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SOME INTEGRAL INEQUALITIES FOR LOCAL FRACTIONAL INTEGRALS

M. ZEKI SARIKAYA1,∗, SAMET ERDEN2 AND HÜSEYIN BUDAK1

Abstract. In this paper, firstly we extend some generalization of the Hermite-Hadamard inequal-

ity and Bullen inequality to generalized convex functions. Then, we give some important integral

inequalities related to these inequalities.

1. Introduction

Definition 1.1 (Convex function). The function f : [a, b] ⊂ R → R, is said to be convex if the
following inequality holds

f(tx+ (1− t)y) ≤ tf(x) + (1− t)f(y)

for all x, y ∈ [a, b] and t ∈ [0, 1] . We say that f is concave if (−f) is convex.

The classical Hermite-Hadamard inequality which was first published in [8] gives us an estimate of
the mean value of a convex function f : I → R,

f

(
a+ b

2

)
≤ 1

b− a

∫ b

a

f(x)dx ≤ f(a) + f(b)

2
(1.1)

In [1], Bullen proved the following inequality which is known as Bullen’s inequality for convex function.
Let f : I ⊂ R→ R be a convex function on the interval I of real numbers and a, b ∈ I with a < b.

The inequality

1

b− a

∫ b

a

f(x)dx ≤ 1

2

[
f

(
a+ b

2

)
+
f(a) + f(b)

2

]
.

An account the history of this inequality can be found in [3]. Surveys on various generalizations and
developments can be found in [12] and [2]. Recently in [5], the author established this inequality for
twice differentiable functions. In the case where f is convex then there exists an estimation better
than (1.1).

In [6], Farissi gave the refinement of the inequality (1.1) as follows:

Theorem 1.1. Assume that f : I → R is a convex function on I. Then for all λ ∈ [0, 1], we have

f

(
a+ b

2

)
≤ l (λ) ≤ 1

b− a

b∫
a

f (x) dx ≤ L (λ) ≤ f (a) + f (b)

2
,

where

l (λ) := λf

(
λb+ (2− λ) a

2

)
+ (1− λ) f

(
(1 + λ) b+ (1− λ) a

2

)
and

L (λ) :=
1

2
(f (λb+ (1− λ) a) + λf (a) + (1− λ) f (b)) .

For more information recent developments to above inequalities, please refer to [2]- [7], [9]- [11], [14]
and so on.
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2. Preliminaries

Recall the set Rα of real line numbers and use the Gao-Yang-Kang’s idea to describe the definition
of the local fractional derivative and local fractional integral, see [15,16] and so on.

Recently, the theory of Yang’s fractional sets [15] was introduced as follows.
For 0 < α ≤ 1, we have the following α-type set of element sets:
Zα : The α-type set of integer is defined as the set {0α,±1α,±2α, ...,±nα, ...} .
Qα : The α-type set of the rational numbers is defined as the set {mα =

(
p
q

)α
: p, q ∈ Z, q 6= 0}.

Jα : The α-type set of the irrational numbers is defined as the set {mα 6=
(
p
q

)α
: p, q ∈ Z, q 6= 0}.

Rα : The α-type set of the real line numbers is defined as the set Rα = Qα ∪ Jα.
If aα, bα and cα belongs the set Rα of real line numbers, then
(1) aα + bα and aαbα belongs the set Rα;
(2) aα + bα = bα + aα = (a+ b)

α
= (b+ a)

α
;

(3) aα + (bα + cα) = (a+ b)
α

+ cα;
(4) aαbα = bαaα = (ab)

α
= (ba)

α
;

(5) aα (bαcα) = (aαbα) cα;
(6) aα (bα + cα) = aαbα + aαcα;
(7) aα + 0α = 0α + aα = aα and aα1α = 1αaα = aα.
The definition of the local fractional derivative and local fractional integral can be given as follows.

Definition 2.1. [15] A non-differentiable function f : R → Rα, x → f(x) is called to be local
fractional continuous at x0, if for any ε > 0, there exists δ > 0, such that

|f(x)− f(x0)| < εα

holds for |x− x0| < δ, where ε, δ ∈ R. If f(x) is local continuous on the interval (a, b) , we denote
f(x) ∈ Cα(a, b).

Definition 2.2. [15] The local fractional derivative of f(x) of order α at x = x0 is defined by

f (α)(x0) =
dαf(x)

dxα

∣∣∣∣
x=x0

= lim
x→x0

∆α (f(x)− f(x0))

(x− x0)
α ,

where ∆α (f(x)− f(x0)) =̃Γ(α+ 1) (f(x)− f(x0)) .

If there exists f (k+1)α(x) =

k+1 times︷ ︸︸ ︷
Dα
x ...D

α
xf(x) for any x ∈ I ⊆ R, then we denoted f ∈ D(k+1)α(I),

where k = 0, 1, 2, ...

Definition 2.3. [15] Let f(x) ∈ Cα [a, b] . Then the local fractional integral is defined by,

aI
α
b f(x) =

1

Γ(α+ 1)

b∫
a

f(t)(dt)α =
1

Γ(α+ 1)
lim

∆t→0

N−1∑
j=0

f(tj)(∆tj)
α,

with ∆tj = tj+1 − tj and ∆t = max {∆t1,∆t2, ...,∆tN−1} , where [tj , tj+1] , j = 0, ..., N − 1 and
a = t0 < t1 < ... < tN−1 < tN = b is partition of interval [a, b] .

Here, it follows that aI
α
b f(x) = 0 if a = b and aI

α
b f(x) = −bIαa f(x) if a < b. If for any x ∈ [a, b] ,

there exists aI
α
x f(x), then we denoted by f(x) ∈ Iαx [a, b] .

Definition 2.4 (Generalized convex function). [15] Let f : I ⊆ R → Rα. For any x1, x2 ∈ I and
λ ∈ [0, 1] , if the following inequality

f(λx1 + (1− λ)x2) ≤ λαf(x1) + (1− λ)αf(x2)

holds, then f is called a generalized convex function on I.

Here are two basic examples of generalized convex functions:
(1) f(x) = xαp, x ≥ 0, p > 1;

(2) f(x) = Eα(xα), x ∈ R where Eα(xα) =
∞∑
k=0

xαk

Γ(1+kα) is the Mittag-Lrffer function.
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Theorem 2.1. [13] Let f ∈ Dα(I), then the following conditions are equivalent
a) f is a generalized convex function on I
b) f (α) is an increasing function on I
c) for any x1, x2 ∈ I,

f(x2)− f(x1) ≥ f (α)(x1)

Γ (1 + α)
(x2 − x1)

α
.

Corollary 2.1. [13] Let f ∈ D2α(a, b). Then f is a generalized convex function ( or a generalized
concave function) if and only if

f (2α)(x) ≥ 0
(

or f (2α)(x) ≤ 0
)

for all x ∈ (a, b) .

Lemma 2.1. [15]
(1) (Local fractional integration is anti-differentiation) Suppose that f(x) = g(α)(x) ∈ Cα [a, b] , then

we have

aI
α
b f(x) = g(b)− g(a).

(2) (Local fractional integration by parts) Suppose that f(x), g(x) ∈ Dα [a, b] and f (α)(x), g(α)(x) ∈
Cα [a, b] , then we have

aI
α
b f(x)g(α)(x) = f(x)g(x)|ba −a I

α
b f

(α)(x)g(x).

Lemma 2.2. [15] We have

i)
dαxkα

dxα
=

Γ(1 + kα)

Γ(1 + (k − 1)α)
x(k−1)α;

ii)
1

Γ(α+ 1)

b∫
a

xkα(dx)α =
Γ(1 + kα)

Γ(1 + (k + 1)α)

(
b(k+1)α − a(k+1)α

)
, k ∈ R.

Lemma 2.3 (Generalized Hölder’s inequality). [15] Let f, g ∈ Cα [a, b] , p, q > 1 with 1
p + 1

q = 1, then

1

Γ(α+ 1)

b∫
a

|f(x)g(x)| (dx)α ≤

 1

Γ(α+ 1)

b∫
a

|f(x)|p (dx)α


1
p
 1

Γ(α+ 1)

b∫
a

|g(x)|q (dx)α


1
q

.

In [13], Mo et al. proved the following generalized Hermite-Hadamard inequality for generalized
convex function:

Theorem 2.2 (Generalized Hermite-Hadamard inequality). Let f(x) ∈ I
(α)
x [a, b] be a generalized

convex function on [a, b] with a < b. Then

f

(
a+ b

2

)
≤ Γ (1 + α)

(b− a)
α aI

α
b f(x) ≤ f (a) + f (b)

2α
. (2.1)

The aim of this paper is to extend the generalized Hermite-Hadamard inequalities and generalized
Bullen inequalities to generalized convex functions.

3. Main Results

Theorem 3.1 (Generalized Hermite–Hadamard-type inequality). Let f(x) ∈ I(α)
x [a, b] be a generalized

convex function on [a, b] with a < b. Then

f

(
a+ b

2

)
≤ h (λ) ≤ Γ (1 + α)

(b− a)
α aI

α
b f(x) ≤ H (λ) ≤ f (a) + f (b)

2α
, (3.1)

where

h (λ) := λαf

(
λb+ (2− λ) a

2

)
+ (1− λ)

α
f

(
(1 + λ) b+ (1− λ) a

2

)
and

H (λ) :=
1

2α
[f (λb+ (1− λ) a) + λαf (a) + (1− λ)

α
f (b)] .
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Proof. Let f be a generalized convex. Then, applying (2.1) on the subinterval [a, λb+ (1− λ) a], with
λ 6= 0, we have

f

(
λb+ (2− λ) a

2

)
(3.2)

≤ 1

λα (b− a)
α

λb+(1−λ)a∫
a

f (t) (dt)
α

≤ f (a) + f (λb+ (1− λ) a)

2α
.

Applying (2.1) again on [λb+ (1− λ) a, b], with λ 6= 1, we get

f

(
(1 + λ) b+ (1− λ) a

2

)
(3.3)

≤ 1

(1− λ)
α

(b− a)
α

b∫
λb+(1−λ)a

f (t) (dt)
α

≤ f (λb+ (1− λ) a) + f (b)

2α
.

Multiplying (3.2) by λα, (3.3) by (1− λ)
α

, and adding the resulting inequalities, we get:

h (λ) ≤ Γ (1 + α)

(b− a)
α aI

α
b f(x) ≤ H (λ) (3.4)

where h (λ) and H (λ) are defined as in Theorem 3.1.
Using the fact that f is a generalized convex function, we obtain

f

(
a+ b

2

)
(3.5)

= f

(
λ
λb+ (2− λ) a

2
+ (1− λ)

(1 + λ) b+ (1− λ) a

2

)

≤ λαf

(
λv + (2− λ) a

2

)
+ (1− λ)

α
f

(
(1 + λ) b+ (1− λ) a

2

)

≤ λα

2α
[f (λb+ (1− λ) a) + f (a)] +

(1− λ)
α

2α
[f (b) + f (λb+ (1− λ) a)]

=
1

2α
[f (λb+ (1− λ) a) + λαf (a) + (1− λ)

α
f (b)]

≤ f (a) + f (b)

2α
.

Then by (3.4) and (3.5), we get (3.1). �

Theorem 3.2. Let g(x) ∈ D2α [a, b] such that there exist constants m,M ∈ Rα so that m ≤ g(2α) (x) ≤
M for x ∈ [a, b]. Then

m (bα + aαbα + aα)

Γ (1 + 3α)
− m

Γ (1 + 2α)

(
a2α + b2α

2α

)
(3.6)

≤ Γ (1 + α)

(b− a)
α aI

α
b g(x)− g

(
a+ b

2

)

≤ M

Γ (1 + 2α)

(
a2α + b2α

2α

)
− M (bα + aαbα + aα)

Γ (1 + 3α)
.
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and

m

Γ (1 + 2α)

(
a2α + b2α

2α

)
− m (bα + aαbα + aα)

Γ (1 + 3α)
(3.7)

≤ g(a) + g(b)

2α
− Γ (1 + α)

(b− a)
α aI

α
b g(x)

≤ M (bα + aαbα + aα)

Γ (1 + 3α)
− M

Γ (1 + 2α)

(
a2α + b2α

2α

)
.

Proof. Let f(x) = g(x) − m
Γ(1+2α)x

2α, then f (2α) (x) = g(2α) (x) − m ≥ 0, which shows that f is

generalized convex on (a, b). Appliying ineqaulity (2.1) for f , then we have

g

(
a+ b

2

)
− m

Γ (1 + 2α)

(
a+ b

2

)2α

= f

(
a+ b

2

)

≤ Γ (1 + α)

(b− a)
α aI

α
b f(x)

=
1

(b− a)
α

∫ b

a

[
g(x)− m

Γ (1 + 2α)
x2α

]
(dx)

α

=
Γ (1 + α)

(b− a)
α aI

α
b g(x)− 1

(b− a)
α

m

Γ (1 + 2α)

Γ (1 + 2α)

Γ (1 + 3α)

(
b3α − a3α

)
.

This implies that

m (bα + aαbα + aα)

Γ (1 + 3α)
− m

Γ (1 + 2α)

(
a+ b

2

)2α

≤ Γ (1 + α)

(b− a)
α aI

α
b g(x)− g

(
a+ b

2

)
which proves the first inequality in (3.6). To prove the second part of (3.6), we apply the same argument
for the generalized convex mapping f(x) = M

Γ(1+2α)x
2α − g(x); x ∈ [a, b].

By applying the second part of the generalized Hermite-Hadamard inequality (2.1) for the mapping
f(x) = g(x)− m

Γ(1+2α)x
2α as follows

g(a) + g(b)

2α
− m

Γ (1 + 2α)

(
a2α + b2α

2α

)

=
f(a) + f(b)

2α

≥ Γ (1 + α)

(b− a)
α aI

α
b f(x)

=
1

(b− a)
α

∫ b

a

[
g(x)− m

Γ (1 + 2α)
x2α

]
(dx)

α

=
Γ (1 + α)

(b− a)
α aI

α
b g(x)− 1

(b− a)
α

m

Γ (1 + 2α)

Γ (1 + 2α)

Γ (1 + 3α)

(
b3α − a3α

)
.
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This is equivalent to

m

Γ (1 + 2α)

(
a2α + b2α

2α

)
− m (bα + aαbα + aα)

Γ (1 + 3α)

≤ g(a) + g(b)

2α
− Γ (1 + α)

(b− a)
α aI

α
b g(x)

which proves the rest part of (3.7). The second part is established in a similar manner; and we omit
the details which completes the proof. �

We prove the following inequality which is generalized Bullen inequality for generalized convex
function.

Theorem 3.3 (Generalized Bullen inequality). Let f(x) ∈ I(α)
x [a, b] be a generalized convex function

on [a, b] with a < b. Then we have the inequality

Γ (1 + α)

(b− a)
α aI

α
b f(x) ≤ 1

2α

[
f

(
a+ b

2

)
+
f (a) + f (b)

2α

]
. (3.8)

Proof. Using the Theorem 2.2, we find that

2αΓ (1 + α)

(b− a)
α

1

Γ (1 + α)

b∫
a

f (x) (dx)
α

=
2αΓ (1 + α)

(b− a)
α

 1

Γ (1 + α)

a+b
2∫
a

f (x) (dx)
α

+
1

Γ (1 + α)

b∫
a+b
2

f (x) (dx)
α


≤

f
(
a+b

2

)
+ f (a)

2α
+
f (b) + f

(
a+b

2

)
2α

= f

(
a+ b

2

)
+
f (a) + f (b)

2α
.

Hence, the proof is completed. �

Theorem 3.4. Let I ⊆ R be an interval, f : I0 ⊆ R → Rα (I0 is the interior of I) such that
f ∈ D2α(I0) and f (α) ∈ Cα [a, b] for a, b ∈ I0 with a < b. Then, for all x ∈ [a, b] , we have the
following identity

1

2α (b− a)
α

(Γ (1 + α))
2

b∫
a

(
x− a+ b

2

)α
p(x)f (2α) (x) (dx)

α
(3.9)

=
1

2α

[
f

(
a+ b

2

)
+
f (a) + f (b)

2α

]
− Γ (1 + α)

(b− a)
α aI

α
b f(x)

where

p(x) =

 (a− x)
α
,

[
a, a+b

2

)
(b− x)

α
,

[
a+b

2 , b
]
.



SOME INTEGRAL INEQUALITIES FOR LOCAL FRACTIONAL INTEGRALS 15

Proof. Using the local fractional integration by parts, we have

1

Γ (1 + α)

b∫
a

(
x− a+ b

2

)α
p(x)f (2α) (x) (dx)

α

=
1

Γ (1 + α)

a+b
2∫
a

(
x− a+ b

2

)α
(a− x)

α
f (2α) (x) (dx)

α

+
1

Γ (1 + α)

b∫
a+b
2

(
x− a+ b

2

)α
(b− x)

α
f (2α) (x) (dx)

α

=

(
x− a+ b

2

)α
(a− x)

α
f (α) (x)

∣∣∣∣
a+b
2

a

−Γ (1 + α)

Γ (1 + α)

a+b
2∫
a

(
3a+ b

2
− 2x

)α
f (α) (x) (dx)

α

+

(
x− a+ b

2

)α
(b− x)

α
f (α) (x)

∣∣∣∣b
a+b
2

−Γ (1 + α)

Γ (1 + α)

b∫
a+b
2

(
a+ 3b

2
− 2x

)α
f (α) (x) (dx)

α
.

Using the local fractional integration by parts again, we find that

1

Γ (1 + α)

b∫
a

(
x− a+ b

2

)α
p(x)f (2α) (x) (dx)

α

= Γ (1 + α) (b− a)
α
f

(
a+ b

2

)
+ Γ (1 + α) (b− a)

α f (a) + f (b)

2α

−2α (Γ (1 + α))
2

Γ (1 + α)

b∫
a

f (x) (dx)
α
.

If we devide the resulting equality with 2αΓ (1 + α) (b− a)
α

, then we complete the proof. �

Theorem 3.5. Suppose that the assumptions of Theorem 3.4 are satisfied, then we have the following
inequality ∣∣∣∣ 1

2α

[
f

(
a+ b

2

)
+
f (a) + f (b)

2α

]
− Γ (1 + α)

(b− a)
α aI

α
b f(x)

∣∣∣∣
≤ (b− a)(

1+ 1
p )α

8αΓ (1 + α)
(B(p+ 1, p+ 1))

1
p

∥∥∥f (2α) (x)
∥∥∥
q

where, p, q > 1, 1
p + 1

q = 1,
∥∥f (2α)

∥∥
q

is defined by

∥∥∥f (2α)
∥∥∥
q

=

 1

Γ (1 + α)

b∫
a

∣∣∣f (2α)(x)
∣∣∣q (dx)

α


1
q
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and B (x, y) is defined by

B (x, y) =
1

Γ (1 + α)

1∫
0

t(x−1)α (1− t)(y−1)α
(dt)

α
.

Proof. Taking madulus in (3.9) and using generalized Hölder inequality, we have∣∣∣∣ 1

2α

[
f

(
a+ b

2

)
+
f (a) + f (b)

2α

]
− Γ (1 + α)

(b− a)
α aI

α
b f(x)

∣∣∣∣ (3.10)

≤ 1

2α (b− a)
α

(Γ (1 + α))
2

b∫
a

∣∣∣∣x− a+ b

2

∣∣∣∣α |p(x)|
∣∣∣f (2α) (x)

∣∣∣ (dx)
α

≤ 1

2α (b− a)
α

Γ (1 + α)

 1

Γ (1 + α)

b∫
a

∣∣∣f (2α) (x)
∣∣∣q (dx)

α


1
q

×

 1

Γ (1 + α)

b∫
a

∣∣∣∣x− a+ b

2

∣∣∣∣pα |p(x)|p (dx)
α


1
p

=

∥∥f (2α)
∥∥
q

2α (b− a)
α

Γ (1 + α)

 1

Γ (1 + α)

a+b
2∫
a

(
a+ b

2
− x
)pα

(x− a)
pα

(dx)
α

+
1

Γ (1 + α)

b∫
a+b
2

(
x− a+ b

2

)pα
(b− x)

pα
(dx)

α


1
p

=

∥∥f (2α)
∥∥
q

2α (b− a)
α

Γ (1 + α)
(K1 +K2)

1
p .

For calculating integral K1, using changing variable with x = (1− t)a+ ta+b
2 , we obtain

K1 =
1

Γ (1 + α)

a+b
2∫
a

(
a+ b

2
− x
)pα

(x− a)
pα

(dx)
α

(3.11)

=

(
b− a

2

)(2p+1)α
1

Γ (1 + α)

1∫
0

(1− t)pαtpα (dt)
α

=

(
b− a

2

)(2p+1)α

B(p+ 1, p+ 1).

Similarliy, using changing variable with x = (1− t)a+b
2 + tb, we have

K2 =
1

Γ (1 + α)

b∫
a+b
2

(
x− a+ b

2

)pα
(b− x)

pα
(dx)

α
(3.12)

=

(
b− a

2

)(2p+1)α

B(p+ 1, p+ 1)
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Putting (3.11) and (3.12) in (3.10), we obtain∣∣∣∣ 1

2α

[
f

(
a+ b

2

)
+
f (a) + f (b)

2α

]
− Γ (1 + α)

(b− a)
α aI

α
b f(x)

∣∣∣∣
≤

∥∥f (2α)
∥∥
q

2α (b− a)
α

Γ (1 + α)

(
2α

(b− a)
(2p+1)α

2(2p+1)α
B(p+ 1, p+ 1)

) 1
p

=
(b− a)(

1+ 1
p )α

8αΓ (1 + α)
(B(p+ 1, p+ 1))

1
p

∥∥∥f (2α)
∥∥∥
q

which completes the proof. �

Theorem 3.6. The assumptions of Theorem 3.4 are satisfied. If the mapping

ϕ(x) =

 (a− x)
α (
x− a+b

2

)α
f (2α) (x) ,

[
a, a+b

2

)
(b− x)

α (
x− a+b

2

)α
f (2α) (x) ,

[
a+b

2 , b
]
.

is a generalized convex, then we have the inequality

(b− a)
2α

64α (Γ (1 + α))
2

[
f (2α)

(
3a+ b

4

)
+ f (2α)

(
a+ 3b

4

)]

≤ 1

2α

[
f

(
a+ b

2

)
+
f (a) + f (b)

2α

]
− Γ (1 + α)

(b− a)
α aI

α
b f(x)

≤ (b− a)
2α

128α (Γ (1 + α))
2

[
f (2α)

(
3a+ b

4

)
+ f (2α)

(
a+ 3b

4

)]
.

Proof. Applying the first inequality (2.1) for the mapping ϕ, we get

Γ (1 + α)

(b− a)
α

2α

Γ (1 + α)

a+b
2∫
a

ϕ (x) (dx)
α

(3.13)

≥ ϕ

(
3a+ b

4

)
=

(b− a)
2α

16α
f (2α)

(
3a+ b

4

)
and

Γ (1 + α)

(b− a)
α

2α

Γ (1 + α)

b∫
a+b
2

ϕ (x) (dx)
α

(3.14)

≥ ϕ

(
a+ 3b

4

)
=

(b− a)
2α

16α
f (2α)

(
a+ 3b

4

)
.

Applying the inequality (3.8) for the mapping ϕ, we have

Γ (1 + α)

(b− a)
α

2α

Γ (1 + α)

a+b
2∫
a

ϕ (x) (dx)
α

(3.15)

≤ 1

2α

[
ϕ

(
3a+ b

4

)
+
ϕ (a) + ϕ

(
a+b

2

)
2α

]

=
(b− a)

2α

32α
f (2α)

(
3a+ b

4

)
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and

Γ (1 + α)

(b− a)
α

2α

Γ (1 + α)

b∫
a+b
2

ϕ (x) (dx)
α

(3.16)

≤ 1

2α

[
ϕ

(
a+ 3b

4

)
+
ϕ
(
a+b

2

)
+ ϕ (b)

2α

]

=
(b− a)

2α

32α
f (2α)

(
a+ 3b

4

)
.

Adding the inequalities (3.13)-(3.16) and from Theorem 3.4, we write

(b− a)
2α

16α

[
f (2α)

(
3a+ b

4

)
+ f (2α)

(
a+ 3b

4

)]

≤ Γ (1 + α)

(b− a)
α

2α

Γ (1 + α)

b∫
a+b
2

ϕ (x) (dx)
α

= 4α (Γ (1 + α))
2

[
1

2α

(
f

(
a+ b

2

)
+
f (a) + f (b)

2α

)
− Γ (1 + α)

(b− a)
α aI

α
b f(x)

]

≤ (b− a)
2α

32α

[
f (2α)

(
3a+ b

4

)
+ f (2α)

(
a+ 3b

4

)]
.

If we devide the resulting inequality with 4α (Γ (1 + α))
2
, then we complete the proof. �
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