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ABSTRACT. Transform The Hough Transform (HT) is an essential method in detecting geometric shapes in images. In 

this work, we concentrate on enhancing the accuracy and efficiency of the HT through the statistical estimation for the 

voting process in lines detection. We propose a statistical pattern detection method, which aims to introduce a new 

estimation of the polar angle θ of a detected line in an image and its radial distance r after estimating the slope and 

intercept of line of detection. 

 

1. Introduction 

The Hough transform (HT) method, developed in [16], is a technique, which is typically 

used to extract edges or curves from an image. It is obvious that the input of the HT method is 

normally an image that has been edge detected by a suitable edge detector, and so the HT method 

is regarded as an edge linker that groups edge pixels together. The HT method detects curves in 

an image by interchanging roles between parameters of an analytic curve and points lying on that 

curve. The HT method has been generalised to detect arbitrary shapes [2], this includes both 

analytic [13] and nonanalytic curves [22]. These analytic curves are lines [23], parabolas [28], 

circles [19] and ellipses [27], which can be detected using some HT algorithms.  

The idea behind HT is to extract curves in the image  

                                                             𝑓(𝑥𝑜, 𝑦𝑜; 𝑎1, … , 𝑎𝑘) = 0                                                       (1.1)                                                                        
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where (𝑥𝑜, 𝑦𝑜) is a point  on the curve and (𝑎1, … , 𝑎𝑘) is the vector of parameters. For example, a 

line 𝑦𝑜 − 𝑚𝑥𝑜 + 𝑐 = 0  has the vector of parameters (𝑚, 𝑐). Another example is the circle 

(𝑥𝑜 − 𝑎)2 + (𝑦𝑜 − 𝑏)2 − 𝑐2 = 0    with the vector of parameters (𝑎, 𝑏, 𝑐). The HT method starts with 

the assumption that the coordinates of points (𝑥𝑜, 𝑦𝑜) when substituted in Eq(1.1) are  considered 

constants, and the parameters 𝑎1, … , 𝑎𝑘 are variables. If a point is substituted in Eq(1.1), then the 

result represents a new equation in the new variables (the parameters) that has its own 

geometrical representation in the space of parameters. This means that the set of points to be 

fitted by the HT method is transformed to a family of new geometrical representations in the 

space of parameters. All these geometrical representations should cross at a value in the k-

Euclidean space of parameters which represents the vector of the required parameters.  

In our work, we represented the space of parameters by a matrix which collects particular 

voting regarding discrete values for the parameters in the space. The array of accumulators, 

𝐴(𝑎1, … , 𝑎𝑘), is originally set to zero for every parameter vector (𝑎1, … , 𝑎𝑘). For each point (𝑥𝑜, 𝑦𝑜), 

one then searches vectors (𝑎1, … , 𝑎𝑘) in the parametric space and increase the accumulator 

corresponding to this vector by one whenever  

                                                                  𝑓(𝑥𝑜, 𝑦𝑜; 𝑎1, … , 𝑎𝑘) <∈                                                                        (1.2)  

for a suitable determined small number ∈. 

According to Eq(1.2),each value in a pixel of the image contributes votes to multiple 

parameter. To find the vector of parameters that characterises the curve, one detects maximum 

values in the parameter universe, which is equivalent to detecting the statistical relative 

frequency.  

The problem in the execution of this method is that it is affected by the dimension of the 

space of parameters. If the HT technique is used to fit lines, then the parameter space is 2-

dimentional. That is to say, this way is suitable for finding simple curves with a small number of 

parameters, a line as an example, which is the core of this work. 

As mentioned in [3, 14, 18, 21], the HT stands as a good statistically robust estimator in 

the process of detecting lines in the image. In [5], authors managed to introduce an estimator for 

the probability density function (pdf) of variables enhanced by HT using mixtures of the kernel 

with a bandwidth of variables. The modelling of pdf in [5] takes advantage of all pixels in the 

image including edges to enhance variables. The usual HT is considered as a special event of our 

new statistical method. The HT can be applied in many life sectors, some examples are tennis 

broadcasts of snooker [6, 12], and sports trends [20] studied. 

Relative descriptors of the intensity of images were defined in [25] to identify corners and 

match points. By using local descriptors, other distributions can also be modelled with multi-

dimensional histograms, as shown in [24]. For a study of the uncertainty of the extraction of an 

edge by a corner detector, see [26]. Authors in [26] introduced a new rule for feature extraction 
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uncertainty that supports special pixel covariance to derive a more accurate relation uncertainty 

estimate and for line detection in images using a regularized HT, see [1]. In [4], the mean shift 

clustering approach was utilized to detect fast line segments in the Hough domain. In [15], 

authors presented an active and more reliable scheme for a fast discovery of the optic disk. In [7], 

authors proposed a novel method which uses different procedures that answer the problem of 

skew discovery, taking into account having at least one variable standing as a compensation for 

the absence of more variables, and so each brand of interested text can be manipulated with better 

accuracy and more reliability in the output outcome. For more survey of literature related to the 

HT, see [11, 8, 17]. 

In this article, we suggest a statistical design discovery scheme related to the HT. This 

approach introduces a novel estimation of the polar angle 𝜃 and the radial distance r of a detected 

line in an image, following the estimation of the line's slope m and intercept c. 

 

2. Estimation of the statistics 

Assuming that the noisy image is defined by 𝐼(𝑥𝑜, 𝑦𝑜) = 𝑐(𝑥𝑜, 𝑦𝑜) + 𝑛(𝑥𝑜, 𝑦𝑜)  where 𝑐(𝑥𝑜) 

is the clean portion of the image and  𝑛(𝑥𝑜) is the noisy portion of the image, which is the 

compliment of  𝑐(𝑥𝑜) . In our work, if 𝑋 = (𝑥𝑜, 𝑦𝑜)  is the position vector in the image, then X  is 

modelled to be a random variable that is normally scattered with   

𝑥𝑜~𝑁(𝜇𝑥𝑜
, 𝜎𝑥𝑜

2 ) 𝑎𝑛𝑑 𝑦𝑜~𝑁(𝜇𝑦𝑜
, 𝜎𝑦𝑜

2 )  . In this case, the values of the partial derivatives of the image 

follow the normal distribution with 𝐼𝑥𝑜
~𝑁(𝑐𝑥𝑜

, 𝜎2) and 𝐼𝑦𝑜
~𝑁(𝑐𝑦𝑜

, 𝜎2). Moreover, if 𝑊 =
𝐼𝑦𝑜

𝐼𝑥𝑜

, then 

we can assume that 
𝑛𝑦𝑜

𝑐𝑥𝑜

 is very small, and so 𝑊 ≈
𝑐𝑦𝑜+𝑛𝑦𝑜

𝑐𝑥𝑜

 .  

Here the mean of 𝑊 𝑖𝑠 𝑀(𝑊) =
𝑐𝑦𝑜

𝑐𝑥𝑜

  and the variance of 𝑊 𝑖𝑠 𝑉(𝑊) =
𝜎2

𝑐𝑥𝑜
2 .  

The modulus of the derivative of the intensity as a random variable is given by ‖∇𝐼‖ =

√𝐼𝑥𝑜
2 + 𝐼𝑦𝑜

2  with Rayleigh distribution when 𝑐𝑥𝑜
= 𝑐𝑦𝑜

= 0. Assuming that our image has a large 

proportion of  flat regions, the approximation of the standard deviation 𝜎 of the noise should be 

strongly estimated by calculating a peak in the distribution of the modulus ‖∇𝐼‖ with domain 

being the intensity itself [9, 10]. 

In [11], the author studied the statistical HT. The main work in [11] lies in estimation of 

the statistics related to the equation of a line written in terms of polar coordinates. Also, the author 

in [11] made estimation of the modes of such statistics. 

In [29], the authors suggested a scheme that is built on minimum entropy analyse to find 

all values of parameters in an oriented line segment. Here the normal angle as well the length of 

the line segment were calculated by pasting a curve with a quadratic polynomial approximation 

towards entropies under intersect of voting. 
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The input of our work is a 2-dimentional image, on which we apply HT. We restrict our 

aim on extracting lines out of the image. A set of points with Cartesian coordinator (𝑥, 𝑦)  is 

available and we fit it to the polar equation of the line  

                                                          𝑦𝑜 = 𝑚𝑥𝑜 + 𝑐                                                                       (2.1) 

Let  𝒜 = {(𝑥1, 𝑦1), … , (𝑥𝑛, 𝑦𝑛)}  be the set of observations, which is aligned on a straight 

line with parameters (�̂�, �̂�) where �̂� 𝑎𝑛𝑑 �̂�  are both estimated using HT. Hence we can consider 

ℬ = {(𝑚1, 𝑥1, 𝑦1), … , (𝑚𝑛, 𝑥𝑛, 𝑦𝑛)} as the set of locations with an observation of the slope m. Thus, 

for an image, the slope (derivative) of the line be able to be nearby calculated and used as an 

observation of m. Then 𝑐1, … , 𝑐𝑛   in the set  𝒞 = {(𝑚1, 𝑐1), … , (𝑚𝑛, 𝑐𝑛)} can be computed using the 

set 𝒜  and the well-known values 𝑚1, … , 𝑚𝑛   in the set ℬ, all considered as observations. Two 

vectors of values are needed for both m and c to apply the HT, which enable us to build a two 

dimensional matrix of size 𝐾𝑚 × 𝐾𝑐 where 𝐾𝑚𝑎𝑛𝑑 𝐾𝑐 are the dimensions of the vectors of m and 

c respectively. This means that there are 𝐾𝑚 × 𝐾𝑐 different lines under voting. If  

                                                 |𝑦𝑜 − 𝑚𝑥𝑜 − 𝑐| <∈                                                                         (2.2) 

for some ∈> 0, then there is a natural number 𝒩(∈), which counts the number of lines satisfying 

(2.2). 

One method for  the estimation of the sample size 𝒩(∈)   is using the inequality   

                                                     𝑍1−
𝛼

2

𝑆

√𝒩(∈)
≤∈                                                                             (2.3) 

where  ∈ is statistically considered as the margin of error, S is the known standard deviation of 

the sample and 𝑍1−
𝛼

2
  is the 1 −

𝛼

2
  quantile of the  𝑁(0,1). The good news behind 𝒩(∈) lies in the 

point that the number of lines under voting is now short listed, which saves time and memory. 

Also, Ineq(2.3) provides us with a lower bound for ∈, namely,  𝑍1−
𝛼

2

𝑆

√𝐾𝑚×𝐾𝑐
  where 𝐾𝑚 × 𝐾𝑐 in this 

case is an upper bound for 𝒩(∈).  

Considering the pairs (𝑚1, 𝑐1), … , (𝑚𝒩(∈), 𝑐𝒩(∈)), we conclude the following: 

                                                     �̂� =
∑ 𝑚𝑖

𝒩(∈)
𝑖=1

𝒩(∈)
                                                                                 (2.4)  

                                                    �̂�𝑚 = √
∑ (𝑚𝑖−�̂�)2𝒩(∈) 

𝑖=1

𝒩(∈)−1
                                                                   (2.5)                                         

where 𝒩(∈) = ⌊
 𝑍

1−
𝛼
2

 
𝑆

∈
⌋

2

. Also one can estimate both the mode and median of the values 

𝑚1, … , 𝑚𝒩(∈). Similarly, we can calculate 

                                                  �̂� =
∑ 𝑐𝑖

𝒩(∈)
𝑖=1

𝒩(∈)
                                                                                          (2.6) 

                                                �̂�𝑐 = √
∑ (𝑐𝑖−𝑐̂)2𝒩(∈) 

𝑖=1

𝒩(∈)−1
                                                                            (2.7)                                  
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Also one can estimate both the mode and median of the values 𝑐1, … , 𝑐𝒩(∈).  

If    ∑ (𝑚𝑖 − �̂�)2𝒩(∈) 
𝑖=1 = 𝑢, 𝑡ℎ𝑒𝑛  �̂�𝑚 =

√

𝑢

⌊

 𝑍
1−

𝛼
2 

𝑆

∈
⌋

2

−1

 .  

Now assume the �̂�𝑚 is required to be very small, that is, �̂�𝑚 ≪ √𝛿  where 𝛿 > 0.  

Then  𝑢 ≪ 𝛿 (⌊
 𝑍

1−
𝛼
2

 
𝑆

∈
⌋

2

− 1) . 

 Now, we go further by taking into account that 𝑡𝑎𝑛 �̂�𝑠 = �̂�, , where 𝜃𝑠 is the estimated 

slope angle of the line of estimation. Hence, if (�̂�, 𝜃)  are the estimated polar coordinates, then it 

is natural that tan 𝜃 =
−1

�̂�
 , or equivalently, 𝜃 = 𝑡𝑎𝑛−1 (

−1

�̂�
). Moreover, �̂� = 𝑥𝑜 cos 𝜃 + 𝑦𝑜 sin 𝜃  

where  (𝑥𝑜, 𝑦𝑜) is the point on the line of estimation being the nearest to the origin. The last 

statement ensures that the simulation should minimize the distance measured from data points 

to the origin. That is, (𝑥𝑜, 𝑦𝑜) is chosen by minimizing {√𝑥𝑜𝑖
2 + 𝑦𝑜𝑖

2 }
𝑖=1

𝑛

.  To avoid the idea of 

minimizing of the above distance, one can follow the following conclusion of  �̂�  in term of  

�̂� 𝑎𝑛𝑑 𝜃. It is well known that another form of representing a line in the plane is 

 𝑦𝑜 =
−1

tan 𝜃
𝑥𝑜 + 𝑐,  equivalently, 

                                                     𝑦𝑜 tan 𝜃 + 𝑥𝑜 = 𝑐 tan 𝜃                                                                (2.8) 

But   𝑟 = 𝑥𝑜 cos 𝜃 + 𝑦𝑜 sin 𝜃   implies that 

                                                    
𝑟

cos 𝜃
= 𝑥𝑜 + 𝑦𝑜 tan 𝜃                                                                      (2.9)   

Eq(2.8) and Eq(2.9) imply that     
𝑟

cos 𝜃
= 𝑐 tan 𝜃  .  

That is, 

                                                         �̂� = �̂� sin 𝜃                                                                                (2.10) 

 

3. Matlab Programs 

 

Program (1): Fitting through m and c 

% A test for using the Hough transform in fitting data to a line. 

% The Eq. of a line used here is of the formula ‘y=mx+c’ …..(*). 

% The Eq.  ‘c=y-mx’ represents the rewritten form of (*). 

% The constants m and c now play the role of variables. 

% The (m,c) space is called the parameter space. 

% The (x,y) pairs represent the observed values. 

% X is the vector of 1st coordinates of the observed pairs. 
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% Y is the vector of 2nd coordinates of the observed pairs. 

Input X 

Input Y 

lxy=length (X); 

m=im:fm; 

c=ic:fc; 

% m and c quantize the parameter space. 

lm=length(m); lc=length(c); 

acc=zeros(lm,lc); 

% acc is the array of accumulators. 

% The idea of the Hough transform is incrementing by 1 each accumulator 

% that corresponds to the pair (m,c) which satisfies the relation in  

% the If statement. 

Input ∈ 

for ii=1:lxy 

       for jj=1:lm    

            for kk=1:lc 

          if abs(y(ii)-m(jj)*x(ii)-c(kk))< ∈ 

                acc(jj,kk)=acc(jj,kk)+1; 

                              end 

             end 

     end 

end 

% The method suggests that m and c solve the problem. 

ac=acc(:); 

[value, ind]=max(ac); 

siz=size(acc); 

% siz represents 𝑁(∈). 

[a,b]=ind2sub(siz,ind); 

m=m(a), c=c(b) 

theta=invtan ((-1)/m) 

r=c*sin (theta) 

 

Program (2): Fitting direct by 𝑟 𝑎𝑛𝑑 𝜃 

% A test for using the Hough transform in fitting data to a line. 

% The Eq. of a line used here is of the form ‘xcos z +ysin z =r’. 

% The constants z  and r now play the role of variables. 
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% The (z, r) space is called the parameter space. 

% The (x,y) pairs represent the observed values. 

% X is the vector of 1st  coordinates of the observed pairs. 

% Y is the vector of 2nd  coordinates of the observed pairs. 

Input X 

Input Y 

lxy=length(X); 

lm=length(m); lc=length(c); 

z=0:pi/72:2*pi; 

r=0:0.5:lm; 

% z and r quantize the parameter space. 

cz=cos(z); 

sz=sin(z); 

acc=zeros(lm,lc); 

% acc is the array of accumulators. 

% The idea of the Hough transform is incrementing by 1 each accumulator 

% that corresponds to the pair (z,r) which satisfies the relation in  

% the If statement. 

for ii=1:lxy 

    for jj=1:lm 

       for kk=1:lc 

          if abs(x(ii)*cz(jj)+y(ii)*sz(jj)-r(kk))< ∈ 

                acc(jj,kk)=acc(jj,kk)+1; 

                    end 

           end 

   end 

end 

ac=acc(:); 

[value, ind]=max(ac); 

siz=size(acc); 

% siz represent 𝑁(∈) 

[a,b]=ind2sub(siz,ind); 

cz=cz(a), sz=szc(a),r=r(b) 
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4. Conclusion 

In conclusion, this study has investigated the application of statistical estimations to enhance the 

voting process in the Hough Transform (HT) algorithm for line recognition. We have focused on 

improving the precision and efficiency of  detecting lines, particularly in the presence of margin 

value ∈. Firstly, we have demonstrated some statistical concepts that are embedded in using the 

HT estimator of the HT estimator, especially in the context of detecting one line whose equation 

is written using polar coordinates. Additionally, we have derived on enhancing method which 

gives more accuracy and efficiency while voting towards the best line of detection. Finally, the 

estimation of the slope of the line and its intercepts had been used in our work to introduce the 

new contribution in estimating the polar angle and radial distance of line of detection. 

Conflicts of Interest: The authors declare that there are no conflicts of interest regarding 

the publication of this paper. 
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