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Abstract. The classical Jonckheere trend test is a non-parametric statistical tool usually employed to compare the

medians of multiple independent groups, especially when there is a natural ordering or trend among the groups. This

paper aims to develop a more comprehensive and adaptable version of the Jonckheere trend test, called the neutrosophic

Jonckheere trend test (NJT), which can be used to analyze different types of uncertainty data. This paper discusses

neutrosophic hypotheses and decision rules pertaining to the NJT test. Furthermore, the practical uses of the NJT test

have been discussed in the context of real-world applications with COVID-19 data. Lastly, a simulation study is carried

out to evaluate the effectiveness of the proposed test in terms of Type I error and test power. The results validate that

the proposed test is more effective and adaptable than the existing test in uncertain environments.

1. Introduction

Classical statistical tests often assume that data conform to a specific distribution, such as the

normal distribution. However, this assumption may not hold true in many real-world situations,

which can make it difficult to conduct parametric tests. Non-parametric tests provide a useful

alternative to analyzing data when normality assumptions are violated, rendering them more ver-

satile and applicable across various fields. The Jonckheere trend test is one of the most commonly

used non-parametric tests for testing differences in medians in cases where there is an anticipated

order to group medians.

To perform the Jonckheere trend test, it is imperative to gather sample elements from each

group randomly and independently. It is also critical to ensure that samples within each group

are independent of each other. Additionally, it is necessary to assume that groups’ distributions

have similar shapes and variability. The test involves ordering the observations in ascending order
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across all groups and finding the sum of signs for each group. The differences between these sums

of signs can be used to test whether there is a significant difference in medians between the groups.

One of the main advantages of the Jonckheere trend test over other non-parametric tests, such as the

Mann-Whitney U test or Kruskal-Wallis test, is that it takes into account the expected order of the

group medians. This makes it particularly useful in situations where there is a natural ordering to

the groups, such as in medical studies where treatments may have a graded response. In this light,

this test was first introduced by Jonckheere and Terpstra [1,2]. Vock and Balakrishnan [3] suggested

an extension to the Jonckheere trend test used to identify a perfect ranking in balanced ranked set

sampling. Ali et al. [4] proposed a non-parametric test called the Jonckheere trend test for ordered

medians and discussed its application in medical research. Murakami and Lee [5] investigated the

unbiasedness and biasedness of two statistical tests, Jonckheere trend and Kruskal-Wallis under

different sample sizes and distributions. Joutard [6] proposed large deviation approximations for

Mann-Whitney and Jonckheere trend statistics in nonparametric statistics. Magel [7] suggested

an extension to the Jonckheere trend test for ranked-set sample data to improve its sensitivity and

performance in identifying variations among treatment groups. A collection of articles and books

discussing the Jonckheere trend test can be found in [8–11]. As mentioned above, the Jonckheere

trend test has been considered and analyzed under classical statistics; however, experimenters

are sometimes confronted with indeterminate data under uncertain conditions. Therefore, it is,

therefore, necessary to look for an appropriate generalization of this test so that we may use

indeterminate data in an uncertain environment.

Smarandache introduced neutrosophic statistics (NS) [12]. Aslam [13] provided an explanation

of the distinctions among fuzzy statistics, NS, and classical statistics. According to Smaran-

dache [14], NS encompasses a wider scope compared to interval statistics. It embraces various

forms of indeterminacy such as uncommon sample sizes, neutrosophic random variables, and

neutrosophic probability distributions. The neutrosophic sign test was applied to COVID-19 data

by Sherwani, et al. [15]. The neutrosophic Kruskal Wallis H test was used to analyze COVID-19

data by Sherwani, et al. [16]. Aslam and Aldosari [17] discussed alloy melting point data using

the Mann-Whitney test. Miari, et al. [18] suggested single-valued neutrosophic Kruskal-Wallis

and Mann Whitney tests. Aslam [19] discussed the neutrosophic ANOVA method. Ullah, et

al. [20] presented a comprehensive method for calculating the neutrosophic k-factor analysis of

variance. AlAita and Talebi [21] provided an exact neutrosophic analysis of the missing value

issue in an augmented randomized complete block design. AlAita and Aslam [22] introduced the

application of neutrosophic analysis of covariance in three different types of experimental designs:

neutrosophic completely random designs, neutrosophic randomized complete block designs, and

neutrosophic split-plot designs. AlAita, et al [23] presented neutrosophic statistical analysis for

split-plot designs. Aslam and Albassam [24] suggested post-hoc multiple comparison tests under

NS. Salama, et al. [25] discussed simple linear regression and correlation. Nagarajan, et al [26] sug-

gested neutrosophic multiple regression. Alomair and Shahzad [27] introduced a method known
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as neutrosophic mean estimation to estimate both sensitive and non-sensitive variables using ro-

bust Hartley-Ross-Type estimators. Aslam and Saleem [28] presented a discussion that focused

on the application of the neutrosophic test of linearity. Aslam [29] used analysis of means under

neutrosophic statistics to examine wind power data. In recent years, numerous neutrosophic

statistical studies have been discussed [30–32].

We have considered the classic Jonckheere trend test and raised some ambiguities in data, such as

indeterminacy and imprecise test statistic results. The probable inadequacy of the classic approach

to dealing with such complexity motivated us to utilize NS. In this paper, the indeterminacies are

tackled by examining the Jonckheere trend test in the NS framework, which provides additional

information about uncertainty levels. This is the first time the Jonckheere trend test has been

discussed in a neutrosophic environment.

In the following section, we delve into some fundamental NS-related concepts. Section 3

provides an overview of the proposed Jonckheere trend test methodology. Section 4 presents and

explains a numerical example and simulation study. In Section 5, we introduce the discussion,

followed by a presentation of future research directions in Section 6. Finally, we present our

conclusions in Section 7.

2. Preliminaries

The following offers some basic concepts regarding neutrosophic random variables that will be

useful in the subsequent sections.

The XN∈ [XL, XU] is a neutrosophic random variable with indeterminacy interval, IN, and is written

as XN= XL+ XUIN, where XL is determinate part and XUIN is indeterminate part, where IN∈[IL, IU]

is measure of uncertainty. Clearly, XN is reduced to the classical random variable at IL = 0.

Assume that we have a population of size N with indeterminate observations, and take a neutro-

sophic random sample of size n from it. The neutrosophic population median is denoted by MN

and defined as the value that splits the population into two equal halves. In other words,

If n is odd, MN(x) = xN( n+1
2 ).

If n is even, MN(x) = 1
2 (xN( n

2 )
+ xN( n

2 +1)).

3. Computational method of the Jonckheere trend test under uncertainty

In neutrosophic statistics, neutrosophic nonparametric tests refer to methods of statistical analysis

that require no particular distribution (especially when data are not normally distributed). The

neutrosophic nonparametric tests can be used as an alternative to neutrosophic parametric tests,

such as the neutrosophic T-test or NANOVA, if the underlying neutrosophic data fits certain criteria

and assumptions. According to the literature on neutrosophic nonparametric tests, many statistical

neutrosophic tests have been studied (e.g., neutrosophic Kruskal-Wallis H test [16], neutrosophic

sign test [15], etc.). In this section, we delve into the application of the neutrosophic Jonckheere
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trend test as a substitute for the neutrosophic Kruskal-Wallis H test in cases where the medians of

each group conform to an anticipated pattern.

3.1. Neutrosophic hypotheses

Under neutrosophic statistics, the neutrosophic Jonckheere trend test is used to test the null

hypothesis that all k samples have equal medians against the alternative hypothesis that at least

one population differs from the rest. In other words; Suppose MNi, i = 1, 2, . . . , k represents the

population median for the ith population, the neutrosophic null, and alternative hypotheses are

formulated as follows;

HN0 : MN1 = MN2 = · · · = MNk,

HN1 : MN1 ≤MN2 ≤ . . . ≤MNk, with at least a strict inequality.

3.2. Neutrosophic Jonckheere trend test statistic

The following steps are taken to perform the test:

Step 1: Organize the sample data in the anticipated sequence of group medians. In other words,

the first column should consist of the data points with the lowest expected median, followed by

the second column, which contains the data elements with the second-lowest expected median,

and so on.

Step 2: The JTN-test is computed under HN0.

UNij =
∑
s<r

∑
i j

I
(
XNis < XN jr

)
+ 0.5I

(
XNis = XN jr

)
; UNij ∈ [ULij, UUij],

where i, j are observations in groups s and r respectively. The neutrosophic standardized test

statistic is JTN= |ZN |, where

ZN =
UNij − µNU

σNU
; ZN ∈ [ZL, ZU].

Assuming that there are no ties, the neutrosophic mean and the variance are, respectively

µNU =
N2

N−
∑k

i=1 N2
Ni

4 ; µNU ∈ [µLU, µUU], and

σ2
NU =

N2
N (2NN + 3) −

∑k
i=1 N2

Ni (2NNi + 3)

72
; σ2

NU ∈ [σ
2
LU, σ2

UU],

where NN is neutrosophic total sample size and NNi is neutrosophic sample number in each group.

Step 3: Calculation of the pN-value at the level α = 0.05.

When dealing with a significant amount of data, Z tends to have an approximate normal distribu-

tion. By making this assumption, it becomes feasible to calculate the 1-tailed p-value as

pN =

∫
∞

u
fU (uN) duN, (uN > 0)
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=
1
2

(∫
∞

z
fZ (zN) dzN +

∫
−z

−∞

fZ (zN) dzN

)
, (zN > 0)

=
1
2

(
1− erf

(
zN
√

2

))
, (zN > 0)

= 1−
1
2

erfc
(
−

JTN
√

2

)
, (JTN = |zN |) .

Smarandache [12] outlined that the neutrosophic decision rule can be summarized as follows:

If min
{
pN−value

}
> α, then we accept the null hypothesis HN0 at the level α.

If max
{
pN−value

}
≤ α, then we reject the null hypothesis HN0 at the level α.

If min
{
pN−value

}
<α<max

{
pN−value

}
, then there is indeterminacy.

Thus α−min{pN−value}
max{pN−value}−min{pN−value}

represents the chance to reject HN0 at the level α, and
max{pN−value}−α

max{pN−value}−min{pN−value}
represents the chance to accept HN0 at the level α.

4. Application of the neutrosophic Jonckheere trend test

This section aims to evaluate the numerical performance of the proposed NS in handling the

Jonckheere trend test. To achieve this, a set of real neutrosophic data with uncertain observations

for the NJT test will be analyzed. In addition, a simulation study will be conducted for further

evaluation. In order to assess the effectiveness of the NJT test, the JTN-test is calculated and

compared with the existing test under classical statistics in terms of uncertainty.

4.1. Real data example

To apply the proposed neutrosophic Jonckheere trend test, daily ICU occupancy data representing

Corona-positive patients from Pakistan have been analyzed. In this study, the hypothesis being

tested is whether there is a statistically significant difference in ICU occupancy of COVID-19

patients according to their age group. The data shown in Table 1 is uncertainty data [16]. This

study uses the neutrosophic Jonckheere trend test to test the null hypothesis that there are no

differences in the daily occupancy of COVID-19 patients from different age groups in Pakistan for

December 2020. There are three categories of age groups in COVID-19 for daily ICU occupancy

(35 years and below, 35 to 55 years, and 55 years and above).

As previously mentioned, the proposed test is a generalization of JT test. The neutrosophic

logic literature has indicated that a method based on data in an indeterminate interval is more

effective and suitable for use in uncertainty than determining values under classical statistics.

The neutrosophic form of the JTN-test is JTN=JTL+JTUIN; IN∈[IL, IU], where the first part JTL

is known as the determined part and presents the value of JT-test under CS. The second part

JTUIN; IN∈[IL, IU] is known as the indeterminate part. Note that the JTN-test reduces to JT-test

under classical statistics if IN= 0. This means that the NS approach provides the JTN-test values in

an interval with the measure of indeterminacy which is more general and includes the determinate
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Table 1. Daily ICU occupancy data representing COVID-19 positive patients from

Pakistan.

Day Age

35 and below 35-55 55 and above

1 [460, 465] [359, 361] [443, 450]

2 [427, 429] [352, 365] [421, 426]

3 [407, 410] [445, 455] [436, 450]

4 [378, 380] 410 [376, 385]

5 [364, 368] [458, 464] 458

6 [345, 349] [410, 415] [408, 420]

7 [342, 346] [463, 470] [422, 425]

8 345 [580, 584] [431, 440]

9 [313, 318] [432, 440] [459, 462]

10 [277, 280] 379 369

11 [268, 271] 370 360

12 [259, 262] [584, 589] [431, 445]

13 [256, 260] [410, 416] [403, 415]

14 251 [587, 590] [436, 445]

15 249 415 376

16 [233, 227] [419, 422] 370

17 [209, 211] 357 443

15 [187, 191] [467, 472] 445

19 [173, 175] [415, 418] [355, 365]

20 168 358 450

part of the CS. As an example, the neutrosophic form of the JTN-test for groups in Table 2 is

4.116 − 4.198IN; IN ∈ [0, 0.020]. It means that the proposed JTN-test ranges between 4.116 and

4.198 with the degree of indeterminacy 0.020. After evaluating the comparisons, it can be inferred

that the proposed test conducted under NS provides more comprehensive information compared

to the current test carried out under CS.

Table 2. Neutrosophic Jonckheere trend test for COVID 19 data

Observed JTN Statistic UN [898.000, 904.000]

µNU [595.500, 595.500]

σNU [73.488, 73.484]

JTN-test= |ZN | [4.116, 4.198]

pN − value (1-tailed) [0.000, 0.000]
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4.2. Simulation study

The following simulation study compares the proposed test with the existing test under classic

statistics using neutrosophic statistics. To do so, the empirical neutrosophic type I error and the

power of the test for neutrosophic treatment effects at a given significant nominal level were

calculated. The simulation was conducted on a given number of groups. The data are generated

from the neutrosophic normal distribution, neutrosophic gamma distribution, and neutrosophic t

distribution which has a non-centrality parameter (neutrosophic noncentral t-distribution). Then,

by assuming significant nominal levels at 0.05 and 0.01, the MC method was employed to compute

both the empirical neutrosophic type I error and the power of the test. The simulation was

replicated 10000 times.

To calculate the neutrosophic empirical Type I error rate and the test power for an MC experiment,

the following steps need to be completed:

MC simulation to compute αEmpirical

Step 1: The random sample x(i)N1, x(i)N2, ..., x(i)Nn is generated from a neutrosophic continuous distribu-

tion under HN0, i= 1, 2, . . . , 10000.

Step 2: The JTN-test is computed under HN0.

Step 3: The results are recorded by assigning a value of INi= 1 when the HN0 is rejected, and INi= 0

otherwise.

Step 4: The ratio 1
10000

∑10000
i=1 INi is computed and take it as αEmpirical.

MC simulation to compute PowerEmpirical

Step 1: The random sample x(i)N1, x(i)N2, ..., x(i)Nn is generated from a neutrosophic continuous distri-

bution under HN1, i = 1, 2, . . . , 10000.

Step 2: The JTN-test is computed under HN1.

Step 3: The results are recorded by assigning a value of INi = 1 when the HN1 is rejected, and

INi = 0 otherwise.

Step 4: The ratio 1
10000

∑10000
i=1 INi is computed and take it as PowerEmpirical.

5. Discussion

This study enhanced the analysis of uncertain and indeterminate data within NS for a Jonckheere

trend test. The study established the fundamental analytical requirements for the Jonckheere

trend test in a neutrosophic context, which can also apply to classical statistics. Subsequently, the

proposed method was evaluated using COVID-19 data and verified through a simulation study

to determine its accuracy. This test has been evaluated using empirical type I error and test power.

Results indicated that the neutrosophic approach outperformed the existing approach, with better

compatibility between empirical and nominal α values. Furthermore, the proposed test exhibited
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[0.5413,0.5753]
[0.6253,0.6689]

[0.8819,0.9087]

(4,6,7,5)and
d

f
=

3
0.01

[0.0086,0.0091]
[0.0112,0.0119]

[0.0265,0.0275]
[0.0319,0.0323]

[0.0485,0.0538]
[0.0595,0.0622]

[0.1179,0.1294]
0.05

[0.0435,0.0442]
[0.0545,0.0590]

[0.1050,0.1121]
[0.1178,0.1271]

[0.1668,0.1780]
[0.1934,0.2017]

[0.3145,0.3300]

(14,11,17,12)and
d

f
=

10
0.01

[0.0098,0.0101]
[0.0156,0.0163]

[0.0540,0.0584]
[0.0838,0.0957]

[0.1710,0.1906]
[0.2248,0.2557]

[0.4741,0.5262]
0.05

[0.0518,0.0509]
[0.0732,0.0780]

[0.1848,0.1953]
[0.2477,0.2685]

[0.3930,0.4302]
[0.4700,0.5131]

[0.7408,0.7823]
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Figure 1. Power curves for the NJT test in neutrosophic normal distribution with sample

sizes of (5, 5, 5, 5) and (20, 20, 20, 20) at the nominal levels of 0.01 and 0.05.
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Figure 2. Power curves for the NJT test in neutrosophic normal distribution with sample

sizes of (4, 6, 7, 5) and (14, 11, 17, 12) at the nominal levels of 0.01 and 0.05.

higher testing power than the existing test, as demonstrated by Tables 3-5 and Figures 1-6. The JTN-

test offers superior flexibility, applicability, and information than the current JT-test in uncertain

environments.

6. Future research directions

This research paper focuses on the Jonckheere trend test and its application in uncertain environ-

ments. However, this test can also be adapted to address more complicated scenarios, such as

missing data. Missing cells can create various situations that require further investigation. Future
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Figure 3. Power curves for the NJT test in neutrosophic gamma distribution with sample

sizes of (5, 5, 5, 5) and (20, 20, 20, 20) at the nominal levels of 0.01 and 0.05.

1 2 3 4 5 6

0.
0

0.
1

0.
2

0.
3

0.
4

Simple Size (4,6,7,5)

δ

P
ow

er
 o

f T
es

t

Classic JT

NJT  0.05

NJT  0.01

1 2 3 4 5 6

0.
0

0.
2

0.
4

0.
6

0.
8

Simple Size (14,11,17,12)

δ

P
ow

er
 o

f T
es

t

Classic JT

NJT  0.05

NJT  0.01

Figure 4. Power curves for the NJT test in neutrosophic gamma distribution with sample

sizes of (4, 6, 7, 5) and (14, 11, 17, 12) at nominal levels of 0.01 and 0.05.

studies could explore this issue and expand upon the results to incorporate missing values into the

test. The presence of missing data can introduce bias, making it crucial to select the most effective

method for minimizing bias and obtaining accurate outcomes.

7. Conclusions

Using a neutrosophic approach is necessary when dealing with data uncertainties. However, tradi-

tional methods can be limited by errors and vagueness in the environment, making a neutrosophic
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Figure 5. Power curves for the NJT test in neutrosophic noncentral t-distribution with

sample sizes of (5, 5, 5, 5) and (20, 20, 20, 20) at the nominal levels of 0.01 and 0.05.
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Figure 6. Power curves for the NJT test in neutrosophic noncentral t-distribution with

sample sizes of (4, 6, 7, 5) and (14, 11, 17, 12) at the nominal levels of 0.01 and 0.05.

model a more effective option. It is worthwhile to note that this represents a methodological ad-

vancement, making the improvement significant. It was found that the proposed test significantly

impacted the handling of uncertainties in this study. Importantly, this study also acknowledges

computational progress. This was the first attempt to propose the neutrosophic Jonckheere trend

test to address these issues while also considering the intrinsic indeterminacy of the data. As

such, this study provides an appropriate framework for analyzing data under such conditions.

The proposed neutrosophic test offers superior precision, flexibility, applicability, and information

than existing tests in uncertain environments.
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