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ABSTRACT. Many problems appear to be arising in the present as a result of variations in transportation networks. The 

stochastic fixed-charge transportation problem (SFCTP) is one such problem. The SFCTP is transformed into a chance-

constrained programming (CCP) problem where supply and demand are stochastic and objective functions are in a 

rough interval. In this model, to analyze the multi-objective rough interval stochastic fixed-charge transportation 

problem (MORISFCTP), where the objective function coefficients are represented by rough intervals and the supply 

and destination factors are probabilistic constraints. This model operates an expected value operator to deal with 

uncertainty, in which the coefficient of the objective functions in the fuzzy is changed to a crisp form, and the 

probabilistic constraints are converted to a deterministic form by the Weibull distribution. To produce the optimal 

compromise solutions of the proposed model, three distinct methods are used: the fuzzy programming approach, the 

method of a linear weighted sum, and the €-constraint method. Lastly, the paper delivers a practical illustration of a 

MORISFCTP to demonstrate the usefulness and feasibility of the suggested methodology. 

 

1. Introduction 

The growth and development of a country's economy become quicker through the 

advancement of corporations, trade, and factories. The enhancement in them, once again, is 

dependent on a transitory system. As a result, transportation is the strength of a country's budget. 

As a result, transport system research is a critical component of a country's economic progress. 
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Hitchcock gave the first mathematical solution to a transportation problem (TP) in 1941 

(Hitchcock 1941). Many researchers followed, including Koopmans (1949), Charnes and Cooper 

(1954), Roy et al. (2018), Das et al. (2019), Agrawal and Ganesh (2020), Garg and Rizk-Allah (2021), 

Biswas et al. (2022), Mardanya and Roy (2023), and others.  

The rough set model, created by Pawlak (1982), has frequently been shown to be an 

exceptional mathematical device for the study of ambiguous descriptions of things. The 

complexity of the social and economic context in some authentic transportation situations 

necessitates the unambiguous examination of many composed functions rather than a particular 

objective function. The incommensurate and conflicting nature of this problem extends to its 

complexity. In multi-objective transportation problems (MOTP), the thought of the best solution is 

replaced by the conception of a Pareto optimal solution or non-inferior solution.  

The fixed-charge transportation problem (FCTP) is an extension of the TP. When the 

parameters that represent transportation cost assume a positive value, a fixed cost, additionally 

referred to as set-up cost, is incurred in numerous real-world circumstances. This particular kind 

of problem is known as FCTP. The MOFCTP is an extension of the classic FCTP that is beneficial 

when dealing with FCTP with multiple objective functions. As a consequence, the advancing 

problem would be more complex than in standard FCTP. 

One of the most essential distributions in risk analysis, actuarial science, and engineering 

is the Weibull distribution. It is the distribution that has gained the most attention in recent 

decades. Numerous studies have been written depicting Weibull distribution applications across 

multiple sciences. It is frequently employed in systems engineering to analyze the cumulative 

loss of performance of a complicated system. A stochastic framework can be used to deal with 

uncertain parameters in a TP. However, either a priori predictable periodicity or a posterior 

frequency distribution is necessary for the stochastic distribution 

1.1 Literature Review: 

This sector presents a literature analysis of TP and fuzzy TP with stochastic. Singh [1] et 

al. presented a general construction of the multi-objective solid transportation problem (STP) 

with Gamma distribution and solved it using a solution practice based on the CCP technique with 

the uncertainty of the feasibility condition, which then extended the fuzzy programming 

approach (FPA). Biswas [2] et al. suggested solving a class of non-linear FCTP with multi-

objective in classical and interval circumstances where NSGA-II was used to determine the FCTP 



Int. J. Anal. Appl. (2024), 22:117 3 

 

with multi-objective in crisp and interval environments where NSGA-II was extended with 

interval order relations. Elsisy and El Sayed [3] created a bi-level multi-objective non-linear 

programming problem (BMNPP) with a fuzzy objective function and a rough set of constraints 

to transform BMNPP into two models, such as upper and lower approximation models. To solve 

such problems, the KKT and two models of the technique of order preference with a resemblance 

to the ideal solution approach are devised. Brikaa [4] et al. established an efficient multi-objective 

programming technique in fuzzy for solving constraint matrix games using payoffs of rough 

value in fuzzy, where a matrix game with fuzzy rough payoffs appears to be composed of a 

rough-type game value in fuzzy. Roy [5] et al. created a multi-objective, multi-item fixed-charge 

solid transportation problem (MOMIFCSTP) utilizing fuzzy-rough variables as objective 

functions and constraint coefficients. To convert fuzzy-rough MOMIFCSTP to deterministic 

MOMIFCSTP, the expected-value operator is used, and then solving the deterministic 

MOMIFCSTP using the procedure for order first choice by the alikeness towards the best solution 

and obtaining a non-dominated solution, distinct three approaches are used: weighted goal 

programming (WGP), extended TOPSIS, and fuzzy programming. Das [6] et al. provided a type-

2 fuzzy parameterized safety-based restricted fixed charge STP that reduces together cost and 

time in which two models are created, firstly by reducing a type-2 to a type-1 fuzzy set using a 

critical value (CV)-based reduction mode and using a centroid process to reduce the fuzzy set to 

a crisp value, and in the next instance, the CV-based reduction method was used to create the 

CCP model based on generalized credibility, then solved the deterministic equivalent parametric 

programming problem by weighted mean programming approach and global criteria method 

using LINGO 13.0. 

Jana and Jana [7] suggested random type-2 ambiguous variables with two types: 

triangular random type-2 and Gaussian random type-2 variables in fuzzy are used in 4D-TP, 

where the objective function is without random by an operator of the expected value and 

constraints are used in the CCP method, then the crisp problem is explained by the Generalized 

Reduced Gradient method using LINGO 14.0. Bera [8] et al. developed fixed-charge 4D-TP used 

for the breakable item formulated with triangular, Gaussian, and zigzag random type-2 variables 

in fuzzy, for de-randomized triangular by CV centroid method, Gaussian by CCP, and zigzag by 

CV method, then the deterministic reduced model solved by Generalized Reduced Gradient 

method using LINGO 18.0. Nasseri and Bavandi [9] presented a compromise solution for multi-
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objective TP with multi-choice parameters, where the parameters are interpolating polynomials 

that are converted into the classical model by CCP and then applied fuzzy programming tactics. 

Habiba and Quddoos [10] established the Pareto optimal solution for the multi-objective 

stochastic TP with interval, where the supply and demand are general distributions, which are 

converted into the classical problem and then solved by fuzzy programming. Agrawal and 

Ganesh [11] investigated the solution of fuzzy fractional TP with exponential parameters and 

triangular fuzzy numbers, which converted fuzzy constraints to deterministic ones by CCP and 

then applied fuzzy programming. Bera and Mondal [12] investigated the credit period policy in 

rough and bi-rough backgrounds for a two-stage multi-objective TP where independent 

parameters of transportation cost, requirements, and demand are rough and demand is bi-rough, 

and then the model was solved by the NAGA-II algorithm. Agrawal and Ganesh [13], the most 

effective approach to determining a solution for a multi-choice fractional TP is to employ random 

multi-choice parameters that follow a logistic distribution, with CCP converting the constraints 

to deterministic performance. Midya et al. [14], a method was developed to find the solution for 

multiple objective fractional FCTP in a rough environment where the parameters are fuzzy and 

converted to fuzzy CCP. 

Kuiri [15] et al. built a stochastic solid TP and employed it to solve a lagrangian function 

under the Karush-Kuhn-Tucker conditions involving randomly distributed demands. Garg and 

Rizk-Allah [16] investigated the rough multi-objective TP solution, then used the advantages of 

the weighted sum method to identify Pareto optimal solutions and then to find the best 

compromise solution to multi-objective TP in difficult environments that produced the expected 

non-dominated value. Khalifa [17] et al. researched a way to use the weighted Tchebycheff 

approach with a type of stability set and trapezoidal fuzzy number penalties to produce the alpha 

Pareto solution and alpha compromise solution for the multi-objective, multi-item solid TP. Singh 

[18] et al. developed another way of CCP by the Essen inequality method to obtain the 

computational form of the problem by uniform, exponential, and gamma distributions, and this 

method has been employed to reduce the complexity of TP with random parameters in fuzzy. 

Kacher and Singh [19] elaborated and summarised the current forms of many different TP types 

and their efficient advancements in the direction of helping researchers in the future, categorizing 

which classes of problems should be addressed, and choosing the optimized criteria. Shivani [20] 

et al. investigated the unbalanced multi-objective FCTP with rough interval parameters, 



Int. J. Anal. Appl. (2024), 22:117 5 

 

subsequently converting the unbalanced to the balanced multi-objective fixed-charge TP, then 

employing the three approaches of fuzzy programming, weighted sum method, and goal 

programming to find the Pareto optimal solution in rough. Devnath [21] et al. invented multiple 

items in a two-stage fixed-charge 4DTP in which all are fuzzy in nature with breakability, with 

and without flexible constraints. Converted to deterministic with and without flexible constraints 

using order relations of fuzzy numbers and modified graded mean integrated value methods, 

respectively, and then solved via the GRD method. Biswas [22] et al. developed the multi-

objective FCTP with multiple items, in which the availabilities are multiple modes but the 

demands are classical and interval numbers. The NSGA-II and Strength Pareto Evolutionary 

Algorithm 2 were followed to solve the problem. Haque [23] et al. developed a non-linear STP 

with a fixed-charge multi-objective in which all parameters are closed intervals. The objective 

function is minimized within the budgetary constraints, and after being transformed to a crisp by 

multiple integrations, the solution is based on interval analysis. Buvaneshwari and Anuradha 

[24] et al. devised a method to deal with stochastic fuzzy transportation problems with mixed 

probabilistic constraints, in which an objective function is a fuzzy number that is converted into 

crisp by the alpha cut method and mixed probabilistic constraints are converted into 

deterministic by CCP. The resulting model is then solved by LINGO software. 

Dutta and Kaur [25] developed a model for the multi-choice linear programming problem 

and solved it using the cubic spline interpolation method, where the parameters of the constraints 

are multi-choice. Niksirat [26] determined the Pareto optimal solution for the fully fuzzy multi-

objective TP by adopting the nearest approximation method with uncertainty conditions. 

Agrawal [27] et al. implemented the Water Cycle Algorithm to determine the stochastic TP, at 

which supply and demand are random variables with Weibull distributions, and the stochastic is 

transformed into deterministic through a stochastic programming approach, and the results are 

compared with a neural network algorithm. Mardanya and Roy [28] developed Multi-Objective 

Multi-item STP (MMSTP) with uncertainty, where all the parameters are a trapezoidal fuzzy 

number that is converted into nearly interval number approximation and derived the updated 

rule for the converted nearly interval number approximation, then applied interval programming 

and fuzzy programming to the converted MMSTP and solved by MMSTP in rough variables. Roy 

and Midya [29] built an optimally compromised solution of the multi-objective FCTP, in which 

the objective function is a rough interval in random and supply and demand are rough intervals 
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that are converted deterministic by the operator of expected, and then solved the resulting model 

through the approaches of fuzzy programming, global criteria, and €-constraint methods. Halder 

Jana [30] et al. established the fixed charge 4D multi-item TP with both space and budget 

constraints for these types of items in both crisp and rough circumstances where all the 

parameters are rough intervals except the items of the demand are nature of sustainability and 

complementary, which is converted to deterministic by expected value as well as lower and 

upper approximation value, then the resulting model is solved by GRG through LINGO 14.0 

software. Midya and Roy [31] adopted fuzzy programming and the method of a linear weighted 

sum to determine a Pareto-optimal solution of the MOFCTP in rough parameters that are 

transformed into deterministic using the operator of the expected value.  

1.2 Research Gap and Limitation:  

In this circumstance, there are several TPs, such as two-dimensional TP, solid TP, 4D-TP, 

and multi-objective TP, with various types of factors such as budget factor, conveyance factor, 

etc. But to the best of our knowledge, till now, few researchers have investigated the multi-

objective with probabilistic constraints. There are few papers in TP with cost, profit, and fixed 

charge in a rough environment, but they have not considered the fixed charge rough interval with 

probabilistic constraints, so a multi-objective investigation with rough intervals with a 

distribution of probabilistic constraints is proposed. The probability ‘p’ lies between 0<p<1. In 

general, uncertainty has been defined using fuzzy or probability theory. Employing fuzzy theory 

or probability theory to flesh out indeterminacies might not always be appropriate due to a lack 

of the right information. So, we propose to characterize uncertainty using both fuzzy and 

probability parameters.  

1.3 Managerial implication on research: 

Uncontrollable circumstances may result in unidentified cost, availability, and demand 

quantities. Stochastic TP encompasses the usage of random variables with defined probability 

distributions to describe problematic parameters. Fuzziness and randomization strategies 

have the bonus of lacking prior identified regularities and are capable of handling imprecise 

input information, especially feelings, and emotions quantified based on the DM's subjective 

evaluations. Over the past decade, there has been growth in several industries, including 

transportation, economics, health care, agriculture, trade, army, engineering, and technology.  
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MORISFCTP, a newly created model with a rough interval multi-objective function and 

probabilistic constraints, is tackled in the present article. The expected value of the distribution 

operator, such as uniform, exponential, or gamma distributions, is used to convert the rough 

interval to classical in objective functions. The Weibull distribution is implemented to convert 

probabilistic constraints to deterministic constraints, and the resulting model is analyzed using 

three different methods: fuzzy programming, linear weighted sum, and €-constraints using the 

LINGO software. Sensitivity analysis is performed by considering various demand limitations 

and constant supply with a probability distribution. The superior complexity of the current 

investigation looks at a fuzzy TP with a rough interval in a stochastic environment, focusing on 

multi-objective transportation costs. Effective decision-making in complicated corporate 

situations is unable to depend on just one criterion. As a result, we must comprehend the presence 

of multiple factors that can help with multi-criteria decision-making. Some authors are 

researchers for multi-objectives with all the parameters being rough intervals and solving the TP 

but in this proposed multi with rough and probabilistic constraints. 

Following is the outline of the paper. Section 2 explores the essentials of rough and 

random variables. Section 3 demonstrates the various distribution functions with an operator on 

the expected value of a rough and a random variable. The mathematical model of MORISFCTP 

is developed in Section 4. Section 5 discusses the recommended model’s solution strategy. Section 

6 contains a real-world example of an uncertain MORIFCSTP. Section 7 includes a discussion of 

the results and a comparison of the best solutions found using the three distinct methods. The 

proposed model (MORISFCTP) of sensitivity analysis is laid out in Section 8. Finally, Section 9 

contains the conclusions. 

1.4 Motivation and main contributions: 

Many researchers have studied FCTPs in uncertain environments such as fuzzy, 

stochastic, and so on, but there are few research papers about TPs in rough backgrounds. Still, to 

our knowledge, no one has investigated MORISFCTP, with parameters (transport cost and fixed 

costs, traveling time, deterioration cost of items) being rough variables and supply and demand 

being probabilistic (Weibull distribution). The problem arises when the DM lacks particular data 

and the quantities of MOFCTP have predictable values. Because of this, the probable region of 

MOFCTP is not stable (i.e., variable). In suitable circumstances, introduce a rough interval and 

stochasticity in MOFCTP when the feasible region of MORISFCTP is more adaptable. Thus, 
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MORISFCTP consumes an accurate occasion, which is the enthusiasm of developed research. In 

Table 1, we give an organized overview of some recent articles related to TP, stochastic TP, and 

STP with and without roughness. 

The following are the main contributors:  

• The MORISFCTP model is established. 

• The MORIFCSTP is transformed into a classical form by an operator of expected-valued 

and Weibull distributions. 

• The deterministic MORIFCSTP is explained by fuzzy programming and the method of a 

linear weighted-sum and €-constraint method. 

• The comparison is made between the solutions of three methods for MORISFCTP. 

• A sensitivity analysis of MORIFCSTP is presented. 

• The case study problem is displayed using the recommended MORIFCSTP model, 

which is discussed. 

Table 1: Some recent studies on transportation problem variants under various conditions 

References 

(year) 

No. of 

Objectives 

Kind of TP Fixed 

charge 

Environment Type of 

distribution 

Programming Approach 

Singh [1] et al. (2019) Multi Solid TP No Crisp Gamma 

distribution 

Fuzzy programming approach 

Agrawal and 

Ganesh [13] (2020) 

Single Fractional 

TP 

 

No Fuzzy Logistic 

distribution 

Newton’s divided difference 

interpolating method. 

Midya [14] et al. 

(2020) 

Multi Fractional 

TP 

Yes Rough - Rough approximation technique 

Singh et al. [18] 

(2021) 

Single TP No Fuzzy Uniform, 

exponential, 

and gamma 

distribution 

 

Essen inequality approach 

Buvaneshwari and 

Anuradha [24] 

(2022) 

Single Stochastic 

TP 

No Fuzzy Weibull 

distribution 

Three models of stochastic fuzzy 

TP with mixed constraints were 

solved. 

Agrawal et al. [27] 

(2022) 

Single Stochastic 

TP 

No Crisp Weibull 

distribution 

Water cycle algorithm and 

compared to the neural network 

algorithm. 

Shivani et al. [20] 

(2022) 

Multi TP Yes Rough - Fuzzy programming, goal 

programming, weighted sum 

method 

Biswas et al. [22] 

(2022) 

Multi TP Yes Crisp and 

interval 

- Non-dominated soring genetic 

algorithm II and Strength pareto 

evolutionary algorithm 

Proposed article Multi Stochastic 

TP 

Yes Rough  Weibull 

distribution 

Fuzzy Programming, Weighted 

Sum method, €-constraint 

method by LINGO. 
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2. Preliminaries 

This section provides rough space, rough intervals, and arithmetic operations on rough. 

In addition, we give some important definitions and theorems concerning a rough variable. 

Definition: [29] Let (Λ, ∆, 𝐴, 𝜋) be is referred to as the rough space, where ∧ as a set of non-empty, 

𝛢 is a 𝜎-algebra of the subset ∧ , △ is an element in A, and 𝜋 is the real-valued function. 

Definition: [4] The standard value 𝑆𝑅 is called a rough interval (RI) when two closed intervals 

can be assigned 𝑆𝐿 and 𝑆𝑈 on a real number set 𝑅 to it, where 𝑆𝐿 ⊆ 𝑆𝑅. Furthermore,  

(𝑖)𝑖𝑓 𝑡 ∈ 𝑆𝐿 𝑡ℎ𝑒𝑛 𝑆𝑅 𝑠𝑢𝑟𝑒𝑙𝑦 𝑡𝑎𝑘𝑒 𝑡 (𝑑𝑒𝑛𝑜𝑡𝑒𝑑 𝑏𝑦 𝑡 ∈ 𝑆𝑅) 

              (𝑖𝑖)𝑖𝑓 𝑡 ∈ 𝑆𝑈 𝑡ℎ𝑒𝑛 𝑆𝑅 𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑦 𝑡𝑎𝑘𝑒 𝑡 

              (𝑖𝑖𝑖)𝑖𝑓 𝑡 ∉ 𝑆𝐿  𝑡ℎ𝑒𝑛 𝑆𝑅 𝑑𝑜𝑒𝑠 𝑛𝑜𝑡 𝑠𝑢𝑟𝑒𝑙𝑦 𝑡𝑎𝑘𝑒 𝑡 (𝑑𝑒𝑛𝑜𝑡𝑒𝑑 𝑏𝑦 𝑡 ∉ 𝑆𝑅) 

Where 𝑆𝐿𝑎𝑛𝑑 𝑆𝑈are denoted by the lower and upper approximation intervals 𝑆𝑅respectively. 

Supplementary 𝑆𝑅 is denoted by 𝑆𝑅 = (𝑆𝐿: 𝑆𝑈). 

Definition: [31] Rough interval (RI) arithmetic procedures are identical to crisp interval 

arithmetic operations. For any two numbers 𝛿𝑅 = [𝛿𝐿𝐿, 𝛿𝐿𝑈], [𝛿𝑈𝐿, 𝛿𝑈𝑈] & 𝜌𝑅 =

[𝜌𝐿𝐿, 𝜌𝐿𝑈], [𝜌𝑈𝐿 , 𝜌𝑈𝑈] of rough intervals when 𝛿𝑅 ≥ 0, 𝜌𝑅 ≥ 0 and ∗∈ (±, ×, ÷)is an operation on 

a binary set of rough intervals. Then, we have:  

Addition: 𝛿𝑅 ∗ 𝜌𝑅 = [𝛿𝐿𝐿 ∗ 𝜌𝐿𝑈], [𝛿𝐿𝑈 ∗ 𝜌𝑈𝑈] other arithmetic operations on rough intervals, such 

as subtraction and multiplication, are defined identically to addition. 

Division: 𝛿𝑅 ÷ 𝜌𝑅 = {[𝛿𝐿𝐿 ÷ 𝜌𝐿𝑈], [𝛿𝐿𝑈 ÷ 𝜌𝑈𝑈]}, {[𝛿𝑈𝐿 ÷ 𝜌𝑈𝐿], [𝛿𝑈𝐿 ÷ 𝜌𝑈𝑈]  

If c is a scalar, then  

𝑐 ∗ 𝛿𝑅 = {
([𝑐𝛿𝐿𝐿, 𝑐𝛿𝐿𝑈], [𝑐𝛿𝑈𝐿 , 𝑐𝛿𝑈𝑈]), 𝑖𝑓𝑐 ≥ 0

([𝑐𝛿𝐿𝑈, 𝑐𝛿𝐿𝐿], [𝑐𝛿𝑈𝑈, 𝑐𝛿𝑈𝐿]), 𝑖𝑓𝑐 < 0
 

Where * denotes the scalar product of the rough interval. 

Trust Measure: [12] The trust in rough set theory measures uncertainty. Trust is a measurable 

function from a rough space (∧, ∆, 𝐴, 𝜋) to [0, 1], where ∧ as a non-empty set, ∆ is a -algebra of the 

subsets of ∧, 𝛢 be an element of ∆, and 𝜋 be a non-negative real-valued function represented by 

“Tr”. 

Definition: [29] Let ([𝑝, 𝑞], [𝑟, 𝑠]) be a rough variable such that 𝑟 ≤ 𝑝 < 𝑞 ≤ 𝑠 and it can be written 

             as 𝑇𝑟(휁 ≤ 0) =

{
 
 

 
 

0,         𝑖𝑓 𝑟 ≥ 0
𝑟

2(𝑟−𝑠)
          𝑖𝑓 𝑝 ≥ 0 ≥ 𝑟

2𝑝𝑟−𝑝𝑠−𝑞𝑟

2(𝑞−𝑝)(𝑠−𝑟)
 𝑖𝑓 𝑞 ≥ 0 ≥ 𝑝

𝑠−2𝑟

2(𝑠−𝑟)
  𝑖𝑓 0 ≥ 𝑠
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 The rough variable function “Tr” graphs are displayed in Fig 1. 

                     

 

     

 

              

Fig.1 displays the two trust functions 𝑇𝑟(휀 ≥ 𝑔) & 𝑇𝑟(휀 ≤ 𝑔) diagram respectively. 

3. Expected value on the rough interval: 

 An operator of expected value in a rough interval depends upon the parameters of the 

rough interval, which are identical to the probability model of an operator of expected.  

Definition: [31] Let 휀 rough variable on the rough space (∧, ∆, 𝐴, 𝜋). The expected value of 휀 is 

defined as 𝐸(휀) = ∫ 𝑇𝑟(휀 ≥ 𝑔)𝑑𝑔 − ∫ 𝑇𝑟(휀 ≤ 𝑔)𝑑𝑔
0

−∞

∞

0
 and given that at least one of the integrals 

occurs, where E is denoted by the operator of the expected value and "Tr" is denoted by the trust 

measure. 

 Definition: [29] Suppose that ℇ is a random rough variable defined on the rough space (∧, ∆, 𝐴, 𝜋). 

The following represents the way its expected value is described: 

𝐸(휀) = ∫ 𝑇𝑟{휂 ∈∧: 𝐸[𝜖(휂)] ≥ 𝑔}𝑑𝑔 − ∫ 𝑇𝑟 {휂 ∈∧: 𝐸[𝜖(휂)] ≤ 𝑔}𝑑𝑔
0

−∞

∞

0

 

Theorem 3.1: [31] Suppose that ℇ = ([𝑝, 𝑞], [𝑟, 𝑠]) is a rough interval then the expected value of ℇ 

is defined by 𝐸(휀) =
1

2
[𝜗(𝑝 + 𝑞) + (1 − 𝜗)(𝑟 + 𝑠)] 𝑤ℎ𝑒𝑟𝑒 0 < 𝜗 < 1, the decision-maker-

determined parameter. 

Theorem 3.2: [31] Suppose that 𝛿𝑅 = [𝛿𝐿𝐿, 𝛿𝐿𝑈], [𝛿𝑈𝐿 , 𝛿𝑈𝑈] & 𝜌𝑅 = [𝜌𝐿𝐿, 𝜌𝐿𝑈], [𝜌𝑈𝐿 , 𝜌𝑈𝑈] rough 

intervals of expected values are finite values. Then, for any real number of g & h, we have 

𝐸[𝑓𝛿 + 𝑔𝜌] = 𝑓𝐸[𝛿] + 𝑔𝐸[𝜌]. 

3.1 The expected value of a random rough variable: 

Definition: [29] Suppose that 휀 is a random rough variable that is defined in (∧, ∆, 𝐴, 𝜋) and 휀(𝜇) 

is a random variable of the continuous distribution for any 𝜇𝜖 ∧, and if it’s the expected value of 

the rough variable is defined by 𝐸[휀(𝜇)] = {[𝑝, 𝑞], [𝑟, 𝑠]}, 𝑟 ≤ 𝑝 < 𝑞 ≤ 𝑠, then 휀 called the 

continuous random rough variable. 

Definition: [29] Suppose that 휀  is a random rough variable that is defined in (∧, ∆, 𝐴, 𝜋) and 휀(𝜇) 

is a random variable, then the function 𝑓(𝓍, 휀) is called the density function of 휀(𝜇) is defined as 
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follows: ∫ 𝑥𝑓(𝑥) = {[𝑝, 𝑞], [𝑟, 𝑠]}
 

𝑥∈𝜓
where 𝑝, 𝑞, 𝑟, and 𝑠 are real number and finite, 𝜓 is a specified 

region. 

Definition: [29] The expected value of 휀 is defined as follows:  

𝐸(휀) = ∫ 𝑇𝑟 [∫ 𝑥𝑓(𝑥)𝑑𝑥 ≥ 𝑟
 

𝑥∈𝜓

] 𝑑𝑟 − ∫ 𝑇𝑟 [∫ 𝑥𝑓(𝑥)𝑑𝑥 ≤ 𝑟
0

𝑥∈𝜓

]
0

−∞

∞

0

𝑑𝑟 

Where 휀 is a random rough variable and its density function 𝑓(𝑥) and 𝜓 is a specified region. 

Theorem 3.3: [29] Suppose that 휁(𝑥) is a uniform function with rough a random variable, which 

is provided below: 

                                                     휁(𝑥) = {

1

𝜃2−𝜃1
,   𝑖𝑓 휃1 ≤ 𝑥 ≤ 휃2

 0   ,      𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 
 

where 휃1 = {[𝑝1, 𝑞1], [𝑟1, 𝑠1]}, 0 < 𝑟1 ≤ 𝑝1 < 𝑞1 ≤ 𝑠1 & 휃2 = {[𝑝2, 𝑞2], [𝑟2, 𝑠2]}, 0 < 𝑟2 ≤ 𝑝2 < 𝑞2 ≤ 𝑠2 

be rough variable parameters and 휃2 > 휃1, then the expected value can be determined by 

    𝐸(휁) =
1

8
[[𝑝1 + 𝑝2] + [𝑞1 + 𝑞2] + [𝑟1 + 𝑟2] + [𝑠1 + 𝑠2]]. 

Theorem 3.4: [29] Suppose that 휁(𝑥) is an exponential function with rough a random variable, 

which is provided below:  

                                                   휁(𝑥) = {
𝜆𝑒−𝜆𝑥,   𝑖𝑓      𝑥 ≥ 0
      0    ,   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

                            

where 𝜆 = {[𝑝, 𝑞], [𝑟, 𝑠]}, 0 < 𝑟 ≤ 𝑝 < 𝑞 ≤ 𝑠 is a random rough variable parameter, then the 

expected value can be determined by  𝐸(휁) =
1

4
[
1

𝑝
+
1

𝑞
+
1

𝑟
+
1

𝑠
]. 

Theorem 3.5: [29] Suppose that 휁(𝑥) is a gamma function with a rough random variable, which 

is provided below: 

                                      휁(𝑥) = {
𝛽𝛼𝑥𝛼−1𝑒−𝛽𝑥

𝛤𝛼
,    𝑖𝑓   𝑥 ≥ 0

          0        ,    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 
      

where 𝛼 = {[𝑝1, 𝑞1], [𝑟1, 𝑠1]}, 0 < 𝑟1 ≤ 𝑝1 < 𝑞1 ≤ 𝑠1 & 𝛽 = {[𝑝2, 𝑞2], [𝑟2, 𝑠2]}, 0 < 𝑟2 ≤ 𝑝2 < 𝑞2 ≤ 𝑠2  

be a rough variable parameter, then the expected value can be determined by 

                                          𝐸(휁) =
1

4
[
𝑝1

𝑞2
+
𝑞1

𝑝2
+
𝑟1

𝑠2
+
𝑠1

𝑟2
]. 

3.2 Conversion of stochastic supply and demand constraints: 

This section covers the methods used to determine the optimal solution for the stochastic 

fixed-charge transportation problem. The problem has probabilistic constraints that must be 

converted into deterministic constraints. 
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Theorem 3.6: [27] Assume that 𝜔𝑢, 𝑢 = 1,2, …𝑚 are independent Weibull distributions with 

random parameters 𝜑𝑢, 휃𝑢 𝑎𝑛𝑑 𝛾𝑢 for position, size, and shape. The probabilistic constraint (4.2) 

is subsequently transformed into deterministic behaviour as follows:  

                         ∑ 𝑥𝑢𝑣
𝑚
𝑢=1 ≤ ∑ 𝜑𝑢 + 휃𝑢[−𝑙𝑜𝑔(𝜌𝑢)]

1

𝛾𝑢𝑛
𝑣=1 , 𝑢 = 1,2, …𝑚 

Theorem 3.7: [27] Assume that 𝜛𝑣 , 𝑣 = 1,2,…𝑛 are independent Weibull distributions with 

random parameters 𝜑𝑣̅̅̅̅ , 휃𝑣̅̅ ̅ 𝑎𝑛𝑑 𝛾�̅�for position, size, and shape. The probabilistic constraint (4.3) is 

subsequently transformed into probabilistic behavior as follows:  

                       ∑ 𝑥𝑢𝑣
𝑛
𝑣=1 ≥ ∑ �̅�𝑣 + 휃̅𝑣[−𝑙𝑜𝑔(1 − �̅�𝑣)]

1

�̅�𝑣𝑚
𝑢=1 , 𝑣 = 1,2,…𝑛 

Theorem 3.8: [31] Suppose 𝑥𝑢𝑣
∗  for 𝑢 = 1,2,…𝑚 & 𝑣 = 1,2,… 𝑛 is called the non-dominated (Pareto-

optimal) solution of Model 2 if it satisfies the following conditions:  

  (𝑖) 𝑍𝑚(𝑥) ≤ 𝑍𝑚(𝑥
∗), 𝑓𝑜𝑟 𝑚 = 1,2,3 

                           (𝑖𝑖) 𝑍𝑚(𝑥) < 𝑍𝑚(𝑥
∗), 𝑓𝑜𝑟 𝑎𝑡𝑙𝑒𝑎𝑠𝑡 𝑜𝑛𝑒 𝑚  

                                       

4. Mathematical model for MORISFCTP 

 Consider three objective functions: the first objective denotes the transportation cost with 

a fixed charge for every place of origin; the second objective represents the storage time of the 

products; and the third objective is the deterioration cost of goods. If there are ‘𝑚’ sources (𝑢 =

1,2,… ,𝑚, the product travels to ‘𝑛’ destinations (𝑣 = 1,2, … , 𝑛). The aim is to obtain the unknown 

capacity 𝑥𝑢𝑣 (decision variable) that is delivered from the 𝑢𝑡ℎ origin to 𝑣𝑡ℎ destination while 

minimizing the three objective function values. Assume that MORISFCTP parameters are treated 

as rough intervals in the objective functions and that supply and demand restrictions are 

modeled using the Weibull distribution. A mathematical form of the recommended method is 

described as follows: 

Model 1: 

  𝑀𝑖𝑛 �̃�1 = ∑ (�̃�𝑢𝑣𝑥𝑢𝑣 + 휂̃𝑢𝑣𝑦𝑢𝑣)𝑢  

  𝑀𝑖𝑛 �̃�2 = 𝑚𝑎𝑥(�̃�𝑢𝑣: 𝑥𝑢𝑣 > 0, ∀𝑢, 𝑣)          (4.1) 

  𝑀𝑖𝑛 �̃�3 = ∑ ∑ �̃�𝑢𝑣𝑥𝑢𝑣𝑣𝑢  

          Subject to the constraints, 

  𝑃[∑ 𝑥𝑢𝑣𝑣 ≤ 𝜔𝑢] ≥ 1 − 𝜌𝑢, 𝑢 = 1,2, … ,𝑚            (4.2)   

  𝑃[∑ 𝑥𝑢𝑣𝑢 ≥ 𝜛𝑣] ≥ 1 − 𝛿�̅� , 𝑣 = 1,2, … , 𝑛                       (4.3)  

     𝑥𝑢𝑣 ≥ 0, 𝑢 = 1,2,… ,𝑚 & 𝑣 = 1,2, … , 𝑛       
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 Model1is feasible if and only if  

    ∑ 𝜔𝑢 ≥ ∑ 𝜛𝑣𝑣𝑢  

The objective functions are denoted by equation (4.1), while the probabilistic constraints of supply 

and destination are denoted by equations (4.2) and (4.3), respectively. 

4.1 Deterministic Model for MORISFCTP: 

The presence of a random rough variable, the suggested MORISFCTP idea, and the 

coefficient of the objective functions are random rough variables and probabilistic restrictions. 

The MORISFCTP could not be solved directly through random rough variables. Then, the value 

of the expected operator E is utilized in the objective function with probabilistic constraints for 

transforming Model 1 into Model 2 (classical mode) by employing in the objective function 

random rough variables and an operator of the expected rough along with Theorems 3.2, 3.3, 3.4, 

and 3.5 in Model 1. In Model 1, Theorems 3.6 and 3.7 transform the probabilistic constraints into 

deterministic constraints. The crisp MORISFCTP model is apparent below. 

Model 2: 

        𝑀𝑖𝑛 𝐸[�̃�1] = ∑ 𝐸(�̃�𝑢𝑣𝑥𝑢𝑣 + 휂̃𝑢𝑣𝑦𝑢𝑣)𝑢  

              ⇔ ∑ (𝐸(�̃�𝑢𝑣)𝑥𝑢𝑣 + 𝐸(휂̃𝑢𝑣)𝑦𝑢𝑣)𝑢                                                            (4.4) 

        𝑀𝑖𝑛 𝐸[�̃�2] = 𝑚𝑎𝑥(𝐸(�̃�𝑢𝑣): 𝑥𝑢𝑣 > 0, ∀𝑢, 𝑣)                                                             (4.5) 

        𝑀𝑖𝑛 𝐸[�̃�3] = ∑ ∑ 𝐸(�̃�𝑢𝑣)𝑥𝑢𝑣𝑣𝑢                                                                                 (4.6) 

                  Subject to the constraints   

   ∑ 𝑥𝑢𝑣
 
𝑢 ≤ 𝜑𝑢 + 휃𝑢[−𝑙𝑜𝑔(𝜔𝑢)]

1

𝛾𝑢 , 𝑢 = 1,2,…𝑚                                                (4.7) 

   ∑ 𝑥𝑢𝑣
 
𝑣 ≥ �̅�𝑣 + 휃̅𝑣[−𝑙𝑜𝑔(1 − 𝜛𝑣)]

1

�̅�𝑣 , 𝑣 = 1,2, …𝑛                                           (4.8) 

   𝑥𝑢𝑣 ≥ 0, 𝑢 = 1,2, … ,𝑚 & 𝑣 = 1,2,… , 𝑛                                                            (4.9) 

   𝑦𝑢𝑣 = 0 𝑖𝑓 𝑥𝑢𝑣 = 0                                                                                            (4.10) 

   𝑦𝑢𝑣 = 0 𝑖𝑓 𝑥𝑢𝑣 > 0                                                                                            (4.11) 

 Model 2 is said to be feasible if it satisfies the condition,  

   ∑ 𝜑𝑢 + 휃𝑢[−𝑙𝑜𝑔(𝜔𝑢)]
1

𝛾𝑢 ≥ ∑ �̅�𝑣 + 휃̅𝑣[−𝑙𝑜𝑔(1 − 𝜛𝑣)]
1

�̅�𝑣𝑣𝑢  

                                           

Notations of MORISFCTP: 

The suggested method using the notation is given below:  

m number of origins. 



14 Int. J. Anal. Appl. (2024), 22:117 

 

n number of destinations. 

𝑥𝑢𝑣 represent the transport cost of the product per unit quantity from 𝑢𝑡ℎ origin to 

𝑣𝑡ℎdestination. 

�̃�𝑢𝑣 represent the transportation cost of the product per unit quantity from 𝑢𝑡ℎorigin to 

𝑣𝑡ℎdestination 

휂̃𝑢𝑣 represent a fixed cost from the 𝑢𝑡ℎorigin to𝑣𝑡ℎdestination  

�̃�𝑢𝑣 represent the rough transportation time from the random 𝑢𝑡ℎorigins of the product to 

a 𝑣𝑡ℎ destination, which is independent of the amount of commodity transported 

�̃�𝑢𝑣 represent the deterioration cost with the random rough variable of the product from 

𝑢𝑡ℎorigin to𝑣𝑡ℎdestination 

𝑦𝑢𝑣 Binary variable taking the value ‘1’ if the source ′𝑖′ is used, otherwise ‘0’ 

𝜔𝑢 Weibull distribution of 𝑢𝑡ℎ source supply location 

𝜛𝑣 Demand location Weibull distribution for 𝑣𝑡ℎ destination 

�̃�𝑚 Rough nature of objective functions, m = 1, 2, 3. 

𝑍𝑚 The classical nature of the objective functions (m = 1, 2, 3), where 𝑍𝑚 = 𝐸[𝑍𝑚]an ‘E’ is 

a value of an operator of the expected. 

Assume, lacking the foregoing generality, the coefficient of random rough variables occurs in the 

suggested idea, with the probability distributions listed below. 

• Cost of transportation (�̃�𝑢𝑣) and fixed-charge (휂̃𝑢𝑣) follows “Uniform distribution” 

with parameter 𝑈(𝜒𝑢𝑣
1 , 𝜒𝑢𝑣

2 ), that is �̃�𝑢𝑣~𝑈(𝜒𝑢𝑣
1 , 𝜒𝑢𝑣

2 ) & 휂̃𝑢𝑣~𝑈(𝜒𝑢𝑣
1 , 𝜒𝑢𝑣

2 ). 

• Delivering time of transportation (�̃�𝑢𝑣) follows “Exponential distribution” with 

parameter 𝜇𝑢𝑣 that is �̃�𝑢𝑣~𝐸(𝜇𝑢𝑣). 

• The deterioration cost of transportation (�̃�𝑢𝑣)  follows “Gamma distribution” with 

a parameter 𝛾(𝜗, 𝜙) that is �̃�𝑢𝑣~𝛾(𝜗, 𝜙). 

 

5. Solution approaches: 

 In multi-objectives, solution one is the best, and the others are the worst, due to a 

combination of incompatibility and conflict of the objective functions. As a result, in multi-

objective circumstances, there is frequently a collection solution that can't be identified effectively 

compared to other objective functions. This part will go via the following methods of using and 

solving deterministic MORISFCTP, which are listed below: 
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• Fuzzy programming approach 

• Method of a linear weighted sum 

• €-constraint method 

5.1 Fuzzy programming approach 

In optimization, the multi-objective problem is solved through fuzzy programming. The 

fuzzy programming process gets started by determining the lower and upper bound of 𝐿𝑚 and 

𝑈𝑚 for the 𝑚𝑡ℎobjective function 𝑍𝑚(𝑚 = 1,2,3) respectively, which 𝐿𝑚and 𝑈𝑚denotes the 

desired levels of achievement and the greatest level of achievement for 𝑚𝑡ℎobjective function 

respectively, which is acceptable and 𝑑𝑚 = 𝑈𝑚 − 𝐿𝑚denotes the degradation budget of 

𝑚𝑡ℎobjective function. After determining the determination level and degradation allowance for 

each required function, a model in fuzzy is generated and translated into a classical model. The 

following steps can be used to reach the MORISFCTP solution. 

Stage 1: Solve the MORISFCTP by focusing on a distinct objective function at a time, while 

disregarding others. For the objective functions, repeat this method three times. 

Stage 2: Using the outcomes of Stage 1, calculate the appropriate values for every objective 

function at each generated solution in Stage 2. 

Step 3: Using the results of Stage 2, determine the best (𝐿𝑚) and worst (𝑈𝑚) values of every 

objective function that corresponds to established solutions. Beyond that, the first model in fuzzy 

can be expressed in terms of the desire levels of every objective function, as shown in the 

following description.  

Obtain 𝑥𝑢𝑣 (𝑢 = 1,2,… ,𝑚, 𝑣 = 1,2,… , 𝑛), which meets 𝑍𝑚 ≤ 𝐿𝑚 with m = 1, 2, 3 and if 

provided restrictions and required requirements. 𝜇𝑚(𝑥) is a membership function for 

MORISFCTP that corresponds to the 𝑚𝑡ℎ objective function and is expressed as below: 

𝜇𝑚(𝑥) = {

     1        ,        𝑖𝑓 𝑍𝑚 ≤ 𝐿𝑚         

𝑈𝑚 − 𝑍𝑚
𝑈𝑚 − 𝐿𝑚

,       𝑖𝑓 𝐿𝑚 ≤ 𝑍𝑚 ≤ 𝑈𝑚

     0        ,        𝑖𝑓 𝑍𝑚 ≥ 𝑈𝑚         

 

The following is a proposed formulation of the MORISFCTP equivalent linear programming 

problem. 

Model 3: 

  𝑀𝑎𝑥 𝜆 

                           Subject to 
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   𝜆 ≤
𝑈𝑚−𝑍𝑚

𝑈𝑚−𝐿𝑚
 (𝑚 = 1,2,3) 

                          with constraints (4.7) to (4.11) and 𝜆 ≥ 0 where 𝜆 = 𝑚𝑖𝑛(𝜇𝑚(𝑥)) 

The above linear programming problem is simplified, we get    

  𝑀𝑎𝑥 𝜆 

                           Subject to 

   𝑍𝑚 + 𝜆(𝑈
𝑚 − 𝐿𝑚) ≤  𝑈𝑚 (𝑚 = 1,2,3) 

  Constraints (4.7) to (4.11) and 𝜆 ≥ 0 

5.2 Method of a linear weighted sum: 

      The weighted sum of the linear approach is used to reduce the multiple to the single objective 

optimization problem by pre-multiplying a specific weight for every objective function and 

combining multiple objective functions. We utilize weight 𝑊𝑚(𝑚 = 1,2,3) for each objective 

function 𝑍𝑚(𝑚 = 1,2,3) which 𝑊𝑚 symbolizes the corresponding weight of the objective function, 

which is compared to other objective functions. In further verses, we can realize the weight as 

indicative of our specialists over target functions. The greater weight of 𝑊𝑚 is a high level of 

significance and the lower weight of 𝑊𝑚 is a low level of significance in the target function 𝑍𝑚. 

Utilizing the weight concept to transform multiple into a single objective function is described as 

∑ 𝑊𝑚𝑍𝑚
3
𝑚=1  with ∑ 𝑊𝑚 = 13

𝑚=1 . Because of this aspect, this strategy is known as the weighted 

sum with a linear approach. The weighted sum with linear tackle (Athan and Papalamberos, 

1996) can be summed up as below: 

Stage 1: Initially, choose the coefficients of weights 𝑊1,𝑊2,𝑎𝑛𝑑 𝑊3corresponding to the functions 

of objectives (𝑍𝑚, 𝑚 = 1,2,3) by the pertinent nature to the target functions in Model 2. It is 

essential to 𝑊𝑚 > 0,𝑚 = 1,2,3, and ∑ 𝑊𝑚 = 13
𝑚=1 . 

Stage 2: Solve the resultant objective problem, while all the objective functions occur in a 

weighted sum. Model 2 is a single objective problem represented by the following format: 

Model 4: 

   𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 = ∑ 𝑊𝑚𝐸(𝑍𝑚(𝑥𝑖𝑗))
3
𝑚=1  

                                        Subject to constraints (4.7) to (4.11) 

Theorem 3.9: Assume 𝑊𝑚 > 0 & 𝑚 = 1,2,3 If x* is a non-dominated solution of model 2, it is an 

optimal solution of model 4. 

Proof: If 𝑥∗ is a non-dominated solution of model 2, then we get from Theorem 3.8 

                              𝐸(�̃�𝑚(𝑦) ≤ 𝐸(�̃�𝑚(𝑦
∗),  for 𝑚 = 1,2,3 and  
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                           𝐸(�̃�𝑚(𝑦) < 𝐸(�̃�𝑚(𝑦
∗), for atleast one 𝑚 

 As 𝑊𝑚 > 0, 𝑚 = 1,2,3 we can generate the following inequalities from the preceding. 

  𝑊𝑚𝐸(�̃�𝑚(𝑦)) ≤ 𝑊𝑚𝐸(�̃�𝑚(𝑦
∗), for 𝑚 = 1,2,3 and                                           (a) 

  𝑊𝑚𝐸(�̃�𝑚(𝑦)) < 𝑊𝑚𝐸(�̃�𝑚(𝑦
∗), for atleast one 𝑚                                            (b) 

 We can describe the sum of inequalities (a) and (b) as  

                           𝑀𝑖𝑛∑ 𝑊𝑚𝐸 (�̃�𝑚(𝑦))
3
𝑚=1 < 𝑀𝑖𝑛∑ 𝑊𝑚𝐸 (�̃�𝑚(𝑦

∗))3
𝑚=1        

It contradicts the assumption that 𝑥∗is the ideal answer to model 4. As an illustration, 𝑥∗  is a non-

dominated solution for model 2. Hence the theorem. 

5.3 €-constraint method: 

Another tactic for solving the multi-objective optimization problem is the €-constrained 

method. To produce Pareto-optimal solutions, this approach was put forth by Roy and Midya 

[31]. A problem with multiple objectives is reduced to a single objective using this technique. As 

a result, separate Pareto-fronts corresponding to every objective function are produced by 

optimizing one of the objective functions while implementing the other objective functions as 

constraints.  

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 [𝑍1(𝑥), 𝑍2(𝑥), 𝑍3(𝑥)] 

    Subject to the constraints (4.7) to (4.11).  

The above problem solution is to obtain the following stages: 

Stage 1: Only one objective function, 𝑍𝑚0
,𝑚0 = 1,2,3 (let's assume) is chosen to be minimized, 

while the remaining functions are transformed into constraints. The model that comes out is the 

one below.  

 𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑍𝑚0
(𝑥)  

 Subject to  

               𝑍𝑚0
(𝑥) ≤ 휀𝑚, 𝑚 = 1,2,3  where  𝑚 ≠ 𝑚0 

Constraints (4.7) to (4.11) 

where 휀𝑚,𝑚 = 1,2,3 denote the upper value of 𝑚𝑡ℎ objective function. 

Stage 2: Determine the values for the remained objective functions based on the findings of Stage 

1. 

Stage 3: Vary the values of ‘𝑚’ along the Pareto-front for each objective function to obtain a subset 

of the Pareto-optimal set. For each new value of ‘𝑚’ (𝑚 = 1, 2, 3), create a new 

optimization problem. 
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Stage 4: Determine the required optimal solution for Model 4 commencing the set of Pareto-

optimal options in the above stages. 

 

6.  Numerical Illustration: 

For petroleum products like gasoline, kerosene, liquefied petroleum gas, diesel, etc., a 

petroleum refinery processes crude oil. Three oil refineries and four depots owned by the firm 

are located throughout India. The corporation uses tankers and railroads to transfer refined oil 

from refineries to depots. The decision-maker wants to minimize the overall transporting cost 

(variable and fixed cost per unit), the amount of product deterioration, and the transit duration 

of the product. The transportation cost is given in dollars per barrel, along with a fixed charge 

also in dollars for an open route, the rate of deterioration is expressed in liters and the duration 

time is expressed in hours. To meet the overall demand, the decision-maker must determine how 

many barrels of petroleum product must be carried from 𝑢𝑡ℎrefineries (storage) to 𝑣𝑡ℎdepots. 

The rough random data of transportation cost, fixed charge, transporting time, and rate 

of product deterioration are presented in Tables 2, 3, 4, and 5, accordingly. The estimated values 

for the availability and demand characteristics are shown in Table 6. Moreover, Tables 7 and 8 

describe the values expected for the transportation cost and fixed charge in rough intervals, as 

well as the duration of the transport and the rate of product deterioration, respectively. 𝑆𝑢 and 𝐷𝑣 

indicate corresponding to the 𝑢𝑡ℎ refinery and 𝑣𝑡ℎdepot, respectively, in Tables 2-5 and Tables 6. 

For a better comprehension of the suggested methodology, a numerical example is taken where 

supply and demand follow the Weibull distribution. The major goal is to reduce the overall 

transportation expense for petroleum products’ availability and demand.  

 

Table 2: Random rough interval of transportation cost �̃�𝑢𝑣~𝑈(𝜒𝑢𝑣
1 , 𝜒𝑢𝑣

2 ) 

 𝐷1 𝐷2 𝐷3 𝐷4 

S1 ([2, 5], [1, 6]), 

([3, 6], [2, 7]) 

([4, 7], [3, 8]), 

([5, 8], [4, 9]) 

([6, 9], [5, 10]) 

([7, 10], [6, 11]) 

([8, 11], [7, 12]), 

([9,12],[8, 13]) 

S2 ([10, 13], [9, 14]), 

([11, 14], [10, 15]) 

([10, 15],[9, 16]),  

([12, 15],[11, 16]) 

([3, 6], [2, 8]), 

([4, 8], [3, 10]) 

([5, 9], [3, 11]), 

([7, 11], [5, 14]) 

S2 ([6, 9], [4, 12]),  

([5, 10], [4, 14]) 

([2, 7], [1, 9]), 

([8, 12], [6, 14]) 

([9, 12],[7, 14]) 

([10, 14], [8, 16]) 

([11, 13], [9, 15]),  

([12, 14], [10, 16]) 
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Table 3: The random rough interval of the fixed charge 휂̃𝑢𝑣~𝑈(𝜒𝑢𝑣
1 , 𝜒𝑢𝑣

2 ) 

 𝐷1 𝐷2 𝐷3 𝐷4 

S1 ([22, 24], [20, 26]), 

([23, 26], [21, 27]) 

([22, 26], [20, 28]), 

([24, 28], [22, 30]) 

([31, 32], [30, 34]) 

([31, 33], [30, 35]) 

([20, 22], [19, 23]), 

([25, 26], [24, 28]) 

S2 ([20, 23], [19, 24]), 

([27, 29], [26, 30]) 

([28, 29],[26, 30]),  

([31, 33],[30, 37]) 

([21, 22], [19, 23]), 

([32, 35], [30, 36]) 

([24, 26], [21, 29]), 

([28, 32], [27, 33]) 

S3 ([25, 27], [23, 29]),  

([31, 33], [29, 37]) 

([21, 25], [19, 27]), 

([23, 29], [21, 30]) 

([29, 33],[28, 34]) 

([32, 34], [30, 36]) 

([27, 31], [25, 32]),  

([31, 35], [30, 37]) 

 

Table 4: The random rough interval of the transportation time �̃�𝑢𝑣~𝐸(𝜇𝑢𝑣)  

 𝐷1 𝐷2 𝐷3 𝐷4 

S1 ([.33, .40], [.30, .45]) ([.25, .35],[.21, .39]) ([.30, .40], [.28, .50]) ([.26, .36], [.24, .48]) 

S2 ([.18, .28], [.15, .32]) ([.21, .31],[.18, .41]) ([.22, .34], [.20, .36]) ([.27, .37], [.25, .45]) 

S3 ([.14, .24], [.12, .32]) ([.34, .44], [.32, .48]) ([.30, .35],[.28, .39]) ([.35, .45], [.30, .50]) 

 

Table 5: The random rough interval of the deterioration ratio of goods �̃�𝑢𝑣~𝛾(𝜗, 𝜙)  

 𝐷1 𝐷2 𝐷3 𝐷4 

S1 ([.75, .85], [.72, 92]), 

([.55, .65], [.52, .82]) 

([.84, .88], [.80, .94]), 

([.56, .62], [.54, .72]) 

([.86, .94], [.84, .98]) 

([.62, .68], [.58, .74]) 

([.84, .92], [.80, .96]), 

([.52, .60], [.50, .66]) 

S2 ([.78, .88], [.74, .94]), 

([.56, .66], [.52, .70]) 

([.77, .87],[.73, .93]),  

([.57, .67],[.53, .73]) 

([.84, .94], [.80, 1]), 

([.60, .68], [.50, .70]) 

([.81, .91], [.79, .97]), 

([.59, .71], [.53, .77]) 

S3 ([.90, .96], [.88, 1]),  

([.54, .66], [.52, .72]) 

([.84, .94], [.82, .98]), 

([.62, .72], [.60, .74]) 

([.86, .96],[.83, .97]) 

([.52, .67], [.50, .70]) 

([.88, .92], [.86, .98]),  

([.54, .62], [.52, .68]) 

 

Table 6: Data for the Weibull distribution of supply and destination locations 

Parameters Supply location Destination locations 

Location 𝜑1 = 550 𝜑2 = 650 𝜑3 = 750 �̅�1 = 325 �̅�2 = 425 �̅�3 = 525 �̅�4 = 325 

Scale 휃1 = 5.8 휃2 = 6.4 휃3 = 7.2 휃̅1 = 6.2 휃̅2 = 6.9 휃̅3 = 7.3 휃̅4 = 7.8 

Shape 𝛾1 = 650 𝛾2 = 750 𝛾3 = 850 �̅�1 = 725 �̅�2 = 825 �̅�3 = 925 �̅�4 = 1025 

Probability 𝜔1 = 0.911 𝜔2 = 0.921 𝜔3 = 0.931 �̅�1 = 0.933 �̅�2 = 0.902 �̅�3 = 0.912 �̅�4 = 0.909 

 

Table 7: Transportation costs and fixed charges in crisp form (𝒄𝒖𝒗, 𝒇𝒖𝒗) 

 D1 D2 D3 D4 

S1 (4, 23.63) (6, 25) (8, 32) (10, 23.38) 

S2 (12, 24.75) (13, 30.50) (5.5, 27.25) (8.13, 27.50) 

S3 (8, 29.25) (7.88, 24.38) (11.25, 32) (12.50, 31) 
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Table 8: Transportation time and deterioration rate of goods in crisp form (𝒕𝒖𝒗, 𝒅𝒖𝒗)  

 D1 D2 D3 D4 

S1 (2.77, 1.34) (3.55, 1.44) (2.85, 1.40) (3.22, 1.56) 

S2 (4.73, 1.41) (4, 1.36) (3.82, 1.49) (3.16, 1.39) 

S3 (5.69, 1.57) (2.61, 1.36) (3.08, 1.57) (2.60, 1.57) 

 

Using the data, a mathematical description of the MORISFCTP utilizing the Weibull 

distribution is developed. An objective function and probabilistic restriction are formulated in 

the below manner, and a conversion technique is used for converting from a probabilistic form 

into a deterministic form, which is solved by fuzzy programming, the method of a linear 

weighted sum, €- constraint method. 

 

𝑀𝑖𝑛: 𝑍1 = 4𝑥11 + 6𝑥12 + 8𝑥13 + 10𝑥14 + 12𝑥21 + 13𝑥22 + 5.5𝑥23 + 8.13𝑥24 + 8𝑥31 + 7.88𝑥32   

+ 11.25𝑥33 + 12.50𝑥34  

𝑀𝑖𝑛: 𝑍2 = 2.77𝑥11 + 3.55𝑥12 + 2.85𝑥13 + 3.22𝑥14 + 4.73𝑥21 + 4𝑥22 + 3.82𝑥23 + 3.16𝑥24 + 5.69𝑥31

+ 2.61𝑥32 + 3.08𝑥33 + 2.60𝑥34 

𝑀𝑖𝑛: 𝑍3 = 1.34𝑥11 + 1.44𝑥12 + 1.40𝑥13 + 1.56𝑥14 + 1.41𝑥21 + 1.36𝑥22 + 1.49𝑥23 + 1.39𝑥24

+ 1.57𝑥31 + 1.36𝑥32 + 1.57𝑥33 + 1.57𝑥34 

 Subject to 

 𝑥11 + 𝑥12 + 𝑥13 + 𝑥14 ≤ 555.7788653 

 𝑥21 + 𝑥22 + 𝑥23 + 𝑥24 ≤ 656.3787239 

 𝑥31 + 𝑥32 + 𝑥33 + 𝑥34 ≤ 757.1776883 

 𝑥11 + 𝑥21 + 𝑥31 ≥ 331.20851 

 𝑥12 + 𝑥22 + 𝑥32 ≥ 431.90705 

 𝑥13 + 𝑥23 + 𝑥33 ≥ 532.30701 

 𝑥14 + 𝑥24 + 𝑥34 ≥ 632.80666 

 𝑥𝑢𝑣 ≥ 0, 𝑢 = 1,2,3 & 𝑣 = 1,2,3,4 

                      

7. Result and Analysis: 

 This part examines the optimum solutions to the corresponding classical Model 2, which 

are derived from the fuzzy programming approach in Section 5.1, the method of a linear weighted 

sum in Section 5.2, and the €-constrained method in Section 5.3. 
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• Fuzzy programming approach 

The expected value of a rough random variable operator employed by Tables 2 and 3 is 

reduced to Table 7 by theorem 3.3, which is employed in Section 3. Theorems 3.4 and 3.5 in Tables 

4 and 5 are then reduced to Table 8, which is accomplished as in Section 3. Using that crisp value 

established in Model 2 and the technique outlined in Subsection 5.1, as well as the Lingo program, 

our result is displayed below in Table 9. 

Table 9: Non-dominated solution of proposed MORISFCTP using fuzzy programming 

    𝜆 𝑍1 𝑍2 𝑍3 

0.7289   14833    3.82   2730 

Each objective function’s desired value is 𝑍1 = 14833, 𝑍2 = 3.82, and 𝑍3 = 2730. Furthermore, for 

each of the objective functions 𝑍1, 𝑍2 𝑎𝑛𝑑  𝑍3, we found the non-dominated optimal solutions 

(14619.6, 15378.714824, 15407.768049), (5932.149036, 5622.43, 5673.0283247), and (2793.278315, 

2711.5156266, 2706) correspondingly. 

• Method of a linear weighted sum  

Calculate the value expected in every rough interval in Tables 2, 3, and 4. (DM option). 

Subsequently, using the crisp form defined in Model 2, and the process stated in Section 5.2, as 

well as the Lingo program, compute the outcomes shown in Table 10. 

Table 10: The compromise solution of the proposed MORISFCTP using a weighted 

sum 

Cases W1 W2 W3 Z1 Z2 Z3 

1 0.8 0.1 0.1 14624.05 3.82 2793.278 

2 0.7 0.2 0.1 14624.05 3.82 2793.278 

3 0.7 0.1 0.2 14624.05 3.82 2793.278 

4 0.6 0.1 0.3 14624.05 3.82 2793.278 

5 0.6 0.3 0.1 14624.05 3.82 2793.278 

6 0.6 0.2 0.2 14624.05 3.82 2793.278 

7 0.5 0.2 0.3 14624.05 3.82 2793.278 

8 0.5 0.3 0.2 14765.53 3.82 2734.890 

9 0.5 0.4 0.1 14765.53 3.82 2734.890 

10 0.4 0.3 0.3 14765.53 3.82 2734.890 

11 0.4 0.5 0.1 14765.53 3.82 2734.890 

12 0.4 0.4 0.2 14765.53 3.82 2734.890 

13 0.4 0.2 0.4 14765.53 3.82 2734.890 

14 0.3 0.3 0.4 14765.53 3.82 2734.890 

15 0.3 0.4 0.3 14765.53 3.82 2734.890 

16 0.2 0.5 0.3 14765.53 3.82 2734.890 

17 0.2 0.4 0.4 14765.53 3.82 2734.890 

18 0.2 0.2 0.6 14765.53 3.82 2734.890 

19 0.1 0.1 0.8 14765.53 3.82 2734.890 
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Depending on the above-discussed compromise solutions, 

➢ We decide the high significance of the third objective function, which is compared to 

another two objective functions, and also that the most effective solution is better, and the 

same concept applies to the second objective function but not to the first objective function 

(see cases 1–7 of Table 10 in a comparison with Table 9). 

➢ To conclude, reflecting the significance of the objective functions indicated in occurrences 

8 through 19 of Table 10, the greatest response concerning Table 9 and any other 

circumstances in Table 10 is the optimal solution of all objective functions. 

• €-constraint method: 

 Using the solution procedure accessible in Section 5.3 and LINGO software, to determine 

the Pareto-optimal solutions are calculated using the €-constraint method, which is revealed in 

Table 11. It deserves to be noted that the €-constraint technique provides the set of all optimal 

solutions for every distinct optimal solution 𝑍𝑚0
(𝑥),𝑚0 = 1,2,3 that can be obtained. Only three 

cases are studied in Table 11 to show the optimal solutions produced from the €-constraint 

technique for each Pareto-front, as illustrated in Fig. 4. 

Table 11: Pareto-optimal solution for the proposed MORISFCTP by €-constraint 

Method 

Case       𝑍1   𝑍2       𝑍3 

1 14619.6 3.82 2793.278 

2 15365.34 3.82 2711.515 

3 15400.63 3.82 2706.002 

Subsequently, the Pareto-front is identified as being exactly the optimal solution. Based on Table 

11, a Pareto-optimal exact solution occurs in the first case of the suggested MORISFCTP.  The 

least values of objective function occur in Table 11, also known as the Pareto-front exact solution 

of the €-constraint approach. 

Table 12: Pareto optimal solution for MORISFCTP by three distinct methods 

Approach to applied      𝑍1  𝑍2     𝑍3 

Fuzzy Programming  14833 3.82 2730 

Linear Weighted Sum Method 14765.53 3.82 2734.890 

€-constraint Method 14619.6 3.82 2793.278 
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The Pareto optimal solutions for MORISFCTP are obtained using three distinct methods in Model 

2, and our outcomes are outlined. (Table 12) 

Comparison: 

 In Table 12, the compromise optimal solution for developing the algorithm MORISFCTP, 

which is more advisable for decision-makers to use the €-constraint method rather than fuzzy 

programming and the weighted sum method, occurs as the same ideal solution. A set of Pareto-

optimal solutions is produced for each 𝑍𝑚0
(𝑥),𝑚0 = 1,2,3, consistent with distinct values 𝑚,𝑚 =

1,2,3, from which the decision-maker can select the minimum optimal solution.  

➢ One of the most significant advantages of employing this method is that it generates 

Pareto-fronts, which yield an exact Pareto-front. 

➢ In this technique, by determining a pair of optimal solutions, the decision-maker can select 

the best €-constraint method, proving that example 1 indicates that 𝑍1 is of greater 

significance than another two, and case 3 indicates that 𝑍3 is a higher-level preference than 

the other two methods. 

➢ The €-constrained procedure contains fewer variables than another method. 

➢ It ensures that an optimal solution is obtained. 

In this aspect, the €-constrained procedure is stronger than the other methods. Finally, Fig. 1 

displays a bar graph demonstration of the compromise optimal solutions of the distinct three 

methods of the proposed MORISFCTP. The article offers a comparison of the most beneficial 

solutions attained among the three methods.  

 

                

                              Fig.2 Optimal solution of three distinct methods for 𝑍1, 𝑍2, 𝑎𝑛𝑑 𝑍3 

 Properly choosing the values 휀𝑚of the €-constraint method is a must. Otherwise, the 

optimal solutions aren't adequately delivered to the objective functions. 
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8. Sensitivity analysis of MORISFCTP and discussion: 

Sensitivity analysis (SA) is a fascinating and engrossing optimization study. This analysis 

investigates the impact of variations in the coefficients in the objective functions and the impact 

of variations in the right-side restrictions, as well as the effects on the range of availabilities and 

demand. The MORISFCTP, determining the demand probabilistic constraint following slight 

modifications in particular demand probabilities and remaining supplies, is problematic. Many 

articles exploring the TP problem with SA and problems associated with fixed-charge TP and 

Weibull distribution have been published, including those by Midya and Roy (2020), 

Buvaneshwari and Anuradha (2022), and others. In this part, MORISFCTP executed an SA of 

optimality in terms of fluctuations in probabilities on uncertain parameters such as source and 

demand. We used Model 2 for the SA problem and changed the probability from 0 < 𝑝 < 1, 

where P is the probability on 𝜔𝑢 or 𝜛𝑣. We analyzed the problem by holding one probability 

parameter(𝑃𝜔𝑢  𝑜𝑟 𝑃𝜛𝑣) stable at 0.5 and changing the value of the other probability 

factor(𝑃𝜔𝑢  𝑜𝑟 𝑃𝜛𝑣). The transportation cost was obtained and listed below for Model 2, which 

contains every stochastic optimal solution.  

To overcome this optimization difficulty, the Lingo program was used to manage multiple 

objective functions in this SA. Table 13 shows the SA outcomes for the probability of demand 𝜛𝑣. 

Figures 3, 4, and 5 exhibit graphical representations of transport cost, time, and deterioration cost 

concerning the probability of 𝜛𝑣. As illustrated in Figures 3 and 5, transportation costs and 

deterioration costs gradually increase in probability 𝜛𝑣. This substance mentions that 

transportation costs and deterioration costs are variations in probability demand that need an 

analysis of sensitivity. Figure 4 shows the exact time constant value as the probability of demand 

requirements varies. Similarly, we follow the identical procedure in 𝑃𝜔𝑢for SA. By investigating 

the sensitive probability patterns for uncertain parameters, DMs gain an understanding as well 

as the ability to develop the transportation system. 
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Table 13: Sensitivity analysis of MORISFCTP for the different probability of demands 

Probability value 

of  𝑃𝜛𝑣
 

Probability value of 

𝑃𝜔𝑢 

 

(𝜆) 

Optimal transportation cost 

𝑍1 𝑍2 𝑍3 

0.9  0.7294539 14832.84 3.82 2729.613 

0.8  0.7296328 14832.69 3.82 2729.597 

0.7  0.7297778 14832.58 3.82 2729.585 

0.6  0.7299140 14832.47 3.82 2729.573 

0.5 0.5 0.7300532 14832.36 3.82 2729.561 

0.4  0.7302055 14832.24 3.82 2729.547 

0.3  0.7303844 14832.10 3.82 2729.532 

0.2  0.7306182 14831.92 3.82 2729.511 

0.1  0.7309924 14831.62 3.82 2729.479 

               

Fig 3: SA for transportation cost with various probabilities      Fig 4: SA for delivered time with various probability 

                                    

                                                         Fig 5: SA for the deterioration cost with various probability 

 

 This study found that the proposed MORISFCTP models provide optimal answers in 

uncertain situations. In very uncertain situations, it's tempting to make less risky decisions. The 

results show that the various probabilities for 𝜔𝑢 or 𝜛𝑣 correspond to different amounts of 

transportation cost, delivered time, and deterioration in this scenario. When the 

optimization problem is undetermined conservative solutions are frequently adopted. When 
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modeling MORIFCTP with unpredictability from 𝜔𝑢 as well as 𝜛𝑣 probabilities, conservative 

solutions are decided on as optimal. This investigation highlights the importance of 

understanding the sensitivity of probabilistic constraints in an atmosphere of increased 

uncertainty. It assists in making choices by establishing the appropriate level of uncertainty for 

uncertain factors. 

  When a company's decision-maker sees new traders from unfamiliar cities, it is 

impractical for the decision-maker to acquire statistical data on the parameters for MOFCTP, 

which are the unit costs of transportation, fixed charge for an open route, and other objective 

functions linked to MOFCTP. The science of probability is unsuitable for tackling such scenarios. 

Furthermore, in everyday circumstances, the supply as well as demand factors that govern 

MOFCTP are both deterministic and insufficient. The present investigation treats demand as well 

as supply elements as a rough interval.  

 

9. Conclusion and Future Scope: 

The present study introduces the impression of rough random variables in a MORISFCTP, 

for the first time in the literature. The rough random variable is built, realistically in the real 

situation of MOFCTP, to throw out the ambiguity concerning probability and expected value 

with distributions. The probability distributions are applied to the objective functions of 

variables, such as costs (cost of transport and fixed fee), the duration for transporting the product, 

and the deterioration ratio of items, in which three distinct possibility distributions, specifically 

the exponential distribution, uniform distribution, and gamma distribution, have been chosen, 

respectively. In the objective functions, the parameters of the product, such as cost of 

transportation and fixed rate, duration of transporting the product, and deterioration ratio of the 

item, are consumed as rough random variables in the proposed MORISFCTP, while the 

probabilistic nature of supply and demand restrictions is represented by a Weibull distribution. 

An operator of expected value has been used to transform MORISFCTP with rough and 

probabilistic parameters into deterministic MORISFCTP. Fuzzy programming, weighted sum, 

and €-constrained approaches have been used to provide optimal compromise solutions to the 

deterministic MORISFCTP. A €-constrained method yielded a stronger compromise optimum 

solution among the methods. The focal improvement of the €-constrained method over the other 

methods has been specified.  A real-life example is included to show the practicality of 
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implementing rough intervals with random probabilistics for the proposed MORISFCTP. Because 

of this model, future studies will focus on the model's rough interval multi-objective with non-

linear fixed-cost transportation with probabilistic diverse conditions such as budget and 

conveyance restrictions. In the upcoming research, we will acquire practical data from credible 

sources and then employ statistical consistency factors to calculate its probability distribution. 
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