (m, n, k) ∈ A
}∣∣∣ ,

if it exists. The set of I3-lacunary rough statistical cluster points of x is denoted by Λ
Sθ3
x (Ir

3).

Theorem 3.6. For any arbitrary ν ∈ Λ
Sθ3
x (I3) of a triple sequence x = {%mnk} we have ‖ξ− ν, z‖ ≤ r for all

ξ ∈ Iθ3 − st3 − LIMr
x and each z ∈ X.

Proof. Assume that there exists a point ν ∈ Λ
Sθ3
x (I3) and ξ ∈ Iθ3 − st3 − LIMr

x such that ‖ξ− ν, z‖ > r

for each z ∈ X. Let ε =
‖ν− ξ, z‖ − r

3
for each z ∈ X. Then for each z ∈ X,{

(m, n, k) ∈ ℘uvw :
∥∥∥%mnk − ν, z

∥∥∥ < ε} ⊂ {
(m, n, k) ∈ ℘uvw :

∥∥∥%mnk − ξ, z
∥∥∥ ≥ r + ε

}
.

Since ν ∈ Λ
Sθ3
x (I3) we have

δI3

({
(m, n, k) ∈ ℘uvw :

∥∥∥%mnk − ν, z
∥∥∥ < ε}) , 0

and so

δI3

({
(m, n, k) ∈ ℘uvw :

∥∥∥%mnk − ξ, z
∥∥∥ ≥ r + ε

})
, 0

which contradicts that ξ ∈ Iθ3 − st3 − LIMr
x and consequently, ‖ξ− ν, z‖ ≤ r. �

Theorem 3.7. Let x = {%mnk} be a triple sequence in X. Then, for every r ≥ 0, the set Λ
Sθ3
x (Ir

3) is closed.

Proof. If Λ
Sθ3
x (Ir

3) = ∅ there is nothing to prove. Assume that Λ
Sθ3
x (Ir

3) , ∅ and consider a sequence

{ymnk} ⊂ Λ
Sθ3
x (Ir

3) such that ymnk → ξ. Let us show that

δI3

({
(m, n, k) ∈ ℘uvw :

∥∥∥%mnk − ξ, z
∥∥∥ < r + ε

})
, 0

for every ε > 0 and z ∈ X. Fix ε > 0. Since ymnk → ξ, there exists an (m0, n0, k0) =

(m0(ε), n0(ε), k0(ε)) ∈N×N×N such that∥∥∥ymnk − ξ, z
∥∥∥ < ε

2
for all (m, n, k) > (m0, n0, k0) and every z ∈ X. Fix p0, q0, s0 such that (p0, q0, s0) > (m0, n0, k0). Then,

we have ∥∥∥yp0,q0s0 − ξ, z
∥∥∥ < ε

2
for every z ∈ X. Let (p, q, s) be any point of the set{

(m, n, k) ∈ ℘uvw :
∥∥∥%mnk − yp0,q0s0 , z

∥∥∥ < r +
ε
2

}
.

Since
∥∥∥%pqs − yp0,q0s0 , z

∥∥∥ < r +
ε
2

, we have∥∥∥%pqs − ξ, z
∥∥∥ ≤

∥∥∥%pqs − yp0,q0s0 , z
∥∥∥+ ∥∥∥yp0,q0s0 − ξ, z

∥∥∥
< r +

ε
2
+
ε
2
= r + ε

and so,

(p, q, s) ∈
{
(m, n, k) ∈ ℘uvw :

∥∥∥%pqs − ξ, z
∥∥∥ < r + ε

}
,
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for every z ∈ X. Hence, we have{
(m, n, k) ∈ ℘uvw :

∥∥∥%pqs − yp0,q0s0 , z
∥∥∥ < r +

ε
2

}
⊆

{
(m, n, k) ∈ ℘uvw :

∥∥∥%pqs − ξ, z
∥∥∥ < r + ε

}
. (3.1)

Since

δI3

({
(m, n, k) ∈ ℘uvw :

∥∥∥%pqs − yp0,q0s0 , z
∥∥∥ < r +

ε
2

})
, 0

by (3.1), we obtain

δI3

({
(m, n, k) ∈ ℘uvw :

∥∥∥%pqs − ξ, z
∥∥∥ < r + ε

})
, 0,

for every z ∈ X. Consequently, ξ ∈ Λ
Sθ3
x (Ir

3). �

Theorem 3.8. Let r > 0. For a triple sequence x = {%mnk} in X, we have ξ ∈ Λ
Sθ3
x (Ir

3) if and only if there

exists a sequence y = {ymnk} such that ξ ∈ Λ
Sθ3
x (I3) and

∥∥∥%mnk − ymnk, z
∥∥∥ ≤ r for every z ∈ X and almost

all (m, n, k).

Proof. Necessity: Fix r and ε and suppose that ξ ∈ Λ
Sθ3
x (Ir

3). Thus, we have δI3(A) , 0, where

A :=
{
(m, n, k) ∈ ℘uvw :

∥∥∥%mnk − ξ, z
∥∥∥ < r + ε

}
,

for every z ∈ X. Define

ymnk :=


ξ, if

∥∥∥%mnk − ξ, z
∥∥∥ ≤ r and (m, n, k) ∈ A;

%mnk + r
ξ− %mnk∥∥∥%mnk − ξ, z

∥∥∥ , if
∥∥∥%mnk − ξ, z

∥∥∥ > r and (m, n, k) ∈ A;

tmnk, if (m, n, k) < A

(3.2)

where the sequence t = {tmnk} is arbitrary. It is clear that

∥∥∥ymnk − ξ, z
∥∥∥ =  0, if

∥∥∥%mnk − ξ, z
∥∥∥ ≤ r;∥∥∥%mnk − ξ, z

∥∥∥− r, otherwise.
(3.3)

and
∥∥∥%mnk − ymnk, z

∥∥∥ ≤ r, for every (m, n, k) ∈ A and z ∈ X. Now let us show that the inclusion

A ⊆
{
(m, n, k) ∈ ℘uvw :

∥∥∥ymnk − ξ, z
∥∥∥ < ε} (3.4)

holds, for every z ∈ X. If (m0, n0, k0) ∈ A, then we have∥∥∥%m0n0k0 − ξ, z
∥∥∥ < r + ε,

for every z ∈ X. Hence the following two cases are possible:

(i) If
∥∥∥%m0n0k0 − ξ, z

∥∥∥ ≤ r, then from (3.3), we have∥∥∥ym0n0k0 − ξ, z
∥∥∥ = 0,

that is,

(m0, n0, k0) ∈
{
(m, n, k) ∈ ℘uvw :

∥∥∥ymnk − ξ, z
∥∥∥ < ε} ,

for every z ∈ X.



16 Int. J. Anal. Appl. (2024), 22:115

(ii) If
∥∥∥%m0n0k0 − ξ, z

∥∥∥ > r, then from (3.3), we have∥∥∥ym0n0k0 − ξ, z
∥∥∥ = ∥∥∥%m0n0k0 − ξ, z

∥∥∥− r < r + ε− r = ε,

that is,

(m0, n0, k0) ∈
{
(m, n, k) ∈ ℘uvw :

∥∥∥ymnk − ξ, z
∥∥∥ < ε} ,

for every z ∈ X.

Since δI3(A) , 0, by the inclusion (3.4), we have

δI3

({
(m, n, k) ∈ ℘uvw :

∥∥∥ymnk − ξ, z
∥∥∥ < ε}) , 0

for every z ∈ X.

Sufficiency: Assume that ξ ∈ Λ
Sθ3
x (I3) and fix ε > 0. Then, we have

δI3

({
(m, n, k) ∈ ℘uvw :

∥∥∥ymnk − ξ, z
∥∥∥ < ε}) , 0

for every z ∈ X. Now, we let (p, q, s) ∈
{
(m, n, k) ∈ ℘uvw :

∥∥∥ymnk − ξ, z
∥∥∥ < ε} and so, we can write∥∥∥%mnk − ξ, z

∥∥∥ ≤ ∥∥∥%mnk − ymnk, z
∥∥∥+ ∥∥∥ymnk − ξ, z

∥∥∥ < r + ε,

for every z ∈ X. Therefore, we have

(p, q, s) ∈
{
(m, n, k) ∈ ℘uvw :

∥∥∥%mnk − ξ, z
∥∥∥ < r + ε

}
and so, for every z ∈ X.{

(m, n, k) ∈ ℘uvw :
∥∥∥ymnk − ξ, z

∥∥∥ < ε} ⊆ {
(m, n, k) ∈ ℘uvw :

∥∥∥%mnk − ξ, z
∥∥∥ < r + ε

}
holds. From this inclusion, we have

δI3

({
(m, n, k) ∈ ℘uvw :

∥∥∥%mnk − ξ, z
∥∥∥ < r + ε

})
, 0

and so ξ ∈ Λ
Sθ3
x (Ir

3). �

Theorem gives a straightforward approach to finding the set Λ
Sθ3
x (Ir

3)

Theorem 3.9. Let r > 0. For a triple sequence x = {%mnk} in X, we have

Λ
Sθ3
x (Ir

3) =
⋃

c∈Λ
Sθ3
x (I3)

Br(c),

where Br(c) =
{
y ∈ X :

∥∥∥y− c, z
∥∥∥ ≤ r

}
for every z ∈ X.

Proof. Let η ∈
⋃

c∈Λ
Sθ3
x (I3)

Br(c). Then, there exists a point c ∈ Λ
Sθ3
x (I3) such that η ∈ Br(c), that is,

∥∥∥η− c, z
∥∥∥ ≤ r for every z ∈ X. Fix ε > 0. Since c ∈ Λ

Sθ3
x (I3), there exists a set

A(ε) :=
{
(m, n, k) ∈ ℘uvw :

∥∥∥%mnk − c, z
∥∥∥ < ε}
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with δI3(A(ε)) , 0. Hence, we have∥∥∥%mnk − η, z
∥∥∥ ≤ ∥∥∥%mnk − c, z

∥∥∥+ ∥∥∥η− c, z
∥∥∥ < r + ε,

and so,

δI3

({
(m, n, k) ∈ ℘uvw :

∥∥∥%mnk − η, z
∥∥∥ < r + ε

})
, 0

for every (m, n, k) ∈ A(ε) and every z ∈ X. Therefore, η ∈ Λ
Sθ3
x (Ir

3) and so,

Λ
Sθ3
x (Ir

3) ⊇
⋃

c∈Λ
Sθ3
x (I3)

Br(c).

For the converse inclusion, take η ∈ Λ
Sθ3
x (Ir

3). Then, we have

δI3

({
(m, n, k) ∈ ℘uvw :

∥∥∥%mnk − η, z
∥∥∥ < r + ε

})
, 0 (3.5)

for every ε > 0 and every z ∈ X. We must show that η ∈
⋃

c∈Λ
Sθ3
x (I3)

Br(c). Suppose that this is not

satisfied. Then, it is clear that η < Br(c), that is,
∥∥∥η− c, z

∥∥∥ > r for every c ∈ Λ
Sθ3
x (I3) and every z ∈ X.

Since the set Λ
Sθ3
x (I3) is closed, there exists a vector c̃ ∈ Λ

Sθ3
x (I3) such that∥∥∥η− c̃, z

∥∥∥ = min
{∥∥∥η− c, z

∥∥∥ : c ∈ Λ
Sθ3
x (I3)

}
.

We can write ν :=
∥∥∥η− c̃, z

∥∥∥ > r, because
∥∥∥η− c, z

∥∥∥ > r, for all c ∈ Λ
Sθ3
x (I3) and every z ∈ X. Define

ε̃ :=
ν− r

3
. Then, we get

X \ Bε̃(Λ
Sθ3
x (I3)) ⊇

{
y ∈ X :

∥∥∥η− y, z
∥∥∥ < ε̃+ r

}
(3.6)

for every z ∈ X, where

Bε̃(Λ
Sθ3
x (I3)) =

{
y ∈ X : min

{∥∥∥y− c, z
∥∥∥ : c ∈ Λ

Sθ3
x (I3)

}
< ε̃

}
.

By definition of Λ
Sθ3
x (I3) we can say that the set{

(m, n, k) : %mnk < Bε̃(Λ
Sθ3
x (I3))

}
has density zero. Then, by the inclusion (3.6), we have{

(m, n, k) : %mnk < Bε̃(Λ
Sθ3
x (I3))

}
⊇

{
(m, n, k) :

∥∥∥%mnk − η, z
∥∥∥ < ε̃+ r

}
(3.7)

for every z ∈ X. Thus, from the inclusion (3.7), for every z ∈ X we have that the set{
(m, n, k) :

∥∥∥%mnk − η, z
∥∥∥ < ε̃+ r

}
has natural density zero, which contradicts to (3.5) and so,

Λ
Sθ3
x (Ir

3) ⊆
⋃

c∈Λ
Sθ3
x (I3)

Br(c).

Therefore,

Λ
Sθ3
x (Ir

3) =
⋃

c∈Λ
Sθ3
x (I3)

Br(c).
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�

Theorem 3.10. Let x = {%mnk} be a triple sequence and r ≥ 0. Then

Iθ3 − st3 − LIMr
x = Λ

Sθ3
x (Ir

3).

Proof. Necessity. Assume that the sequence x = {%mnk} rough I3-lacunary statistically convergent to

ξ. Then, Λ
Sθ3
x (I3) = {ξ}. By Theorem 3.9, we can write Λ

Sθ3
x (Ir

3) = Br(ξ). Therefore, from Theorem

3.1, we get

Λ
Sθ3
x (Ir

3) = Br(ξ) = Iθ3 − st3 − LIMr
x.

Sufficiency. First, we will show that Iθ3 − st3 − LIMr
x =

⋂
c∈Λ

Sθ3
x (I3)

. To do this, let ξ ∈ Iθ3 − st3 − LIMr
x

and c ∈ Λ
Sθ3
x (I3). Then, by Theorem 3.6, ‖ξ− c, z‖ ≤ r, otherwise, we get

δI3

({
(m, n, k) ∈ ℘uvw :

∥∥∥%mnk − ξ, z
∥∥∥ ≥ r + ε

})
, 0

for ε :=
‖ξ− c, z‖ − r

3
for each z ∈ X. This contradicts the fact ξ ∈ Iθ3 − st3 − LIMr

x and therefore,

Iθ3 − st3 − LIMr
x ⊆ Br(c). (3.8)

Now, it follows by inclusion (3.8) that

Iθ3 − st3 − LIMr
x ⊆

⋂
c∈Λ

Sθ3
x (I3)

Br(c). (3.9)

Now let y ∈
⋂

c∈Λ
Sθ3
x (I3)

Br(c). Then for each nonzero z ∈ X, we have

∥∥∥y− c, z
∥∥∥ ≤ r,

for all c ∈ Λ
Sθ3
x (I3), which is equivalent to

Λ
Sθ3
x (I3) ⊆ Br(y),

that is, ⋂
c∈Λ

Sθ3
x (I3)

Br(c) ⊆
{
ξ ∈ X : Λ

Sθ3
x (I3) ⊆ Br(ξ).

}
(3.10)

Now let y < Iθ3 − st3 − LIMr
x. Then, there exists an ε > 0 such that for each nonzero z ∈ X,

δI3

({
(m, n, k) ∈ ℘uvw :

∥∥∥%mnk − y, z
∥∥∥ ≥ r + ε

})
, 0,

which implies the existence of anI3-lacunary rough statistical cluster point c of the sequence

x with
∥∥∥y− c, z

∥∥∥ ≥ r + ε, that is Λ
Sθ3
x (I3) * Br(y) and y <

{
ξ ∈ X : Λ

Sθ3
x (I3) * Br(ξ)

}
. Hence,

y ∈ Iθ3 − st3 − LIMr
x follows from y ∈

{
ξ ∈ X : Λ

Sθ3
x (I3) * Br(ξ)

}
, that is,{

ξ ∈ X : Λ
Sθ3
x (I3) * Br(ξ)

}
⊆ Iθ3 − st3 − LIMr

x. (3.11)
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Therefore, the inclusions (3.9)-(3.11) ensure that (3.8) holds. So it follows by Theorem 3.6 that⋂
c∈Λ

Sθ3
x (I3)

Br(c) =
⋃

c∈Λ
Sθ3
x (I3)

Br(c) (3.12)

The equality (3.12) is valid if and only if, either the set Λ
Sθ3
x (I3) is empty or it is a singleton. Since

Iθ3 − st3 − LIMr
x =

⋂
c∈Λ

Sθ3
x (I3)

Br(c) = Br(ξ)

we have Iθ3 − st3 − LIMr
x = {ξ}. �

4. Lacunary Statistical-Convergence for Triple Sequences via Ideals

In this section, we utilize lacunary sequences and triple sequences to introduce novel concepts

related to Wijsman rough I3-statistical convergence. Subsequently, we derive equivalent results

based on these new definitions.

Definition 4.1. Let r be a non-negative real number. We say that the triple sequence x = {%mnk} is Wijsman
rough I3-statistically-convergent to ξ, if for each ε > 0, δ > 0 and for each z ∈ X,{

(u, v, w) ∈N×N×N :
1

uvw

∣∣∣∣{m ≤ u, n ≤ v, k ≤ w :
∥∥∥%mnk − ξ, z

∥∥∥ ≥ ε+ r
}∣∣∣∣ ≥ δ} ∈ I3.

In this case we write Ir
3-st-lim W(S)%mnk = ξ.

The set of Wijsman rough I3-statistically-convergent triple sequences will be denoted by

W3S(Ir
3) :=

{{
%mnk

}
: Ir

3 − st− lim W(S)%mnk = ξ
}

.

Definition 4.2. Let θ3 = θuvw = {(mu, nv, kw)} be a lacunary triple sequence and r be a non-negative real
number. We say that the triple sequence x = {%mnk} is Wijsman rough I3-lacunary statistically convergent
to ξ, if for each ε > 0, δ > 0, and for each z ∈ X,{

(u, v, w) ∈N×N×N :
1

h̄uvw

∣∣∣∣{(m, n, k) ∈ ℘uvw :
∥∥∥%mnk − ξ, z

∥∥∥ ≥ r + ε
}∣∣∣∣ ≥ δ} ∈ I3.

In this case, we write we write Ir
3-st-lim Wθ(Sθ) = ξ. The set of Wijsman rough I3-lacunary statistically

convergent triple sequences will be denoted by

Wθ3Sθ(Ir
3) :=

{{
%mnk

}
: Ir

3 − st− lim Wθ(Sθ) = ξ
}

.

Definition 4.3. Let r be a non-negative real number.We say that the triple x = {%mnk} is Wijsman rough
I3-statistically convergent of order α to ξ, where α ∈ (0, 1] if for each ε > 0, δ > 0, and for each z ∈ X,{

(u, v, w) ∈N×N×N :
1

(uvw)α

∣∣∣∣{m ≤ u, n ≤ v, k ≤ w :
∥∥∥%mnk − ξ, z

∥∥∥ ≥ r + ε
}∣∣∣∣ ≥ δ} ∈ I3.

In this case we write Ir
3-st-lim Wα(S)%mnk = x.
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The set of Wijsman rough I3-statistically convergent triple sequences of order α will be denoted

by

Wα
3 S(Ir

3) :=
{{
%mnk

}
: Ir

3 − st− lim Wα(S)%mnk = x
}

.

Definition 4.4. Let θ3 = θuvw = {(mu, nv, kw)} be a lacunary triple sequence and r be a non-negative real
number. We say that the triple sequence x = {%mnk} is Wijsman rough I3-lacunary statistically convergent
of order α to ξ, where α ∈ (0, 1], if for each ε > 0, δ > 0, and for each z ∈ X,{

(u, v, w) ∈N×N×N :
1

h̄αuvw

∣∣∣∣{(u, v, w) ∈ ℘uvw :
∥∥∥%mnk − ξ, z

∥∥∥ ≥ ε+ r
}∣∣∣∣ ≥ δ} ∈ I3.

In this case, we write we write Ir
3-st-lim Wα

θ
(Sθ)%mnk = ξ.

The set of Wijsman rough I3-lacunary statistically convergent triple sequences of order αwill be

denoted by

Wα
θ3

Sθ(Ir
3) =

{{
%mnk

}
: Ir

3 − st− lim Wα
θ
(Sθ)%mnk = ξ

}
.

Theorem 4.1. Let 0 < α ≤ β ≤ 1. Then Wα
3 S(Ir

3) ⊆Wβ
3S(Ir

3).

Proof. Let 0 < α ≤ β ≤ 1. Then for each z ∈ X,

1
(uvw)β

∣∣∣∣{m ≤ u, n ≤ v, k ≤ w :
∥∥∥%mnk − ξ, z

∥∥∥ ≥ r + ε
}∣∣∣∣

≤
1

(uvw)α

∣∣∣∣{m ≤ u, n ≤ v, k ≤ w :
∥∥∥%mnk − ξ, z

∥∥∥ ≥ r + ε
}∣∣∣∣

and so for each δ > 0 and each z ∈ X,{
(u, v, w) ∈N×N×N :

1
(uvw)β

∣∣∣∣{m ≤ u, n ≤ v, k ≤ w :
∥∥∥%mnk − ξ, z

∥∥∥ ≥ r + ε
}∣∣∣∣ ≥ δ}

⊆

{
(u, v, w) ∈N×N×N :

1
(uvw)α

∣∣∣∣{m ≤ u, n ≤ v, k ≤ w :
∥∥∥%mnk − ξ, z

∥∥∥ ≥ r + ε
}∣∣∣∣ ≥ δ}

Hence if the set on the right hand side belongs to the ideal I3 then obviously the set on the left

hand side also belongs to I3. We obtain the desired result. �

Corollary 4.1. If a triple sequence is Wijsman rough I3-statistically-convergent of order α to ξ for some
α ∈ (0, 1] then it is Wijsman rough I3-statistically-convergent.

Similarly we can show that

Theorem 4.2. Let 0 < α ≤ β ≤ 1. Then Wα
θ3

Sθ(Ir
3) ⊆ Wβ

θ3
Sθ(Ir

3) and in particular Wα
θ3

Sθ(Ir
3) ⊆

Wθ3Sθ(Ir
3).

Definition 4.5. Let θ3 = θuvw = {(mu, nv, kw)} be a lacunary triple sequence and r be a non-negative real
number. We say that the triple sequence x = {%mnk} is Wijsman strongly rough I3-lacunary convergent to
ξ, if for each ε > 0 and each z ∈ X,(u, v, w) ∈N×N×N :

1
h̄uvw

∑
(u,v,w)∈℘uvw

∥∥∥%mnk − ξ, z
∥∥∥ ≥ r + ε

 ∈ I3.
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In this case, we write we write Ir
3-lim Wθ(Nθ) = ξ.

The set of Wijsman strongly rough I3-lacunary-convergent triple sequences will be denoted by

Wθ3Nθ(Ir
3) :=

{{
%mnk

}
: Ir

3 − lim Wθ(Nθ) = ξ
}

.

Theorem 4.3. Let θ3 = θuvw = {(mu, nv, kw)} be a lacunary triple sequence and r be a non-negative real
number. Then Ir

3-lim Wθ(Nθ) = ξ implies Ir
3-st-lim Wθ(Sθ) = ξ.

Proof. Let ε > 0 be given and r be a non-negative real number. Then for each z ∈ X,∑
(u,v,w)∈℘uvw

∥∥∥%mnk − ξ, z
∥∥∥ ≥ ∑

(u,v,w)∈℘uvw

‖%mnk−ξ,z‖≥r+ε

∥∥∥%mnk − ξ, z
∥∥∥

≥ (r + ε)
∣∣∣∣{(u, v, w) ∈ ℘uvw :

∥∥∥%mnk − ξ, z
∥∥∥ ≥ r + ε

}∣∣∣∣
and consequently,

1
(r + ε)h̄uvw

∑
(u,v,w)∈℘uvw

∥∥∥%mnk − ξ, z
∥∥∥ ≥ 1

h̄uvw

∣∣∣∣{(u, v, w) ∈ ℘uvw :
∥∥∥%mnk − ξ, z

∥∥∥ ≥ r + ε
}∣∣∣∣

Then, for each δ > 0 and each z ∈ X{
(u, v, w) ∈ ℘uvw :

1
h̄uvw

∣∣∣∣{(u, v, w) ∈ ℘uvw :
∥∥∥%mnk − ξ, z

∥∥∥ ≥ r + ε
}∣∣∣∣ ≥ δ}

⊆

(u, v, w) ∈ ℘uvw :
1

h̄uvw

∑
(u,v,w)∈℘uvw

∥∥∥%mnk − ξ, z
∥∥∥ ≥ (r + ε)δ

 ∈ I3.

This ends the proof. �

Definition 4.6. A triple sequence x = {%mnk} is said to be bounded if there exists areal number M > 0 such
that

∥∥∥%mnk, z
∥∥∥ ≤ M for all m, n, k ∈ N and each z ∈ X. We denote the space of all bounded triple sequences

by `3
∞.

Theorem 4.4. Let θ3 = θuvw = {(mu, nv, kw)} be a lacunary triple sequence and r be a non-negative real
number. If x = {%mnk} ∈ `

3
∞ and x = {%mnk} is Wijsman rough I3-lacunary statistical-convergent to ξ, then

x = {%mnk} is Wijsman strongly rough I3-lacunary-convergent to ξ.

Proof. Suppose that x = {%mnk} belongs to the space `3
∞ and Ir

3-st-lim Wθ(Sθ)%mnk = ξ. Then, we can

assume that
∥∥∥%mnk − ξ, z

∥∥∥ ≤ M, for each z ∈ X and all m, n, k ∈ N. Given ε > 0 and each z ∈ X we

have
1

h̄uvw

∑
(m,n,k)∈℘uvw

∥∥∥%mnk − ξ, z
∥∥∥

=
1

h̄uvw

∑
(m,n,k)∈℘uvw

‖%mnk−ξ,z‖≥r+ ε
2

∥∥∥%mnk − ξ, z
∥∥∥+ 1

h̄uvw

∑
(m,n,k)∈℘uvw

‖%mnk−ξ,z‖< ε
2

∥∥∥%mnk − ξ, z
∥∥∥

≤
M

h̄uvw

∣∣∣∣∣{(m, n, k) ∈ ℘uvw :
∥∥∥%mnk − ξ, z

∥∥∥ ≥ r +
ε
2

}∣∣∣∣∣+ ε
2

.
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Consequently, we have(u, v, w) ∈N×N×N :
1

h̄uvw

∑
(m,n,k)∈℘uvw

∥∥∥%mnk − ξ, z
∥∥∥ ≥ ε+ r


⊆

{
(u, v, w) ∈N×N×N :

1
h̄uvw

∣∣∣∣∣{(m, n, k) ∈ ℘uvw :
∥∥∥%mnk − ξ, z

∥∥∥ ≥ r +
ε
2

}∣∣∣∣∣ ≥ ε
2M

}
∈ I3.

Consequently, Ir
3-lim Wθ(Sθ)%mnk = ξ. �

From Theorem 4.3 and Theorem 4.4, we have following Corollary.

Corollary 4.2. Let θ3 = θuvw = {(mu, nv, kw)} be a lacunary triple sequence and r be a non-negative real
number. Then we have

Wθ3Sθ(Ir
3)∩ `

3
∞ = Wθ3Nθ(Ir

3)∩ `
3
∞.

We will now look at how the Wijsman rough I3-statistical-convergence for triple sequence and

the Wijsman rough I3-lacunary statistical-convergence relate to one another.

Theorem 4.5. Let θ3 = θuvw = {(mu, nv, kw)} be a lacunary triple sequence and r be a non-negative real
number with lim inf quvw > 1. Then, Ir

3-st-lim W(S)%mnk = ξ implies Ir
3-st-lim Wθ(Sθ)%mnk = ξ.

Proof. Suppose that lim inf quvw > 1. Then, there exists a η > 0 such that quvw ≥ η+ 1 for sufficiently

large u, v, w, which implies
h̄uvw

zuvw
≥

η

η+ 1
.

If Ir
3-st-lim W(S)%mnk = ξ , then for every ε > 0, for each z ∈ X and for sufficiently large u, v, w, we

have
1

zuvw

∣∣∣∣{m ≤ iu, n ≤ ℘v, k ≤ lw :
∥∥∥%mnk − ξ, z

∥∥∥ ≥ ε+ r
}∣∣∣∣

≥
1

zuvw

∣∣∣∣{(m, n, k) ∈ ℘uvw :
∥∥∥%mnk − ξ, z

∥∥∥ ≥ ε+ r
}∣∣∣∣

≥
η

η+ 1
1

h̄uvw

∣∣∣∣{(m, n, k) ∈ ℘uvw :
∥∥∥%mnk − ξ, z

∥∥∥ ≥ ε+ r
}∣∣∣∣ .

Then, for each z ∈ X and for any δ > 0, we get{
(u, v, w) ∈N×N×N :

1
h̄uvw

∣∣∣∣{(m, n, k) ∈ ℘uvw :
∥∥∥%mnk − ξ, z

∥∥∥ ≥ ε+ r
}∣∣∣∣ ≥ δ}

⊆
{
(u, v, w) ∈N×N×N :

1
zuvw

∣∣∣∣{m ≤ iu, n ≤ ℘v, k ≤ lw :
∥∥∥%mnk − ξ, z

∥∥∥ ≥ ε+ r
}∣∣∣∣ ≥ δη

η+ 1

}
∈ I3.

So, the result. �

Theorem 4.6. Let I3 = I f in
3 = {J : J is finite set} be a non-trivial ideal, and θ3 = θuvw = {(mu, nv, kw)}

be a lacunary triple sequence with lim sup quvw < ∞ and r be a non-negative real number. Then we have
Ir
3-st-lim Wθ(Sθ)%mnk = ξ implies Ir

3-st-lim W(S)%mnk = ξ.
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Proof. If lim sup quvw < ∞, then without loss of generality, we can assume that there exists a K > 0

such that quvw < K for all u, v, w ∈N. Suppose that Ir
3-st-lim Wθ(Sθ)%mnk = ξ and for ε > 0, δ > 0 and

for each z ∈ X define the sets

Guvw =
∣∣∣∣{(m, n, k) ∈ ℘uvw :

∥∥∥%mnk − ξ, z
∥∥∥ ≥ ε+ r

}∣∣∣∣ and{
(u, v, w) ∈N×N×N :

1
h̄uvw

∣∣∣∣{(m, n, k) ∈ ℘uvw :
∥∥∥%mnk − ξ, z

∥∥∥ ≥ ε+ r
}∣∣∣∣ ≥ δ}

=
{
(u, v, w) ∈N×N×N :

Guvw

h̄uvw
≥ δ

}
∈ I3.

and, therefore, it is a finite set. We choose integers u0, v0, w0 ∈ N such that
Guvw

h̄uvw
< δ for all

u > u0, v > v0, w > w0.

Let G = max{Guvw : 1 ≤ u ≤ u0, 1 ≤ v ≤ v0, 1 ≤ w ≤ w0} and p, q, y be any three integers with

mu−1 < p ≤ mu, nv−1 < q ≤ nv and kw−1 < y ≤ kw, then we have

1
pqy

∣∣∣∣{m ≤ p, n ≤ q, k ≤ y :
∥∥∥%mnk − ξ, z

∥∥∥ ≥ ε+ r
}∣∣∣∣

≤
1

mu−1nv−1kw−1

∣∣∣∣{m ≤ mu, n ≤ nv, k ≤ kw :
∥∥∥%mnk − ξ, z

∥∥∥ ≥ ε+ r
}∣∣∣∣

=
1

mu−1nv−1kw−1

[∣∣∣∣{(m, n, k) ∈ ℘111 :
∥∥∥%mnk − ξ, z

∥∥∥ ≥ ε+ r
}∣∣∣∣

+ · · ·+
1

mu−1nv−1kw−1

∣∣∣∣{(m, n, k) ∈ ℘uvw :
∥∥∥%mnk − ξ, z

∥∥∥ ≥ ε+ r
}∣∣∣∣]

=
1

mu−1nv−1kw−1
[G111 + G222 + · · ·+ Gu0v0w0 + · · ·+ Guvw]

=
G

mu−1nv−1kw−1
u0v0w0 +

1
mu−1nv−1kw−1

[
h̄(u0+1)(v0+1)(w0+1)

(G(u0+1)(v0+1)(w0+1)

h̄(u0+1)(v0+1)(w0+1)

)
+ · · ·+ h̄uvw

Guvw

h̄uvw

]
=

G
mu−1nv−1kw−1

u0v0w0 +
1

mu−1nv−1kw−1

(
sup

u>u0,v>v0,w>w0

Guvw

h̄uvw

) (
h̄(u0+1)(v0+1)(w0+1) + · · ·+ h̄uvw

)
≤

G
mu−1nv−1kw−1

u0v0w0 + δ

(
munvkw −mu0nv0kw0

mu−1nv−1kw−1

)
≤

G
mu−1nv−1kw−1

u0v0w0 + δquvw

≤
G

mu−1nv−1kw−1
u0v0w0 + δK.

Since mu−1 → ∞, nv−1 → ∞, kw−1 → ∞, as p → ∞, q → ∞, y → ∞, respectively, it follows that

Ir
3-st-lim W(S)%mnk = ξ. This completes the proof of the theorem. �
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Definition 4.7. A triple sequence x = {%mnk} is said to be Wijsman rough I3 Cesáro convergent to ξ, if for
every ε > 0 and for each z ∈ X,(u, v, w) ∈N×N×N :

∣∣∣∣∣∣∣ 1
uvw

u,v,w∑
m=1,n=1,k=1

∥∥∥%mnk − ξ, z
∥∥∥∣∣∣∣∣∣∣ ≥ ε+ r

 ∈ I3

In this case, we write %mnk
W3C(Ir

3)
−−−−−−→ ξ.

Definition 4.8. A triple sequence x = {%mnk} is said to be Wijsman strongly rough I3 Cesáro convergent to
ξ, if for every ε > 0 and for each z ∈ X,(u, v, w) ∈N×N×N :

1
uvw

u,v,w∑
m=1,n=1,k=1

∥∥∥%mnk − ξ, z
∥∥∥ ≥ ε+ r

 ∈ I3

In this case, we write %mnk
W3NC(Ir

3)
−−−−−−−→ ξ.

Definition 4.9. Let r be a non-negative number and p be a positive real number. A triple sequence
x = {%mnk} is said to be Wijsman p-strongly rough I3 Cesáro convergent to ξ, if for every ε > 0 and for each
z ∈ X, (u, v, w) ∈N×N×N :

1
uvw

u,v,w∑
m=1,n=1,k=1

∥∥∥%mnk − ξ, z
∥∥∥p
≥ ε+ r

 ∈ I3

In this case, we write %mnk
W3NCp(Ir

3)
−−−−−−−−→ ξ.

Definition 4.10. A triple sequence x = {%mnk} is said to be I3-analytic if there exists a positive real number
M such that

{
(m, n, k) ∈N×N×N :

∥∥∥%mnk, z
∥∥∥ ≥M

}
∈ I3 for each z ∈ X.

Theorem 4.7. Let r be a non-negative number, p be a positive real number and x = {%mnk} be an I3-analytic
triple sequence. If x = {%mnk} is Wijsman rough I3-statistical convergent to ξ, then {%mnk} is Wijsman
p-strongly rough I3- Cesáro convergent to ξ.

Proof. Suppose that {%mnk}is I3-analytic triple sequence and %mnk
W3S(Ir

3)
−−−−−−→ ξ Then, there is an M > 0

such that
∥∥∥%mnk − ξ, z

∥∥∥ 1
m+n+k

≤M for each z ∈ X and all m, n, k ∈N. Given ε > 0, we get

1
uvw

u,v,w∑
m=1,n=1,k=1

∥∥∥%mnk − ξ, z
∥∥∥ p

m+n+k

=
1

uvw

u,v,w∑
m=1,n=1,k=1
‖%mnk−ξ,z‖≥r+ε

∥∥∥%mnk − ξ, z
∥∥∥ p

m+n+k +
1

uvw

u,v,w∑
m=1,n=1,k=1
‖%mnk−ξ,z‖<r+ε

∥∥∥%mnk − ξ, z
∥∥∥ p

m+n+k

≤
M

p
m+n+k

uvw

∣∣∣∣∣{(m, n, k) ≤ (u, v, w) :
∥∥∥%mnk − ξ, z

∥∥∥ p
m+n+k

≥ r + ε
}∣∣∣∣∣

+
ε

p
m+n+k

uvw

∣∣∣∣∣{(m, n, k) ≤ (u, v, w) :
∥∥∥%mnk − ξ, z

∥∥∥ p
m+n+k < r + ε

}∣∣∣∣∣
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≤
M

p
m+n+k

uvw

∣∣∣∣∣{(m, n, k) ≤ (u, v, w) :
∥∥∥%mnk − ξ, z

∥∥∥ p
m+n+k

≥ r + ε
}∣∣∣∣∣+ ε

p
m+n+k .

Then for any δ > 0(u, v, w) ∈N×N×N :
1

uvw

u,v,w∑
m=1,n=1,k=1

∥∥∥%mnk − ξ, z
∥∥∥ p

m+n+k
≥ δ


⊆

(u, v, w) ∈N×N×N :
1

uvw

∣∣∣∣{(m, n, k) ≤ (u, v, w) :
∥∥∥%mnk − ξ, z

∥∥∥ ≥ r + ε
}∣∣∣∣ ≥ δ

p
m+n+k

M
p

m+n+k

 ∈ I3.

Therefore, %mnk
WCp(Ir

3)
−−−−−−→ ξ. �

Theorem 4.8. Let r be a non-negative number, p be a positive real number and x = {%mnk} be a triple
sequence. If {%mnk} is Wijsman p-strongly rough I3 Cesáro convergent to ξ, then {%mnk} is Wijsman rough
I3-statistical convergent to ξ.

Proof. Suppose that %mnk
WCp(Ir

3)
−−−−−−→ ξ and given ε > 0. Then we have

u,v,w∑
m=1,n=1,k=1

∥∥∥%mnk − ξ, z
∥∥∥p
≥

u,v,w∑
m=1,n=1,k=1
‖%mnk−ξ,z‖

p
≥r+ε

∥∥∥%mnk − ξ, z
∥∥∥p

≥ εp
∣∣∣∣{(m, n, k) ≤ (u, v, w) :

∥∥∥%mnk − ξ, z
∥∥∥ ≥ r + ε

}∣∣∣∣
for each z ∈ X and hence

1
(uvw)εp

u,v,w∑
m=1,n=1,k=1

∥∥∥%mnk − ξ, z
∥∥∥p
≥

1
uvw

∣∣∣∣{(m, n, k) ≤ (u, v, w) :
∥∥∥%mnk − ξ, z

∥∥∥ ≥ r + ε
}∣∣∣∣ .

Consequently, for each δ > 0 we have{
(u, v, w) ∈N×N×N :

1
uvw

∣∣∣∣{(m, n, k) ≤ (u, v, w) :
∥∥∥%mnk − ξ, z

∥∥∥ ≥ r + ε
}∣∣∣∣ ≥ δ}

⊆

(u, v, w) ∈N×N×N :
1

uvw

u,v,w∑
m=1,n=1,k=1

∥∥∥%mnk − ξ, z
∥∥∥p
≥ (r + ε)pδ

 ∈ I3

for each z ∈ X and so %mnk
W3S(Ir

3)
−−−−−−→ ξ. �

5. Conclusion and FutureWork

In this paper, we have introduced the concept of the set of rough I3-lacunary limit points

for triple sequences in 2-normed spaces. We have established statistical convergence criteria

associated with this set and introduced the concept of rough I3-lacunary statistical convergence

for triple sequences. Furthermore, we have demonstrated that this set of rough I3-lacunary limit

points exhibits both convexity and closure within the context of a 2-normed space. We have also

investigated the relationships between a sequence’s rough I3-lacunary statistical cluster points and

its rough I3-lacunary statistical limit points in the same 2-normed space.
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Building upon the framework of triple sequence spaces, we have introduced the notion of

Wijsman I3-Cesáro summability for triple sequences and explored the connections between Wijs-

man strongly I3-Cesáro summability and Wijsman statistical I3-Cesáro summability. Additionally,

we have introduced the concepts of Wijsman rough strongly p-lacunary summability of order α

and Wijsman rough lacunary statistical convergence of order α for triple sequences. These novel

concepts have been thoroughly examined to understand their properties, and we have explored

potential relationships among them. Furthermore, we have investigated how these newly intro-

duced concepts relate to existing notions in the literature.
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