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ABSTRACT. A Banach space 𝐴, an open subset 𝑉 of 𝐴, and an open subset 𝑈 of 𝐴′ are considered. Our definition 

introduces novel categories of topological algebras of holomorphic functions on 𝐴. We demonstrate the equality of the 

two sets of holomorphic functions (ℋ𝑤v(𝑉)) and (ℋ𝑤∗v𝑘(𝑈)) under specific assumptions. We demonstrated that norm-

dense 𝒫𝑔𝑖
(𝐴) is found in 𝒫𝑤(𝐴) and norm-dense 𝒫𝑔𝑖

∗(𝐴′) is found in 𝒫𝑤∗(𝐴′). Additionally, we demonstrated that 𝒫𝑔𝑖
(𝐴) 

is 𝜏𝑘-dense in ℋ𝑤v𝑘(𝑉) and 𝒫𝑔𝑖
∗(𝐴′) is 𝜏𝑘∗-dense in ℋ𝑤∗v𝑘(𝑈) for a Banach space with a decreasing Schauder basis 𝐴, a 

polynomially convex weakly open subset 𝑉 of 𝐴, and a polynomially convex weak-star open subset 𝑈 of  𝐴. 

 

1. Introduction 

Consider 𝐴 to be a Banach space, 𝑉 and 𝑈 to be open subsets of 𝐴 and 𝐴′, respectively. 

Certain categories of holomorphic functions are delineated. In this context, ℋ𝑤v(𝑉) represents the 

collection of holomorphic functions 𝑔: 𝑉 → ℂ that exhibit weak-star uniform continuity on every 

weakly compact subset of 𝑉. Similarly, ℋ𝑤∗v𝑘(𝑈) signifies the collection of holomorphic functions 

𝑓: 𝑈 → ℂ that demonstrate weak-star uniform continuity on every weakly compact subset of 𝑈. 

We begin by examining the characteristics of the algebras ℋ𝑤v𝑘(𝑉) and ℋ𝑤∗v𝑘(𝑈). An important 

finding pertains to the approximation of polynomials on such algebras [4]. We demonstrate that 
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in the case 𝑉 is a weakly open subset of 𝐴 that is polynomially convex and 𝐴 is a Banach space 

with a shrinking Schauder basis, then 𝒫𝑔𝑖
(𝐴) is dense in ℋ𝑤v𝑘(𝑉), assuming the topology of 

uniform convergence on the weakly compact subsets of 𝑉. 

An equivalent outcome is obtained for the algebra ℋ𝑤∗v𝑘(𝑈) [9]. The subsequent section 

provides a detailed account of the spectrum of ℋ𝑤v𝑘(𝑉), where 𝐴 represents a reflexive Banach 

space with a Shauder basis and 𝑉 represents a weakly open, 𝒫𝑤𝑘(𝐴)-convex subset of 𝐴. We 

demonstrate that the spectrum ℋ𝑤𝑘(𝑉) is indeed associated with 𝑉 in this instance. Additionally, 

we examine whether ℋ𝑤v𝑘(𝑉) and ℋ𝑤v(𝑉) coincide ℋ𝑤v𝑘(𝑉) =  ℋ𝑤𝑣(𝑉), for instance, if 𝐴 is 

reflexive and 𝑉 is weakly open and convex. We illustrate an additional circumstance in which 

ℋ𝑤v𝑘(𝑉)  and ℋ𝑤v(𝑉) coincide. By utilizing these fortuitous findings, we can enhance the 

outcomes reported in ([11], [15]). We conclude with results on ideals of the algebra ℋ𝑤v𝑘(𝑉) that 

were generated finitely and Banach–Stone theorems. 

 

2. Banach spaces and Schauder basis 

Consider the complex Banach space 𝐴 ([8], [10]). 𝑉 shall represent an open subset of 𝐴. We 

designate the distance from 𝑥 to the boundary of 𝑉 for each 𝑥 ∈ 𝑉 as 𝑑𝑉(𝑥). Let 𝑉𝑚 equal {𝑥 ∈

𝑉: ‖𝑥‖ < 𝑚 and 𝑑𝑉(𝑥) > 2−𝑚 for each value of 𝑚 ∈ ℕ. The set of all 𝑔 ∈ ℋ(𝑉) that are weakly 

continuous on each 𝑉𝑚 is denoted by ℋ𝑤(𝑉), while ℋ𝑤v(𝑉)) represents the set of 𝑔 ∈ ℋ(𝑉)  that 

are weakly uniformly continuous on each 𝑉𝑚. Lastly, ℋ𝑏(𝑉) signifies the set of 𝑔 ∈ ℋ(𝑉) that are 

bounded on each 𝑉𝑚 that ℋ𝑤v(𝑉) ⊂ ℋ𝑏(𝑉) [3] holds for each open subset 𝑉. In the case where 𝑈 

is an open subset of 𝐴′, let ℋ𝑤∗(𝑈)  represent the collection of 𝑓 ∈ ℋ(𝑈) elements that exhibit 

weak-star continuity on all 𝑈𝑚, and let ℋ𝑤∗v(𝑈) represent the collection of 𝑓 ∈ ℋ(𝑈)  elements 

that demonstrate weak-star uniform continuity on each 𝑈𝑚. Define 𝒦𝑤(𝑉) as follows: 

{𝐸 ⊂ 𝑈: 𝐸 is weakly compact}; 𝒦𝑤∗(𝑈) as follows: {𝐵 ⊂ 𝑉: 𝐵 is weak-star compact }. It is evident 

that 𝑉 is covered by 𝒦𝑤(𝑉) and 𝒦𝑤∗(𝑈), respectively. The following lemma describes a useful 

property of the elements of 𝒦𝑤(𝑉) and 𝒦𝑤∗(𝑈) if 𝑉 is weakly open and 𝑈 is weak-star open. The 

set of all neighborhoods of zero in 𝐴 (or 𝐴′) relative to the weak topology 𝜎(𝐴, 𝐴′) (or weak-star 

topology 𝜎(𝐴, 𝐴′) is represented by 𝒱𝑤(𝐴)  or 𝒱𝑤∗(𝐸′)  or (𝐸′).  

Lemma 2.1. Assume the following: 𝑈 is an open subset of 𝐴′, 𝑉 is a weakly open subset of 𝐴, and 

𝐴 is a Banach space. Then 

(a) There exists a 𝑊 ∈ 𝒱𝑤(𝐴) such that 𝐸 + 𝑊 ⊂ 𝑉 for every 𝐴 ∈ 𝒦𝑤(𝑉). 
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(b) 𝑊 ∈ 𝑈𝑤∗(𝐴′) exists for any 𝐵 ∈ 𝒦𝑤∗(𝑈) such that 𝐵 + 𝑊 ⊂ 𝑉.  

Proof. (a) Because 𝑉 is weakly open, there exists W𝑥, �̃�𝑥 ∈ 𝒱𝑤(𝐴) such that W𝑥 + W𝑥 ⊂ �̃�𝑥 and 𝑥 +

�̃�𝑥 ⊂ 𝑈 for any 𝑥 ∈ 𝐴. We can find 𝑥1, … , 𝑥𝑛 ∈ 𝐸 and 𝑊1, … , 𝑊𝑛 ∈ 𝒱𝑤(𝐴) such that 𝐸 ⊂ (𝑥1 +  𝑊1) ∪

… ∪ (𝑥𝑚 + 𝑊𝑚) ⊂ 𝑉 because 𝐸 is weakly compact. By taking 𝑊 = 𝑊1 ∩ … ∩ 𝑊𝑚, it is simple to see 

that 𝐴 + 𝑊 ⊂ 𝑉. 

(b) (A)'s proof is applicable. 

We write 𝒫𝑔𝑖
(𝐴) = ⊕𝑛∈ℕ 𝒫𝑔𝑖

(𝑛𝐴), 𝒫𝑤(𝐴) =  𝒫(𝐴) ∩ ℋ𝑤(𝐴), and 𝒫𝑤v(𝐴) =  𝒫(𝐴) ∩ ℋ𝑤v(𝐴). In 

actuality,  𝒫𝑤(𝐴) =  𝒫𝑤v(𝐴) [2] corresponds to the two final sets. Assume that ℋ𝑤v𝑘(𝑉) = { 𝑔 ∈

ℋ(𝑉): 𝑔 is weakly balanced continuous on every 𝐸 ∈ 𝒦𝑤(𝑉)}. Let 𝑉 be an open subset of 𝐴. Keep 

in mind that if 𝑉 is weakly open, then ℋ𝑤v(𝑉) ⊂ ℋ𝑤v𝑘(𝑉) since every weakly compact subset of 

𝑉 is contained in some 𝑉𝑚. Furthermore, 𝒫𝑔𝑖
(𝐴) ⊂ 𝒫𝑤v(𝐴) ⊂ ℋ𝑤v𝑘(𝑉) is evident. After (a), we state 

that if and only if 𝑃 is a finite linear combination of products of weak-star continuous linear 

functional on 𝐴′, then a polynomial 𝑃 ∈ 𝒫𝑔𝑖
∗(𝐴′).   

Take note that every evaluation at a point in 𝐴 is a weak-star continuous linear functional of 

𝒫𝑤∗(𝐴′) =  𝒫(𝐴′) ∩ ℋ𝑤∗(𝐴′) and 𝒫𝑤∗v(𝐴′) =  𝒫(𝐴′) ∩ ℋ𝑤∗v(𝐴′) are also indicated, but it is evident 

that the final two sets coincide, that is, 𝒫𝑤∗(𝐴′) =  𝒫𝑤∗v(𝐴′). Assume that ℋ𝑤∗v𝑘(𝑈) = { 𝑓 ∈

ℋ(𝑉): 𝑓 is weak-star uniformly continuous on every 𝐵 ∈ 𝒦𝑤∗(𝑈 )}. Let 𝑈 be an open subset of 𝐴′. 

Keep in mind that 𝒫𝑔𝑖
∗(𝐴′) ⊂ 𝒫𝑤∗v(𝐴′) ⊂ ℋ𝑤∗v𝑘(𝑈), and ℋ𝑤∗v𝑘(𝐴′) = ℋ𝑤∗v(𝐴′). ℋ𝑤∗𝑢𝑘(𝑉) ⊂

ℋ𝑤𝑢𝑘(𝑉) if 𝑈 is weak-star open.  ℋ𝑤∗v(𝑈) ⊂ ℋ𝑤∗v𝑘(𝑈) if 𝐴 is reflexive.  

We confer the topology of uniform topology of uniform convergence on the elements of 𝒦𝑤(𝑉) 

(respectively 𝒦𝑤∗(𝑈)) to ℋ𝑤v𝑘(𝑉) (respectively (ℋ𝑤∗v𝑘(𝑈), and we represent this topology by 𝜏𝑘 

(respectively 𝜏𝑘∗). (ℋ𝑤v𝑘(𝑉), 𝜏𝑘) (or (ℋ𝑤∗v𝑘(𝑈), 𝜏𝑘∗)) is obviously a locally m-convex algebra. We 

provide a coincidental finding pertaining to the algebras ℋ𝑤v𝑘(𝑉) and ℋ𝑤v(𝑉) in the following 

example. 

Example 2.2. Assume that 𝑉 is a convex, weakly open subset of 𝐴 and that 𝐴 is a reflexive Banach 

space. After that,  ℋ𝑤v𝑘(𝑉) =  ℋ𝑤v(𝑉). 

Proof. Since sine 𝑉 is convex, we may infer that 𝑉𝑚 is convex for all 𝑚 in ℕ. Consequently, �̅�𝑚
 𝑤 =

�̅�𝑚 ⊂ 𝑉. �̅�𝑚
 𝑤 is w-compact since 𝐴 is reflexive, and as a result, �̅�𝑛

 𝑤 ∈ 𝒦𝑤(𝑉). Consequently, 

ℋ𝑤v𝑘(𝑉) ⊂  ℋ𝑤v(𝑉). 

Given a Banach space 𝐴 and a Schauder basis (𝑒𝑚)𝑚∈ℕ, the associated linear functionals are 

(𝜓𝑚)𝑚∈ℕ. 𝑇𝑚
𝑖  represents the canonical projection 𝑇𝑚

𝑖 : 𝐴 → 𝐴 for each 𝑚 ∈ ℕ, where 𝑇𝑚
𝑖 (𝑥) =
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 𝑇𝑚
𝑖 (∑ 𝜓𝑗(𝑥)𝑒𝑗) =  ∑ 𝜓𝑖(𝑥)𝑒𝑖 𝑚

𝑖=1
∞
𝑖=1 . If the associated linear functionals (𝜓𝑚)𝑚∈ℕ form a Schauder 

basis in 𝐴′, we say that the Schauder basis is shrinking. The canonical projection 𝑆𝑚: 𝐴′ → 𝐴′ in 

this instance is denoted by 𝑆𝑚, where 𝑆𝑚(𝜓) = (∑ 𝜓(𝑒𝑖)𝜓𝑖
𝑚
𝑖=1 , for each 𝜓 ∈ 𝐴′. The sequence 

(𝑇𝑚
𝑖 )𝑚∈ℕ is known to converge uniformly to the identity operator on the compact subsets of 𝐸. If 

we swap out compact for bounded subsets of 𝐸 in the case of infinite-dimensional 𝐸, the same 

outcome will not hold. In fact, there would be a contradiction if it were true, as the identity 

operator would be a compact operator. However, we present a weaker result of this kind in the 

following proposition. 

Proposition 2.3. Assume that 𝐴 has a decreasing Schauder basis and is a Banach space. Next 

(a)  𝑇𝑚 weakly uniformly converges to the identity operator on the bound subsets of  𝐴. 

(b) On the bordered subsets of 𝐴, 𝑆𝑚 weak-star uniformly and converges to the identity operator. 

Proof. (a) We have to demonstrate that for every bounded subset 𝐵 of 𝐴, where 𝜓 ∈ 𝐴′ and 휀 > 0, 

there exists an integer number 𝑚0 ∈ ℕ such that, for all 𝑚 > 𝑚0,  sup
𝑥 ∈𝐵

|𝜓(𝑇𝑚
𝑖 (𝑥) − 𝑥)| < 휀. For any 

𝑥 in 𝐴, 𝜓 ∈ 𝐴′, and 𝑚 in ℕ,  it is evident that 𝜓(𝑥 − 𝑇𝑚
𝑖 (𝑥)) =  ∑ 𝜓𝑖(𝑥)𝜓(𝑒𝑖)∞

𝑖= 𝑚+1 . A Schauder basis 

for 𝐴′ is (𝜓𝑖)𝑖∈ℕ, hence for any 휀 > 0, there exists 𝑚0 ∈ ℕ such that ‖ ∑ 𝜓(𝑒𝑖)𝜓𝑖
∞
𝑖=𝑚+1  ‖ < 휀.  

For 𝑚 > 𝑚0, this is sup
𝑥∈𝐵𝐸

|∑ 𝜓(𝑒𝑖)𝜓𝑖(𝑥)∞
𝑖=𝑚+1 | < 휀, or equivalently, 

sup
𝑥∈𝐵

|∑ 𝜓(𝑒𝑖)𝜓𝑖(𝑥)∞
𝑖=𝑚 +1 | ≤ sup

𝑥∈𝐵𝐴

|∑ 𝜓(𝑒𝑖)𝜓𝑖(𝑟𝑥)∞
𝑖=𝑚+1 | < 𝑟휀, for 𝑚 > 𝑚0 which is precisely for 𝐵 =

𝐵𝐴. Suppose that 𝐵 be the bounded set of 𝐴, and let 𝑟 > 0 such that 𝐵 ⊂ 𝑟𝐵𝐴.For any 𝑚 > 𝑚0, the 

following holds true : sup
𝑥∈𝐵

|∑ 𝜓(𝑒𝑖)𝜓𝑖(𝑥)∞
𝑖=𝑚+1 | ≤ sup

𝑥∈𝐵𝐴

|∑ 𝜓(𝑒𝑖)𝜓𝑖(𝑟𝑥)∞
𝑖= 𝑚+1 | < 𝑟휀. 

(b) Assume that 𝑥 belongs to 𝐴, 휀 > 0, and 𝐵 ⊂ 𝐴′ is a abounded subset. Assume that 𝐵 ⊂ 𝐵𝐴′(0, 𝑟) 

for any 𝑟 > 0. Since (𝑒𝑚)𝑚∈ℕ is a Schauder basis for 𝐴, for any 𝑚 > 𝑚0, there exists 𝑚0 ∈ ℕ such 

that ‖ ∑ 𝜓𝑖(𝑥)𝑒𝑖
∞
𝑖=𝑚+1  ‖ <

𝜀

3
. If we use 𝜓 = ∑ 𝜓(𝑒𝑖)𝜓𝑖

∞
𝑖=𝑚+1 , then 

sup
𝜓∈𝐵

|𝑆𝑚(𝜓)(𝑥) −  𝜓(𝑥)| = sup
𝜓∈𝐵

| ∑ 𝜓(𝑒𝑖)𝜓𝑖(𝑥)

∞

𝑖=𝑚+1

𝜓 = ∑ 𝜓(𝑒𝑖)𝜓𝑖

∞

𝑖=𝑚+1

|

≤  sup
𝜓∈𝐵

‖𝜓‖ ‖ ∑ 𝜓𝑖(𝑥)𝑒𝑖

∞

𝑖= 𝑚+1

‖ < 𝑟.
휀

𝑟
=  휀, for 𝑚 ≥ 𝑚0. 

Going forward, the lack of proof for the weak-star case in 𝐴′ can be attributed to the fact that it 

restates the reasons presented in the proof for the weak case in 𝐴. The following corollaries apply 

to us. 
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Corollary 2.4. Assume that 𝐴 has a decreasing Schauder basis and is a Banach space. In 𝒫𝑤(𝐴), 

𝒫𝑔𝑖
(𝐴) is norm-dense, and in 𝒫𝑤∗(𝐴′), 𝒫𝑔𝑖

∗(𝐴′) is norm-dense. 

Proof. For every 𝑚 in ℕ, let 𝑐 > 1 be such that ‖𝑇𝑚
𝑖 ‖ ≤ 𝑐. Suppose that 𝐵 = 𝐵(0, 𝑟), and let 𝐶 =

𝐵(0, 𝑐𝑟). Let 𝑥, 𝑦 are in C,  𝑥 − 𝑦  is in 𝑊, 𝑊 ∈ 𝒱𝑤(𝐴) and  휀 > 0 then 

|𝑃(𝑥) − 𝑃(𝑦)| < 휀. 

According to Proposition (1.3), for any 𝑥 in 𝐵 and 𝑚 > 𝑚0, there exists 𝑚0 ∈ ℕ such that 𝑇𝑚
𝑖 (𝑥) −

𝑥 ∈ 𝑊. As a result, for all 𝑥 in 𝐵 where 𝑚 > 𝑚0,|𝑃 ∘ 𝑇𝑚
𝑖 (𝑥) − 𝑃(𝑥)| < 휀. Now note that, for every 

𝑛 in ℕ, 𝑃 ∘ 𝑇𝑚
𝑖 ∈ 𝒫𝑔𝑖

(𝐴). 

Assume that 𝐴 denote a subset of the Banach space 𝐸, and 𝒢 ⊂ 𝒫(𝐴). Then for all 𝑔 ∈ 𝒢, the  𝒢 -

hull of 𝐸 is defined as the set  

𝐸 ̂𝒢 = {𝑥 ∈ 𝐴: |𝑓(𝑥)| ≤ sup
𝐸

|𝑔|} 

Corollary 2.5. Suppose that 𝐴 represents a Banach space characterized by a diminishing Schauder 

basis. Define 𝐸 and 𝐵 as abounded and bounded subsets, respectively, of 𝐴 and 𝐴′. Then 

𝐸 ̂𝒫𝑔𝑖
(𝐴) =  𝐸 ̂𝒫𝑤(𝐴), and 𝐵 ̂𝒫𝑔𝑖

∗(𝐴′) =  𝐵 ̂𝒫𝑤∗(𝐴′). 

Corollary 2.6. Permit 𝐴 to represent a Banach space characterized by a diminishing Schauder 

basis. Define 𝑉 as a weakly open subset of 𝐴, and 𝑈 as a weak-star open subset of 𝐴′. 

(a) Given 𝑚 > 𝑚0 and 𝐸 ∈ 𝒦𝜔(𝑉), there are 𝑊 ∈ 𝒱𝜔(𝐴)  and 𝑚0 ∈ ℕ in which 𝐸 + 𝑊 ⊂ 𝑉 and 

𝑇𝑚
𝑖 (𝐸) + 𝑊 ⊂ 𝑉 are both true. Specifically, 𝑇𝑚

𝑖 (𝐸) ∈ 𝒦𝜔(𝑉) holds true for all values of 𝑚 ≥ 𝑚. 

(b) There exists a 𝑊 ∈ 𝒱𝜔∗(𝐴′) and 𝑚0 ∈ ℕ pairwise compatible such that   𝐵 + 𝑊 ⊂ 𝑈 and 

𝑆𝑚(𝐵) + 𝑊 ⊂ 𝑈, for all 𝑚 > 𝑚0, for each 𝐵 ∈ 𝒦𝜔∗(𝑈). More specifically, 𝑆𝑚(𝐵) ∈ 𝒦𝜔∗(𝑈) as 𝑚 

approaches to zero. 

(c) The set 𝒦𝜔(𝑉) contains the elements 𝐶 = 𝐸⋃{𝑇𝑚
𝑖 (𝐸): 𝑚 ≥ 𝑚0 

(d) 𝒦𝜔∗(𝑈) contains the set 𝐷 = 𝐵⋃{𝑆𝑚(𝐵): 𝑚 ≥ 𝑚0}. 

Proof. (a) Assume that  𝐸 ∈ 𝒦𝜔(𝑉) is present. We can determine 𝑊, �̃� ∈ 𝒱𝜔(𝐴)  by Lemma 2.1, 

given that 𝑊 + 𝑊 ⊂ �̃� and 𝐸 + �̃� ⊂ 𝑉. According to Proposition 2.3, for all 𝑥 ∈ 𝐸 and 𝑚 ≥ 𝑚0, 

there exists 𝑚0 ∈ ℕ such that 𝑇𝑚(𝑥) −  𝑥 ∈ 𝑊. Therefore, 𝑇𝑚
𝑖 (𝐸) ⊂ 𝐸 + 𝑊 ⊂ 𝑉 holds true for all 

𝑚 ≥ 𝑚0 as well as hence 𝑇𝑚
𝑖 (𝐸) ⊂ 𝐸 + 𝑊 ⊂ 𝑉, where 𝑚 < 𝑚0. 

(c) By (a), specifically, we obtain 𝐶 ⊂ 𝑉. To demonstrate the weak compactness of 𝐶, consider 

(𝑊𝛼)𝛼∈𝐸 as a weakly open cover for 𝐶, such that 𝐶 ⊂ ⋃ 𝑊𝛼∈𝐸 𝛼
. Given that 𝐸 ⊂ 𝐶 is weakly 

compact, 𝛼1, … , 𝛼𝑘 ∈ 𝐸 must be present for 𝐴 ⊂ ⋃ 𝑊𝛼𝑗

𝑘
𝑗=1 . Consider 𝑊 ∈ 𝒱𝑤(𝐴) to be such that 𝐸 +
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𝑊 ⊂ ⋃ 𝑊𝛼𝑗

𝑘
𝑗=1  according to Lemma 2.1. Proposition 2.3 states that for all 𝑥 ∈ 𝐴 and  𝑚 ≥ 𝑚1, there 

exists 𝑚1 ≥ 𝑚0 in which 𝑇𝑚(𝑥) −  𝑥 ∈ 𝑊. This implies that 𝑇𝑚
𝑖 (𝑥) ∈ ⋃ 𝑊𝛼𝑗

𝑘
𝑗=1 , for all 𝑥 ∈ 𝐴 and  

𝑚 ≥ 𝑚1. It is now evident that 𝑇𝑚
𝑖 (𝐸), where 𝑚 =  𝑚0, … , 𝑚1, belongs to a finite subfamily of 

(𝑊𝛼)𝛼∈𝐸. 

Corollary 2.7. Denoted as 𝐴, this space follows a diminishing Schauder basis. Subsequently, 

𝒫𝑔𝑖
(𝐴) and 𝒫𝑔𝑖

∗(𝐴′) both exhibit norm-dense characteristics. 

Proof. Whenever  ‖𝑇𝑚
𝑖 ‖ ≤ 1 + 𝛿𝑖, and 𝑚 ∈ ℕ. 𝐵 = 𝐵(0, 𝑟), 𝐶 = 𝐵(0, (1 + 𝛿𝑖) 𝑟) and 𝑃𝑖 ∈ 𝒫𝑤(𝐴) =

 𝒫𝑤v(𝐴).. There exists 𝑊 ∈ 𝒱𝑤(𝐴) for which 휀 > 0, such that if  𝑥 , 𝑦 ∈ 𝐶 and 𝑥 − 𝑦 ∈ 𝑊, then 

∑|𝑃𝑖(𝑥) − 𝑃𝑖(𝑦)|

𝑚

𝑖=1

< 휀. 

There exists 𝑚0 ∈ ℕ in accordance with Proposition 2.3 such that 𝑇𝑚
𝑖 (𝑥) − 𝑥 ∈ 𝑊, where 𝑥 ∈ 𝐵 and 

𝑚 ≥ 𝑚0. This is why 

∑|𝑃𝑖 ∘ 𝑇𝑚
𝑖 (𝑥) − 𝑃𝑖(𝑥)| <  𝜖

𝑚

𝑖=1

, 

in the given 𝑥 ∈ 𝐵 and 𝑚 ≥ 𝑚0. For all 𝑚 ∈ ℕ, observe that 𝑃𝑖 ∘ 𝑇𝑚
𝑖 (𝑥) ∈ 𝒫𝑔𝑖

(𝐴). 

Proposition 2.8. Define 𝑉 as a weakly open subset of 𝐴, 𝑈 as a weak-star open subset of 𝐴′, and 𝐴 

as a Banach space with a contracting Schauder basis. Assign 𝑔 to 𝑔 ∈ ℋ𝑤𝑣𝑘(𝑉)and 𝑓 to f ∈

ℋ𝑤∗v𝑘(𝑈)). Then 

(a) There is a value of 𝑚0 ∈ ℕ such that sup
𝑥∈𝐸

|𝑔 (𝑇𝑚
𝑖 (𝑥)) − 𝑔(𝑥)| < 휀, for all 𝑚 ≥ 𝑚0, for each 𝐸 ∈

𝒦𝑤(𝑉) and 휀 > 0. 

(b) There exists a value of 𝑚0 ∈ ℕ such that sup
𝑦′∈𝐵

|𝑓 (𝑆𝑚
𝑖 (𝑦′)) − 𝑓(𝑦′)| < 휀, for all 𝑚 ≥ 𝑚0, where 

휀 > 0 and ∈ 𝒦𝑤∗(𝑈). 

Proof. Assume that 𝐸 ∈ 𝒦𝑤(𝑈). Using Corollary 2.6, there exists an integer number 𝑚1 ∈ ℕ such 

that 𝐸⋃{𝑇𝑚
𝑖 (𝐸): 𝑚 ≥ 𝑚1} = 𝐶 ∈ 𝒦𝑤(𝑉). Since  𝑔 ∈ ℋ𝑤v𝑘(𝑉), there is 𝑊 ∈ 𝒱𝑤(𝐴) such that if 𝑥, 𝑦 ∈

𝐶 and 𝑥 − 𝑦 ∈ 𝑊 then       

|𝑔(𝑥) − 𝑔(𝑦)| < 휀. 

There exists a 𝑊 for which 𝑚2 ∈ ℕ guarantees that 𝑇𝑚(𝑥) − 𝑥 ∈ 𝑊, given that 𝑥 ∈ 𝐶 and 𝑚 ≥ 𝑚2. 

Define 𝑚0 as the maximum of 𝑚1, 𝑚2 given that 𝑥 ∈ 𝐸 and 𝑚 ≥ 𝑚0. Following this, 𝑥, 𝑇𝑚(𝑥) ∈ 𝐶, 

𝑇𝑚(𝑥) − 𝑥 ∈ 𝑊, and thus |𝑔(𝑇𝑚
𝑖 (𝑥)) − 𝑔(𝑥)| is less than 휀. 
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In essence, proposition 2.8 states that 𝑔 ∘ 𝑇𝑚
𝑖  converges uniformly to 𝑔 across the elements of 𝑤(𝑉). 

However, this would be a linguistic distortion, as not all compositions 𝑔 ∘ 𝑇𝑚
𝑖  are precisely defined 

for each value of 𝑚 ∈ ℕ. Our first significant finding regarding the two algebras ℋ𝑤v𝑘(𝑉) and 

ℋ𝑤∗v𝑘(𝑈) is the Next theorem. 

Theorem 2.9. Consider 𝐴 a Banach space with a diminishing Schauder basis, 𝑉 a weakly open 

subset of 𝐴 that is polynomially convex, and 𝑈 a weak-star open subset of 𝐴′ that is also 

polynomially convex. 𝒫𝑔∗(𝐴′) is 𝜏𝑘∗ -dense in ℋ𝑤∗v𝑘(𝑈), whereas 𝒫𝑔(𝐴) is 𝜏𝑘-dense in ℋ𝑤v𝑘(𝑉). 

Proof. Assume that Let 𝐸 ∈ 𝒦𝑤(𝑉), 𝑔 ∈ ℋ𝑤v𝑘(𝑉) and 휀 > 0. By applying Proposition 2.8 and 

Corollary 2.6, we can identify an integer number 𝑚0 ∈ ℕ  such that  

𝑇𝑚0
𝑖 (𝐸) ∈ 𝒦𝑤(𝑉) and |𝑔 ∘ 𝑇𝑚0

𝑖 (𝑥) −  𝑔(𝑥)| <
휀

2
 , for all 𝑥 ∈ 𝐸. 

 𝑉 ∩ 𝑇𝑚0
𝑖 (𝐴) is polynomially convex in 𝑇𝑚0

𝑖 (𝐴), which follows from the fact that 𝑉 is polynomially 

convex [10]. Conversely, it is evident that 𝑇𝑚0
𝑖 (𝐴) constitutes a compact subset of 𝑉 ∩ 𝑇𝑚0

𝑖 (𝐴). 

Subsequently, it can be deduced from [10] that 𝑃 ∈ 𝒫(𝑇𝑚0
𝑖 (𝐴)) exists in such a way that ensures 

the discrepancy between |𝑃(𝑦) −  𝑔(𝑦)| and 
1

2
 is present uniformly on  𝑦 ∈ 𝑇𝑚0

𝑖 (𝐸) alternatively 

stated, 

sup
𝑥 ∈𝐸

|𝑝 ∘ 𝑇𝑚0
𝑖 (𝑥) − 𝑔 ∘ 𝑇𝑚0

𝑖 (𝑥)| <
휀

2
. 

The conclusion is now presented in (a) and (b) . 

The initial assertion in Corollary 2.4 becomes evident when 𝐴′ possesses the property of 

approximation [3]. Knowing the second assertion in Theorem 2.9 requires that 𝐴 possesses the 

approximation property [1] and 𝑈 = 𝐴′. But the proof presented here is considerably simpler 

when 𝐴 has a diminishing Schauder basis.  

Corollary 2.10. Define 𝑉 as a weakly open subset of 𝐴, 𝑈 as a weak-star open subset of 𝐴′, and 𝐴 

as a Banach space with a contracting Schauder basis. Allow 𝑔𝑖 ∈ ℋ𝑤v𝑘(𝑉) and 𝑓𝑖 ∈ ℋ𝑤∗v𝑘(𝑈). 

Thus,  

(a) Given 휀 > 0 and 𝐸 ∈ 𝒦𝑤(𝑉), there is a 𝑚0 ∈ ℕ value in which 

sup
𝑥∈𝐸

∑ |𝑔𝑖 (𝑇𝑚
𝑖 (𝑥)) − 𝑔𝑖(𝑥)|

𝑚

𝑖=1

< 휀, for all 𝑚 ≥ 𝑚0. 

(b) In the case where 𝐵 ∈ 𝒦𝑤∗(𝑈) and 휀 > 0, 𝑚0 ∈ ℕ is a valid value such that 

sup
𝑦′∈𝐵

∑ |𝑓𝑖 (𝑆𝑚
𝑖 (𝑦′)) − 𝑓𝑖(𝑦′)|

𝑚

𝑖=1

< 휀, for all 𝑚 ≥ 𝑚0. 
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Proof. Assume 𝐸 ∈ 𝒦𝑤(𝑉). It is implied by corollary 2.6 that for an integer number 𝑚1 ∈ ℕ, there 

exists 𝐸⋃{𝑇𝑚
𝑖 (𝐸): 𝑚 ≥ 𝑚1} = 𝐶 ∈ 𝒦𝑤(𝑉) condition. Given that 𝑔𝑖 ∈ ℋ𝑤v𝑘(𝑉), there is an element 

𝑊 ∈ 𝒱𝑤(𝐴) in which 𝑥, 𝑦 ∈ 𝐶 and 𝑥 − 𝑦 ∈ 𝑊, then 

∑|𝑔𝑖(𝑥) − 𝑔𝑖(𝑦)|

𝑚

𝑖=1

< 휀. 

There exists a value of ℕ such that 𝑇𝑚
𝑖 (𝑥) − 𝑥 ∈ 𝑊 for this 𝑊, given that 𝑥 ∈ 𝐶 and 𝑚 ≥ 𝑚2. Define 

𝑚0 as the maximum of 𝑚1, 𝑚2 given that 𝑥 ∈ 𝐸 and 𝑚 ≥ 𝑚0. Consequently, 𝑥, 𝑇𝑚
𝑖 (𝑥) ∈ 𝐶 and 

𝑇𝑚
𝑖 (𝑥) − 𝑥 ∈ 𝑊, and hence 

∑|𝑔𝑖(𝑇𝑚
𝑖 (𝑥)) − 𝑔𝑖(𝑥)|

𝑚

𝑖=1

< 휀. 

Corollary 2.11. Consider 𝐴 a Banach space with a diminishing Schauder basis, 𝑉 a weakly open 

subset of 𝐴 that is polynomially convex, and 𝑈 a weak-star open subset of 𝐴′ that is also 

polynomially convex. Subsequently, 𝒫𝑔𝑖
(𝐴) becomes 𝜏𝑘-dense in ℋ𝑤v𝑘(𝑉), while 𝒫𝑔𝑖

∗(𝐴′) is 𝜏𝑘∗-

dense in ℋ𝑤∗v𝑘(𝑈) [16]. 

Proof. Let 𝑔𝑖 ∈ ℋ𝑤v𝑘(𝑉) and 𝐸 ∈ 𝒦𝑤(𝑉) both have 휀 > 0. In the case where an integer 𝑚0 is such 

that 𝑇𝑚0
𝑖 (𝐸) ∈ 𝒦𝑤(𝑉)  and ∑ |𝑔𝑖 ∘ 𝑇𝑚0

𝑖 (𝑥) − 𝑔𝑖(𝑥)|𝑚
𝑖=1 <

𝜀

2
 , for all 𝑥 ∈ 𝐸. 

𝑉⋂ 𝑇𝑚0
𝑖 (𝐴) is polynomially convex in 𝑇𝑚0

𝑖 (𝐴), given that 𝑉 is polynomially convex  [10]. The 

compact subset of 𝑉⋂ 𝑇𝑚0
𝑖 (𝐴) is denoted as 𝑇𝑚0

𝑖 (𝐸). [1] demonstrates that 𝑃𝑖 ∈ 𝒫(𝑇𝑚0
𝑖 (𝐴) exists, 

such that 

∑|𝑃𝑖(𝑦) − 𝑔𝑖(𝑦)|

𝑚

𝑖=1

<
휀

2 
, 

concerning 𝑦 ∈ 𝑇𝑚0
𝑖 (𝐸), or 

sup
𝑥 ∈𝐸

∑|𝑃𝑖 ∘ 𝑇𝑚0
𝑖 (𝑥) − 𝑔𝑖 ∘ 𝑇𝑚0

𝑖 (𝑥)|

𝑚

𝑖=1

<
휀

2
. 

This is the consequence . 

We will now discuss a number of applications of the prior research. The findings pertain to novel 

categories of open subsets of Banach spaces. The definition of 2.1 was derived from [15]. 

 

3. The convex sets and the compactness 

Definition 3.1. Consider 𝐴 to be a Banach space, 𝑉 and 𝑈 to be open subsets of 𝐴 and 𝐴′, 

respectively. We assert that: 
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(a) For all 𝐸 ∈ 𝒦𝑤(𝑉), 𝑉 is 𝒫𝑤𝑘(𝐴) -convex if 𝐸 ̂𝒫𝜔(𝐴) ∩ 𝑉 ∈ 𝒦𝑤(𝑉). 

(b) 𝑈 is convex with respect to 𝒫𝑤∗𝑘(𝐴′)- if  �̂� 𝒫𝑤(𝐴′) ∩ 𝑈 ∈ 𝒦𝑤∗(𝑈), for all 𝐵 ∈ 𝒦𝑤∗(𝑈).  

(c) If 𝐸 ̂𝒫𝑤(𝐴) ⊂ 𝑉, and 𝐸 ̂𝒫𝑤(𝐴) ∈ 𝒦𝑤(𝑉) for all 𝐸 ∈ 𝒦𝑤(𝑉), then 𝑉 is  strongly 𝒫𝑤𝑘(𝐴) -convex . 

(d) 𝑈 is considered to be strongly 𝒫𝑤∗𝑘(𝐸′) -convex if 𝐵 ̂𝒫𝑤(𝐴′) ⊂ 𝑈 and  𝐵 ̂𝒫𝑤(𝐴′) ∈ 𝒦𝑤∗(𝑈),  

      for all 𝐵 ∈ 𝒦𝑤(𝑈). 

We have demonstrated in the following lemma that the final conditions of Definitions 3.1 

(c) and (d) are superfluous. 

Lemma 3.2. Consider 𝐴 to be a Banach space, 𝑉 and 𝑈 to be open subsets of 𝐴 and 𝐴′, respectively. 

Suppose that 𝐸 ∈ 𝒦𝜔(𝑉) and 𝐵 ∈ 𝒦𝜔∗(𝑈). If  𝐸 ̂𝒫𝜔(𝐴) ⊂ 𝑉, and  𝐸 ̂𝒫𝜔∗(𝐴′) ⊂ 𝑈 then  𝐸 ̂𝒫𝑤(𝐴) ∈

𝒦𝑤(𝑉), and  �̂�𝒫𝜔∗(𝐴′) ∈ 𝒦𝜔∗(𝑈) respectly. 

Proof. Given that ℂ⨁𝐴′ ⊂ 𝒫𝑤(𝐴), it can be deduced that  �̂� 𝒫𝑤(𝐴) ⊂  �̂� ℂ⨁𝐴′ = 𝑐𝑜−𝑤(𝐸), with the 

final equality being derived from [8]. Given the weak compactness of 𝑐𝑜−𝑤(𝐸) and the weak 

closure of  𝐸 ̂𝒫𝑤(𝐴), it can be deduced that  𝐸 ̂𝒫𝜔(𝐴) ⊂ 𝑉 is also weakly compact, and thus  𝐸 ̂𝒫𝑤(𝐴) ∈

𝒦𝑤(𝑉). Since  𝐵 ̂𝒫𝜔∗(𝐴′) is weak-star closed and bounded, and thus weak-star compact, the second 

assertion is superfluous.  

Lemma 3.3. Define 𝐴 as a Banach space, and 𝐸 as a subset of 𝐴′ that is abounded. Subsequently, 

𝐸 ̂ℂ⨁𝐴′ = 𝑐𝑜−𝑤∗
(𝐸), where ℂ⨁𝐴 represents the set {𝑒 + 𝛿𝑥: 𝑒 ∈ ℂ, 𝑥 ∈ 𝐴} ⊂ 𝐴′′. 

Proof. The proof is continued by applying the Hahn Banach Theorem to the space (𝐴′, 𝜎(𝐴′, 𝐴)) 

that is locally convexymorphic [10]. 

Example 3.4. Suppose 𝐴 represents a Banach space, with P and Q ranging over 𝒫𝑔𝑖
(𝐴) and 𝒫𝑔𝑖

(𝐴′)  

Consequently, then: 

(a) each weakly open convex subset of 𝐴 is strongly 𝒫𝑤𝑘(𝐴)-convex 

(b) Each convex weak-star open subset of 𝐴′ possesses the property of  𝒫𝑤∗𝑘(𝐴′)-convexity . 

(c) 𝑉 = {𝑥 ∈ 𝐴: |𝑃(𝑥)| < 1} is a weakly open set that is strongly 𝒫𝑤𝑘(𝐴)-convex . 

(d) 𝑈 = {𝑥 ∈ 𝐴′: |𝑄(𝑥)| < 1} is an open set that is strongly 𝒫𝑤∗𝑘(𝐴′) -convex weak-star. 

Proof. Let 𝐸 ∈ 𝒦𝑤(𝑉) in (a). To begin, we shall demonstrate that 𝑐𝑜̅̅ ̅𝑤(𝐸) ∈ 𝒦𝑤(𝑉). Assume, by 

Lemma 2.1, that �̃� ∈ 𝒱𝑤(𝐴) is such that 𝐸 + �̃� ⊂ 𝑉. Given that 𝑉 is convex, it is evident that 

𝑐𝑜(𝐸) +  �̃� ⊂ 𝑐𝑜(𝐸 + �̃�) ⊂ 𝑉. Based on the equation 𝑐𝑜̅̅ ̅𝑤(𝐸) = ⋂ 𝑐𝑜((𝐸) +  𝑊)𝑊∈ 𝒱𝑤(𝐴) , it is 

evident that 𝑐𝑜̅̅ ̅𝑤(𝐸) ⊂ 𝑐𝑜(𝐸) +  �̃�  ⊂ 𝑉. Consequently, 𝑐𝑜̅̅ ̅𝑤(𝐸) ∈ 𝒦𝑤(𝑉) . 



10 Int. J. Anal. Appl. (2024), 22:123 

 

Currently,   𝐸 ̂ℂ ⨁𝐴′ ⊂   𝐸 ̂𝒫𝑤(𝐴) = 𝑐𝑜̅̅ ̅𝑤(𝐸) ∈ 𝒦𝑤(𝑉), with the final equality being deduced 

from [10]. Consequently, 𝑉 is strongly 𝒫𝑤𝑘(𝐴)-convex. 

(b) We apply the identical reasoning as in (a), substituting Lemma 3.2 for [10]. 

(c) It is evident that 𝑉 has a feeble opening. When 𝐸 ∈ 𝒦𝑤(𝑉), we will demonstrate that sup
𝐸

|𝑃| <

1. 

Consider the case where sup
𝐸

|𝑃| = 1. There is a sequence (𝑥𝑚) ∈ 𝐸 such that 

|𝑃(𝑥𝑚)|approaches to 1. Given that 𝐸 is compact in the w-direction, a subsequence of (𝑥𝑚) called 

(𝑥𝑚𝑘
) exists in which 𝑥𝑚𝑘

𝑤
→ 𝑥 ∈ 𝐸 ⊂ 𝑉. Therefore, |𝑃(𝑥𝑚𝑘

)| → |𝑃(𝑥)| = 1.  

precisely, 𝑥 ∉ 𝑉, which is inherently contradictory. At this time, let 𝑦 ∈  𝐸 ̂𝒫𝑤(𝐴). Then 

|𝑃(𝑦)| ≤ sup
𝐸

|𝑃| < 1, which establishes that 𝐸 ̂𝒫𝑤(𝐴) ⊂ 𝑉. Now 𝑉 strongly 𝒫𝑤𝑘(𝐴) convex according 

to Lemma 3.2. 

𝒫𝑤𝑘(𝐴)-convexity and weak openness both indicate that 𝑉 is polynomially convex. 

Indeed, 𝐾 ∈ 𝒦𝑤(𝑉) if 𝐾 is a compact subset of 𝑉. Given that ℬ(𝑉) is in a state of 𝒫𝑤(𝑉) ⊂ 𝒫(𝐴), it 

follows that �̂�𝒫(𝐴) ⊂ �̂�𝒫𝑤(𝐴). Consequently, �̂�𝒫(𝐴) ∩ 𝑉 ⊂ �̂�𝒫𝑤(𝐴) ∩ 𝑉 ∈ 𝒦𝑤(𝑉) ⊂ ℬ(𝑉). It is worth 

noting that according to [15], an open subset 𝑉 of a Banach space 𝐴 is considered 𝒫𝑏(𝐴)-convex if 

𝐸 ̂𝒫(𝐴) ∩ 𝑉 ∈ ℬ(𝑉)  for every 𝐸 ∈ ℬ(𝑉). Furthermore, 𝑉 is considered strongly 𝒫𝑏(𝐴)-convex if 

𝐸 ̂𝒫(𝐴) ⊂ 𝑉 and 𝐸 ̂𝒫(𝐴) ∈ ℬ(𝑉) for every 𝐸 ∈ ℬ(𝑉). In contrast, we demonstrate in [15] that the final 

condition 𝐸 ̂𝒫(𝐴) ∈ ℬ(𝑉)  is unnecessary. When the value of 𝑉 is balanced, both concepts are 

concurrent [15]. The outcome is analogous when 𝒫𝑤𝑘(𝐴)-convex sets are considered; this is 

demonstrated in Theorem 3.6. To illustrate this theorem, the subsequent result is required.         

Theorem 3.5. Consider the Banach space 𝐴. 

(a) Consider a weakly compact subset of 𝐴 denoted by 𝐸 ⊂ 𝐴 and a weakly open subset of 𝐴 ⊂ 𝐸 

denoted by 𝑉, such that 𝐸 ̂𝒫(𝐴) ⊂ 𝑉. Subsequently, a weakly open set �̃� exists that is 𝒫𝑤𝑘(𝐴)-

convex and such that 𝐸 ̂𝒫𝑔𝑖
(𝐴) ⊂ �̃� ⊂ 𝑉. 

(b) Denote a weak-star compact subset of 𝐴′ denoted as 𝐵 ⊂ 𝐴′ and a weak-star open subset of 𝐴′ 

referred to as 𝑈, such that 𝐵 ̂𝒫𝑔𝑖
∗(𝐴′) ⊂ 𝑈. Subsequently, a weak-star open set 𝑈 ̃is generated, which 

is strongly 𝒫𝑤∗𝑘(𝐴′)-convex. This implies that the set 𝐵 ̂𝒫𝑔𝑖
∗(𝐴′) ⊂ 𝑈 ̃ ⊂ 𝑈.  

Proof. (a) Our strategies are motivated by the concepts put forth in [10].  It can be deduced that 

𝐶 = 𝑐𝑜̅̅ ̅𝑤(𝐸) is weakly compact, given that 𝐸 is weakly compact. In the event that 𝐶 ⊂ 𝑉, �̃� = 𝐶 +
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𝑊 is obtained, given that 𝑊 ∈ 𝒱𝑤(𝑉) is convex and such that 𝐶 + 𝑊 ⊂ 𝑉 (Lemma 2.1). Given that 

ℂ ⨁𝐴′ ⊂ 𝒫𝑔𝑖
(𝐴), it can be deduced that 𝐸 ̂𝒫𝑔𝑖

(𝐴) ⊂  𝐸 ̂ℂ ⨁𝐴′ = 𝐶. This last equality is supported by 

reference [10]. Example 3.4 demonstrates that �̃� is now strongly 𝒫𝑤𝑘(𝐴)-convex; therefore, �̃� is 

the intended set. In the absence of 𝐶 being contained in 𝑉, there exists a 𝑃 ∈ 𝒫𝑔𝑖
(𝐴) such that 

sup
𝐸

|𝑃| < 1 < |𝑃(𝑦)|, for every 𝑦 ∈ 𝐶 ∖ 𝑉. Given that 𝐶 ∖ 𝑉 is weakly compact, it is possible to 

identify polynomials 𝑃1, 𝑃2 , … 𝑃𝑘 ∈ 𝒫𝑔𝑖
(𝐴) that satisfy the following conditions: 

𝐶 ∖ 𝑉 ⊂ ⋃{ 𝑥 ∈ 𝐴: |𝑃𝑖(𝑥)|

𝑘

𝑖=1

> 1 

This is why 

           𝐶 ∩ { 𝑥 ∈ 𝐴: |𝑃𝑖(𝑥)| ≤ 1, for 𝑖 = 1,2, … } ⊂ 𝑉.                   

We assert that 𝑊 ∈ 𝒱𝑤(𝐴) exists in such a way that 

(𝐶 + 𝑊) ∩ {𝑥 ∈ 𝐴: |𝑃𝑖(𝑥)| < 1, for 𝑖 = 1, … , 𝑘} ⊂ 𝑉. 

In the event that this condition is not met, there exists a set 𝑧𝑊 = 𝑥𝑊 + 𝑦𝑊 for each 𝑊 ∈ 𝒱𝑤(𝑉), 

where 𝑥𝑊 ∈ 𝐶, 𝑦𝑊 ∈ 𝑊, and |𝑃𝑖(𝑧𝑊)| < 1 for 𝑖 = 1,2, … , 𝑘 ; such that 𝑧𝑊 ∉ 𝑉. Without sacrificing 

generality, since 𝐶 is weakly compact, there exists 𝑥 ∈ 𝐶 such that 𝑥𝑊

𝑤
→ 𝑥∈ 𝐶, and thus 𝑧𝑊

𝑤
→ 𝑥∈

𝐶.   

It follows that since𝑃𝑖(𝑧𝑊) → 𝑃𝑖(𝑥) for 𝑖 = 1,2, … , 𝑘, |𝑃𝑖(𝑧𝑊)| ≤ 1, 𝑖 = 1, … , 𝑘, which 

indicates that 𝑥 ∈ 𝑉, by (c). Define 𝑊 as such that 𝑥 + �̃� ⊂ 𝑉. There exists a 𝑊0 ∈ 𝒱𝑤(𝑉) for which 

𝑧𝑊0
∈ 𝑥 + �̃� ⊂ 𝑉, which is in contradiction with the given �̃�. Consequently, �̃� = (𝐶 + 𝑊) ∩ {𝑥 ∈

𝐴: |𝑃𝑖(𝑥)| < 1, for 𝑖 = 1, … , 𝑘} is strongly 𝒫𝑤𝑘(𝑉)-convex by nature, as it is a finite intersection of 

sets that are 𝒫𝑤𝑘(𝐴)-convex (Example 3.4) at this point. Ultimately, it is evident that 𝐸 ̂𝒫𝑔𝑖
(𝐴) ⊂

�̃� ⊂ 𝑉.  

(b) We adopt the identical methodology as in (a), substituting Lemma 3.3 for [10]. 

Theorem 3.6. The space 𝐴, which has a shriking Schauder basis, 𝑉 is a weakly open subset of 𝐴. 

𝑈 on the other hand, is a weak-star open subset of 𝐴′. Then  

(𝑎) 𝑉 is 𝒫𝑤𝑘(𝐴)-convex if and only if 𝑉 is strongly 𝒫𝑤𝑘(𝐴)-convex. 

(b)  𝑈 is 𝒫𝑤∗𝑘(𝐴′)-convex if and only if  𝑈 is strongly  𝒫𝑤∗𝑘(𝐴′)-convex. 

Proof. To illustrate the nontrivial consequence, let 𝐸 ∈ 𝒦𝑤(𝑉). It is sufficient to demonstrate, by 

Lemma 2.10, that 𝐸 ̂𝒫𝑤(𝐴) ⊂ 𝑉. We consider that 𝐸 ̂𝒫𝑤(𝐴) = (𝐸 ̂𝒫𝑤(𝐴) ∩ 𝑉) ∪ ( 𝐸 ̂𝒫𝑤(𝐴) ∖ 𝑉). Since 𝑉 is 

𝒫𝑤𝑘(𝐴)-convex, we have that 𝐸 ̂𝒫𝑤(𝐴) ∩ 𝑉 ∈ 𝒦𝑤(𝑉) and then by Lemma 2.1 there is a �̃� ∈ 𝒱𝑤(𝑉) 
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in which 𝐸 ̂𝒫𝑤(𝐴) ∩ 𝑉 + �̃�  ⊂ 𝑉, which implies that (𝐸 ̂𝒫(𝐴) ∩ 𝑉 + �̃� ) ∩ (𝐸 ̂𝒫(𝐴) ∖ 𝑉) =  ∅. 

Determine 𝑊 ∈ 𝒱𝑤(𝑉) in which 𝑊 + 𝑊 ⊂ �̃�. (𝐸0 + 𝑊) ∩ (𝐸1 + 𝑊) =  ∅, where 𝐸0 = (𝐸 ̂𝒫𝑤(𝐴)) ∩

𝑉 and 𝐸1 = 𝐸 ̂𝒫𝑤(𝐴) ∖ 𝑉, as deduced from [15]. 

By representing 𝑉′ = (𝐸0 + 𝑊) ∪ (𝐸1 + 𝑊), it becomes evident that 𝑉′ = 𝐸 ̂𝒫𝑤(𝐴) + 𝑊 =

 𝐸 ̂𝒫𝑔(𝐴) + 𝑊, with the final equality being derived from Corollary 2.5. Define 𝑔 ∈ ℋ𝑤v𝑘(𝑉′) as the 

condition that 𝑔 = 0 in 𝐸0 + 𝑈 and 𝑔 = 1 in 𝐸1 + 𝑈. Let  𝑉′ signify a weakly open subset of 𝐴 

consisting of 𝐸 ̂𝒫𝑔(𝐴). There exists a weakly open set  �̃� that is strongly 𝒫𝑤𝑘(𝐴)-convex, as stated 

in Theorem 3.5, such that 𝐸 ̂𝒫𝑔𝑖
(𝐴) ⊂ �̃� ⊂ 𝑉′. We have that 𝐸 ̂𝒫𝑔𝑖

(𝐴) ∈ 𝒦𝑤(�̃�) due to the weak 

compactness of 𝐸 ̂𝒫𝑔𝑖
(𝐴). Given that 𝑉 is 𝒫𝑤𝑘(𝐴)-strongly convex and 𝑔|�̃� ∈ ℋ𝑤v𝑘(�̃�), Theorem 2.9 

can be utilised to identify a polynomial 𝑃 ∈ 𝒫𝑔(𝐴) such that sup𝐴 ̂𝒫𝑔𝑖
(𝐴) |𝑔|�̃� − 𝑃| < 1/2. Given that 

𝐸 ⊂ 𝐸0, it follows that sup
𝐸

|𝑃| < 1/2 and hence sup
�̂�𝒫𝑔𝑖(𝐴)

|𝑃| < 1/2. 

Currently, let 𝑦 ∈ 𝐸1 ⊂ �̃�. Then we have 

1

2
> |𝑝(𝑦) −  𝑔|�̃�(𝑦)| = |𝑃(𝑦) − 1| = |1 − 𝑃(𝑦)| ≥ 1 − |𝑃(𝑦)|. 

It follows that ||𝑃(𝑦)| > 1/2 is greater than 1/2, which is a contradiction. 

 

4. Banach stone theorems and holomorphic mappings 

Following this, the spectral efficiencies of ℋ𝑤v𝑘(𝑉) when 𝐴 is reflexive will be examined  . 

Given that the two algebras ℋ𝑤v𝑘(𝑉) and ℋ𝑤∗v𝑘(𝑈) are of the same type, it is adequate to deal 

with ℋ𝑤v𝑘(𝑉). Let 𝑉 be an open subset of 𝐴 and denote 𝐴 as Banach space. 𝑆𝑤v𝑘(𝑉) represents the 

spectrum of  ℋ𝑤v𝑘(𝑉), which consists of every continuous complex homomorphism 

𝑇: ℋ𝑤v𝑘(𝑉) → ℂ. Consider 𝑧 ∈ 𝑉. Then 𝛿𝑧: ℋ𝑤v𝑘(𝑉) → ℂ is referred to as evaluation at z. It is 

defined by 𝛿𝑧(𝑔) = 𝑔(𝑧) for all 𝑔 ∈  ℋ𝑤v𝑘(𝑉). It is evident that 𝛿𝑧 ∈  𝑆𝑤v𝑘(𝑉) for each 𝑧 ∈ 𝑉; 

therefore, we can say that  𝑆𝑤v𝑘(𝑉) contains 𝑉. Subsequently, we demonstrate that, under specific 

conditions on 𝐴 and 𝑉, every element of  𝑆𝑤v𝑘(𝑉)  consists of an evaluation at some point of 𝑉; 

thus, we say that  𝑆𝑤v𝑘(𝑉) is identified with 𝑉 [16]. 

Theorem 4.1. For 𝐴 to be a reflexive Banach space with a Schauder basis, consider 𝑉 to be a weakly 

open subset of 𝐴 that is a 𝒫𝑤𝑘(𝐴)-convex. Following this, the spectrum of ℋ𝑤v𝑘(𝑉) is correlated 

with 𝑉. 
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Proof. We adopt the concepts put forth in [8]. Denote 𝑇 ∈ 𝑆𝑤v𝑘(𝑉).  and 𝑐 > 0 are both necessary 

conditions for 𝑇 to be continuous, ensuring that ||𝑇(𝑔)| ≤ 𝑐sup𝐸|𝑔| for all 𝑔 ∈ ℋ𝑤v𝑘(𝑉). We may 

infer that 𝑐 equals 1 based on the classical argument that 𝑇 is multiplicative. Consider 𝑟 > 0 in the 

sense that 𝐸 ⊂ 𝐵(0, 𝑟). Specifically, for all 𝑔 ∈ 𝐴′, we have that |𝑇(𝑔)| ≤ supE|𝑔| ≤ sup𝐴(0,𝑟)|𝑔|. 

Therefore, given that 𝑇 ∈ 𝐴′′ = 𝐴 and 𝑎 ∈ 𝐴 is unique such that 𝑇(𝑔) = 𝑔(𝑎) for all 𝑔 ∈ 𝐴′, 𝑇(𝑃) =

𝑃(𝑎) for all 𝑃 ∈ 𝒫𝑔𝑖
(𝐴), we conclude that 𝑇(𝑃) = 𝑃(𝑎). Subsequently, for all 𝑃 ∈ 𝒫𝑔𝑖

(𝐴), it can be 

deduced that |𝑃(𝑎)| =  |𝑇(𝑃)| ≤ supE|𝑃|. This implies that 𝑎 ∈ 𝐸 ̂𝒫𝑔𝑖
(𝐴) =  𝐸 ̂𝒫𝑤(𝐴), with the final 

equality being deduced from Corollary 2.5. 

We now have, by Theorem 3.6 that 𝑉 is strongly 𝒫𝑤𝑘(𝐴) convex; therefore, 𝑎 ∈ 𝑉. 𝑇(𝑔) = 𝑔(𝑎) is 

then obtained by applying Theorem 2.9 to all 𝑔 ∈ ℋ𝑤v𝑘(𝑉) values. 

Example 4.2.  Consider 𝐴 to be a Banach space that is reflexive, and 𝑉 to be a convex and weakly 

open subset of 𝐴. Example 2.2 demonstrates that ℋ𝑤v𝑘(𝑉) equals ℋ𝑤v(𝑉). 𝑉 is strongly 𝒫𝑤𝑘(𝐴)-

convex, as demonstrated by Example 3.4, given that 𝑉 is convex. Assuming 𝐴 possesses a Shauder 

basis, it follows that 𝒫𝑔𝑖
(𝐴) is dense in ℋ𝑤v(𝑉).  according to Theorem 2.9. Additionally, Theorem 

4.1 dictates that 𝑆𝑤v(𝑉) equals 𝑉. 𝑉 ⊂ 𝐴 is a convex and balanced open set, and if 𝐴 is a Banach 

space such that 𝐴′ possesses the approximation property, then 𝑆𝑤v(𝑉) =  int(�̅�𝑤∗
), where the 

interior is taken in the norm 𝐴′′, as demonstrated in ([6], [7]). 𝑆𝑤v(𝑉) equals 𝑉 specifically if 𝐴 is 

reflexive with a Shauder basis.  Therefore, in the reflexive case, the hypothesis that 𝑉 is balanced 

can be disregarded; however, it is necessary to presume that 𝑉 is only weakly open. 

Example 4.3. Denote 𝐴 a Banach space that is reflexive, such that 𝒫(𝐴) =  𝒫𝑤(𝐴). Consider 𝑉 to 

be a weakly open subset of 𝐴 that is 𝒫𝑤𝑘(𝐴)-convex due to its strong 𝒫𝑏(𝐴)-convexity. It can be 

deduced that �̅�𝑚
𝑤 ⊂ (�̂�𝑚)𝒫𝑤(𝐴) = (�̂�𝑚)𝒫(𝐴) ⊂ 𝑉. Given that 𝐴 is reflexive, it follows that �̅�𝑚

𝑤is weakly 

compact; therefore, �̅�𝑚
𝑤 ∈ 𝒦𝑤(𝑉). As a result, ℋ𝑤v𝑘(𝑉) equals ℋ𝑤v(𝑉). Furthermore, under the 

assumption that 𝐴 possesses a Schauder basis, it can be deduced from Example 4.2 that 𝒫𝑤(𝐴)  is 

dense in ℋ𝑤v(𝑉) and 𝑆𝑤v(𝑉)equals 𝑉. An instance of a Banach space that possesses every one of 

the necessary properties is Tsirelson's space [13]. It is demonstrated in reference [15] 𝑆𝑤v(𝑉) =

𝑉 if 𝐴 is a reflexive Banach space in which 𝒫(𝐴) = 𝒫𝑤(𝐴), 𝑉 ⊂ 𝐴 is balanced, and the 𝒫𝑏(𝐴) -

convex open set is strongly 𝒫𝑏(𝐴)-convex. As previously noted, each balanced 𝒫𝑏(𝐴)-convex open 

set possesses the strongly 𝒫𝑏(𝐴) -convex property. In the specific instance where 𝐴 represents 

Tsireson's space, we further enhance the outcomes reported in reference [15]. 
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As a result of Theorem 4.1, the Next Theorem follows. It states that, according to the same 

Theorem 4.1 hypotheses, each proper finitely generated ideal of ℋ𝑤v𝑘(𝑉).  shares a zero. The 

substantiation shall be omitted in accordance with the tenets of [11]. 

Theorem 4.4. Assume that 𝑉 is a a 𝒫𝑤𝑘(𝐴)-convex and weakly open subset of 𝐴, where 𝐴 is a 

reflexive Banach space with a Schauder basis. Consequently, if 𝑔1, 𝑔2, … , 𝑔𝑚 ∈ ℋ𝜔v𝑘(𝑉) and none 

of them have any common zeros, there is exists 𝑓1,, 𝑓2, … , 𝑓𝑚 ∈ ℋ𝜔v(𝑉) in which ∑ 𝑔𝑖𝑓𝑖 =𝑚
𝑖=1

1.                 .     

With respect to the algebra ℋ𝑤v(𝑉), the subsequent corollary follows in the spirit of Example 4.2. 

Corollary 4.5. Consider 𝐴 to be a Schauder-basis reflexive Banach space, and 𝑉 to be a convex and 

weakly open subset of 𝐴. Subsequently, if  𝑔1,, … , 𝑔𝑚 ∈ ℋ𝑤v(𝑉) and none of the elements contain 

common zeros, there is a 𝑓1,, 𝑓2, … , 𝑓𝑚 ∈ ℋ𝜔v(𝑉) in which ∑ 𝑔𝑖𝑓𝑖 = 1.𝑚
𝑖=1  

Denoted as Banach spaces 𝐴 and 𝐺, let 𝑉 ⊂ 𝐴 and 𝑈 ⊂ 𝐺 represent open subsets. The set of 

holomorphic mappings 𝜓: 𝑈 → 𝑉 is represented by ℋ𝑤v𝑘(𝑉, 𝑈) in which 𝜓: (𝑉, 𝜎(𝐺, 𝐺′)) →

(𝑉, 𝜎(𝐺, 𝐺′)) remains uniformly continuous when limited to each 𝐵 ∈ 𝒦𝑤(𝑈). Suppose that 

𝜓 ∈ ℋ𝑤𝑢v𝑘(𝑈, 𝑉). It can be readily observed that the continuous algebra-homomorphism 

𝐶𝜓: ℋ𝑤v𝑘(𝑉) → ℋ𝑤v𝑘(𝑈), where 𝐶𝜓(𝑔) = 𝑔 ∘ 𝜓, holds true for all 𝑔 ∈ ℋ𝑤v𝑘(𝑉). Such a 

homomorphism is referred to as a composition operator. Subsequently, we demonstrate that 

every continuous algebra-homomorphism from  ℋ𝑤v𝑘(𝑉) to  ℋ𝑤v𝑘(𝑈) is a composition operator, 

under the same conditions as Theorem 4.1. 

Theorem 4.6. Consider the two Banach spaces 𝐴 and 𝐺, where 𝐴 is reflexive and has a Shauder 

basis. Consider 𝑉 ⊂ 𝐴 to be weakly open and 𝒫𝑤𝑘(𝐴)-convex, while 𝑈 ⊂ 𝐺 represents an open 

subset. Consequently, all continuous algebra-homomorphisms 𝑇: ℋ𝑤v𝑘(𝑉) → ℋ𝑤v𝑘(𝑈) can be 

classified as composition operators. 

Proof. Our principles are derived from [14]. It is necessary to identify a mapping 𝜓 ∈ ℋ𝑤v𝑘(𝑈, 𝑉) 

that guarantees 𝑇 = 𝐶𝜓. It is observed that  𝛿𝑤 ∘ 𝑇 ∈ 𝑆𝑤v𝑘(𝑉) and let 𝜔 ∈ 𝑈. A unique 𝑧 ∈ 𝑉 exists 

such that 𝛿𝑤 ∘ 𝑇 =  𝛿𝑧, as stated in Theorem 4.1. By establishing 𝜓(𝑤)  =  𝑧, we can deduce that 

𝑇(𝑔) = 𝑔 ∘ 𝜓, for all  𝑔 ∈ ℋ𝑤v𝑘(𝑉). Specifically, 𝑔 ∘ 𝜓 is holomorphic for all 𝑔 ∈ 𝐴′; therefore, 𝜓 is 

a holomorphic mapping according to [10]. To demonstrate that the set 𝜓: (𝑈, 𝜎(𝐺, 𝐺′)) →

(𝑉, 𝜎(𝐴, 𝐴′)) remains uniformly continuous while being limited to a single 𝐵 ∈ 𝒦𝑤(𝑈). Therefore, 

let 𝐵 ∈ 𝒦𝑤(𝑈), 𝑔 ∈ 𝐴′ and 𝜔 > 0. Given that 𝑔 ∘ 𝜓 ∈ ℋ𝑤v𝑘(𝑈), there is 𝑊 ∈ 𝒱𝑤(𝐺) in which 

|𝑔 ∘ 𝜓(𝑥) −  𝑔 ∘ 𝜓(𝑦)| < 휀, and 𝑥, 𝑦 ∈ 𝑊, then 𝑥 − 𝑦 ∈ 𝑊. This demonstrates  𝜓 ∈ ℋ𝑤v𝑘(𝑈, 𝑉) [16]. 
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Corollary 4.7. Consider Banach spaces 𝐴 and 𝐺, where 𝐴 is reflexive and has a Shauder basis. 

Denote 𝑉 ⊂ 𝐴 as a weakly open and convex set, while denoting  𝑈 ⊂ 𝐺 as an open subset. Then 

all continuous algebra homomorphisms 𝑇: ℋ𝑤v(𝑉) → ℋ𝑤v(𝑈) can be classified as composition 

operators. 

         Corollary 4.7 presents comparable findings to those presented in [7] regarding absolutely 

convex open subsets of Banach spaces whose dual possesses the property of approximation . 

Two compact metric spaces 𝑋 and 𝑌 are homeomorphic if and only if the Banach algebras 𝒞(𝑋) 

and 𝒞(𝑌) are isometrically isomorphic, as demonstrated in [5]. The well-known Banach-Stone 

theorem was extended to arbitrary compact Hausdorff topological spaces by M.H. Stone in [12]. 

Comparable outcomes are established for the algebras ℋ𝑤v𝑘(𝑉) and ℋ𝑤v𝑘(𝑈) in the following 

theorem. 

Theorem 4.8. Consider the reflexive Banach spaces 𝐴 and 𝐺 to be Shauder bases. Assume that 

𝑉 ⊂ 𝐴 and 𝑈 ⊂ 𝐺 are weakly open sets, with 𝑉 and 𝑈 being 𝒫𝑤𝑘(𝐴)-convex and 𝒫𝑤𝑘(𝐺)-convex 

respectively. Subsequently, the subsequent conditions are equivalent . 

(a) A bijective mapping 𝜓: 𝑈 → 𝑉 is present, in which 𝜓 ∈ ℋ𝑤v𝑘(𝑈, 𝑉) and 𝜓−1 ∈ ℋ𝑤v𝑘(𝑉, 𝑈). 

(b) ℋ𝑤v𝑘(𝑉) and ℋ𝑤v𝑘(𝑈) are topologically isomorphic algebras. 

Proof. Our principles are derived from  [14] . 

 (a)⇒(b) The composition operator 𝐶𝜓: ℋ𝑤v𝑘(𝑉) → ℋ𝑤v𝑘(𝑈) shall be examined. It is then evident 

that 𝐶𝜓 is bijective, and (𝐶𝜓)−1 =  𝐶𝜓−1.  

 (𝑏) ⇒ (𝑎) Consider an example of a topological isomorphism 𝑇: ℋ𝑤v𝑘(𝑉) → ℋ𝑤v𝑘(𝑈). There exist 

𝜓 ∈ ℋ𝑤v𝑘(𝑈, 𝑉) and 𝜙 ∈ ℋ𝑤v𝑘(𝑈, 𝑉) in which 𝑇 = 𝐶𝜓 and 𝑇−1 = 𝐶𝜙, respectively, according to 

Theorem 4.6. It is subsequently uncomplicated to observe that𝜙 =  𝜓−1; this concludes the proof 

[16].  
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