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ON RANDOM COINCIDENCE & FIXED POINTS FOR A PAIR
OF MULTI-VALUED & SINGLE-VALUED MAPPINGS

PANKAJ KUMAR JHADE®* AND A. S. SALUJAZ2

ABSTRACT. Let (X,d) be a Polish space, CB(X) the family all nonempty
closed and bounded subsets of X and ({2, 3) be a measurable space. In this
paper a pair of hybrid measurable mappings f: Qx X - X and T: QO x X —
CB(X), satisfying the inequality (2.1) below are introduced and investigated.
It is proved that if X is complete, T'(w, -), f(w,+) are continuous for all w € §,
T(-,z), f(-,x) are measurable for all z € X and T(w,&(w)) C f(w X X) and
f(wx X) =X for each w € , then there is a measurable mapping £ : Q@ — X
such that f(w,{(w)) € T(w,&(w)) for all w € Q.

1. INTRODUCTION

Random nonlinear analysis is an important mathematical discipline which is
mainly concerned with the study of random nonlinear operators and their proper-
ties and is much needed for the study of various classes of random equations. Of
course famously random methods have revolutionized the financial markets. Ran-
dom fixed point theorems for random contraction mappings on separable complete
metric spaces were first proved by Spacek[24] and Hans[7,8]. The survey article
by Bharucha-Reid [1] in 1976 attracted the attention of several mathematicians
(see Chang and Huang[2], Hans[7],[8], Spacek[24], Huang[10], Ttoh [11], Liu [14],
Papageorgiou [15],[16], Shahzad and Hussain [21],Shahzad and Latif [22], Tan and
Yuan [25]) and give wings to this theory. Ttoh [11] extended Spacek’s and Hang’s
theorem to multi-valued contraction mapping . The stochastic version of the well-
known Schauder’s fixed point theorem was proved by Sehgal and Singh [20].

Let (X, d) be a metric space and T': X — X a mapping. The class of mappings T’
satisfying the following contractive conditions:

d(T'w, Ty) < amax{d(z, y), d(z. T), d(y, Ty), 20T AT

+ bmax{d(z,Tz),d(y, Ty)} + cld(z, Ty) + d(y, T'z)]

for all z,y € X, where a,b, ¢ are non-negative real numbers such that 6 > 0c > 0
and a + b+ 2¢c = 1, was introduced and investigated by Ciri¢ [3]. Ciri¢ proved
that in a complete metric space such mappings have a unique fixed point. This
class of mappings was further studied by many authors (C’Ji1ri(':[4],[5]7 Singh and
Mishra[23], and Rhoades et al. [18]).Sehgal and Singh [20] have generalized Ciri¢’s

(1.1) }
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[4] fixed point theorem to a common fixed point theorem of a pair of mappings and
presented some application of such theorems to dynamic programming.

In this paper we introduced a new class of nonexpansive type mappings for a pair
of multi-valued and single valued mappings which is a stochastic version of Ciri¢’s
[3] fixed point theorem to find the coincidence and fixed points for such class of
mappings.

2. PRELIMINARIES

Let (2,%) be a measurable space with ¥ a sigma algebra of subsets of 2 and let

(X, d) be a metric space. We denote by 2% the family of all subsets of X, by CB(X)
the family of all nonempty closed and bounded subsets of X and by H the Haus-
dorff metric on CB(X), induced by the metric d. For any z € X and A C X, by
d(z, A) we denote the distance between xandA4, i.e., d(z, A) = inf{d(z,a) : a € A}.
A mapping T : Q — 2% is called ¥ —measurable if for any open subset U of X,
T7YU) ={w: T(w)NU # ¢} € X.In what follows, when we speak of measurability
we will mean ¥— measurability. A mapping f : @ x X — X is called a random
operator if for any © € X,f(-,x) is measurable. A mapping T : Qx X — CB(X) is
called a multi-valued random operator if for every z € X, T(-, ) is measurable.A
mapping s : 2 — X is called a measurable selector of a measurable multifunction
T : Q — 2% if s is measurable and s(w) € T(w) for all w € Q. A measurable
mapping & : Q@ — X is called a random fized point of a random multifunction
T:Qx X = CB(X) if {(w) € T(w,&(w)) for every w € Q. A mapping £ : Q@ — X
is called a random coincidence of T : @ x X — CB(X) and f : QO x X — X if
fw,é(w)) € T(w,&(w)) for all w € N.
The aim of this paper is to prove a stochastic analogue of the Ciri¢’s [3] fixed point
theorem for single valued mappings, extended to a coincidence point theorem for
a pair of a random operator f : 2 x X — X and a multi-valued random operator
T:Qx X — CB(X), satisfying the following nonexpansive type condition: for
each w € Q,

H(T(w, ), T(w,y)) < alw) max{d(f(w, ), f(w,y)), d(f(w,y), T(w,y))}
+b(w) max{d(f(w, ), T(w, x)), d(f(w, ), T(w, y)),
d(f(w,y), T(w,2))}
+e(w)[d(f(w, 2), T(w,y)) + d(f(w,y), T(w,2))]

for every x,y € X, where a,b,c: Q — [0,1) are measurable mappings such that for
all w € Q

(2.2) b(w) >0 c(w) >0

(2.1)

(2.3) a(w) + b(w) + 2¢(w) =1
3. MAIN RESULTS

Now, we give our main results.

Theorem 3.1. Let (X,d) be a complete metric space, (2,%) be a measurable space
and T : QA x X - CB(X) & f:Qx X — X be mappings such that
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(1) T(w,-) and f(w,-) are continuous for all w € €,

(2) T(-,x) and f(-,x) are measurable for all x € X,

(3) They satisfy (2.1), where a(w),b(w), c(w) : @ = X satisfy (2.2) and (2.3).
If T(w,é(w)) C flwx X) and f(w x X) = X for each w € Q, then there is a
measurable mapping £ : Q@ — X such that f(w,{(w)) € T(w,&(w)) for all w € Q
(i.e. T and f have a random coincidence point).

Proof. Let ¥ = {£: Q — X} be a family of measurable mappings. Define a func-
tion g : 2 x X — RT as follows:

g(w, ) = d(z,T(w,z)).
Since x — T'(w, x) is continuous for all w € €, we conclude that g(w, -) is continuous
for all w € Q. Also, since w — T(w, ) is measurable for all z € X, we conclude
that g(-,x) is measurable(see Wagner [26], p 868) for all w € Q. Thus g(w,x) is
the Caratheodory function.Therefore, if £ : 2 — X is a measurable mapping, then
w — g(w,&(w)) is also measurable (see [19]).
Now we shall construct a sequence of measurable mappings {£,} in ¥ and a se-
quence {f(w,&,(w))} in X as follows.Let & € ¥ be arbitrary. Then the multifunc-
tion G : Q — CB(X) defined by G(w) = T(w, &(w)) is measurable.
From the Kuratowski-Nardzewski [13] selector theorem there is a measurable se-
lector py : @ — X such that pi(w) € T'(w,&(w)) for all w € Q Since p(w) €
T(w,&w)) € X = f(wx X), let & € U be such that f(w,&(w)) = pi.Thus
fw, & (w)) € T(w,&(w)) for all w € Q.
Let k: Q2 — (1,00) defined by

b(w)e(w)

2
for all w € Q.Then k(w) is measurable.Since k(w) > 1 and f(w,&;(w)) is a selector
of T(w, & (w)), from Lemma 2.1 of Papageorgiou [15] there is a measurable selector
to(w) = f(w,&(w)); & € U, such that for all w € Q:

k(w)=1+

flw,&(w)) € T(w, &1 (w))

and

d(f(w, & (W), f(w, &2(w))) < k(w)H(T(w, & (w)), T(w, &1(w)))
Similarly, as f(w,&
p3(w) = f(w,&s(w)

d(f (w, &2(w)), f(w, &3(w))) < k(w)H(T(w, &1(w)), T'(w, £2(w)))
Continuing in this way we can construct a sequence of measurable mappings p,, :

Q — X, defined by p,(w) = f(w, & (w)); & € U, such that for all w € Q:

);
2(w)) is a selector of T(w, &1 (w)), there is a measurable selector
) of T(w, & (w)) C f(2 x X) such that

flw,éni1(w)) € T(w,&n(w))

and

(3.1) A(f (W, &n (@), [ (@, &nr1(W))) < k(W) H(T(w,&n-1(w)), T(w, &n(w)))
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Now from (2.1)

(3.2)
H(T(w, & (w)), T'(w, & (w))) < a(w) max{d(f(w, & (w)), f(w, & (w))), d(f(w, & (w)), T'(w, &1 (w))) }
+ b(w) max{d(f(w, §o(w)), T(w, & (w))), d(f (w, &1 (w)), T'(w, &1 (w)))
Ld(f(w, &1(w)), T'(w, &o(w)))}
+ c(w)[d(f(w, & (W), T(w, &1(w))) + d(f (w, &1(w)), T(w, So(w)))]
Since f(w, & (w)) € T(w,&(w)), then

d(f(w, &1(w)), T(w,&o(w))) =0
d(f(w, &0 (w)), T(w, & (w))) < d(f(w,&o(w)), flw; &1(w)))
d(f(w,&1(w)), T(w, & (w))) < H(T(w,&0(w)), T(w; &1(w)))

Thus from (3.2)

(3.3)
H(T(w,&(w)), T'(w, &1 (w))) <a(w) max{d(f(w,&(w)), f(w,&

(@))), H(T(w; &o(w)), T(w, &1(w)))}
+ b(w) max{d(f(w, §o(w)), f(w, &1 (w) )
+ < )
)

(@), H(T (w, & (w)), T'(w, &1(w))) }
H(T(w, &), T(w, &1(w)))]

w)ld(f(w,&w)), flw, & (w))) +
, f(w, & (w))), then

If we assume that H(T(w,&(w)), T (w, &1 (w))) > d(f(w,&o(w
from (3.3) and (2.3), we get

H(T(w,&(w)), T(w, & (w))) < a(w)H (T (w,&(w)), T(w, &1 (w)))
+ b(w)H (T (w, & (w)), T'(w, &1(w)))
+2¢(wW) H (T (w, &0(w)), T(w, &1 (w)))
( (W) +b(w) + 2c(w)) H(T (w, & (w)), T(w, &1(w)))
H(T(w,&(w)), T(w, &1(w)))

a contradiction. Therefore, we have

)
)

H(T(w,&(w)), T(w, &1 (w))) < d(f(w,&0(w)), f(w,&1(w)))
Since d(f(w, & (w)), T(w, &1 (w))) < H(T (w, & (w)), T(w, &1(w))), we have

d(f(w,&1(w)), T(w, & (w))) < d(f(w,&0(w)), flw; &1(w)))

Thus by induction we can show that

(3.4) H(T(w,6n (W), T(w,&n41(w))) < d(f(w; €n (W), f(w, Ent1(w)))
(3.5) A(f (@, &n (), T(w, &n(w))) < d(f (W, En1(w)), flw; En(w)))

for all n > 1 and for all w € Q

From (3.1) and (3.4), we have

(3.6) d(f(w,6n (W), f (@, &np1(w))) < k(W)d(f(w; En1(w)), f(w; En(w)))
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From (3.6), we get

(3.7)
d(f(w,&o(w)), f(w,&2(w))) < d(f(w,&o(w)), f(w,&1(w))) +d(f(w, &1 (w)), flw,&(w)))

< (14 k(w))d(f (w, &o(w)), f(w, &1(w)))
From (2.1)

(3.8)
H(T(w, &0 (w)), T'(w,&(w))) < a(w) max{d(f(w, & (w)), f(w,&(w))), d(f(w, &(w)), T'(w, &2(w))) }
+ b(w) max{d(f(w,&(w)), T'(w,&(w))), d(f(w,&(w)), T'(w, {2(w)))
Ld(f(w, &2(w)), T(w, &o(w)))}
+ c(W)[d(f(w, & (W), T(w, &(w))) + d(f(w, &(w)), T'(w, & (w)))]

Using (3.4), (3.5), (3.6) and (3.7) and by triangle inequality, we get

d(f (w, &2(w)), T(w, So(w))) < H(T(w, &1(w)), T'(w, &o(w)))
< d(f(w, &), f(w, &1(w)))
d(f (w, §o(w)), T(w, &2(w))) < d( (w, &o(w)), f(w, &1(w)))
+d(f(w, &1(w)), f(w, L2(w))) +d(f(w,&2(w)), T(w, &2(w)))
< (L k(w))d(f (w, So(w)), fw, &1(w))) + d(f(w, &1 (w)), f(w, E2(w)))
< (1 + 2k(w))d(f (w, So(w)), f(w, &1(w)))
Now from (3.8), (3.7),(3.6) and (2.3), we have

H(T(w,&(w)), T(w; £2(w))) < a(w)(L + k(w))d(f(w, &o(w)), fw; &1(w)))
+ b(w)k(w)d(f (w, &o(w)), f(w, &1 (w)))
+2¢(w)(1 + k(W) d(f(w, Lo(w)), fw, &1 (w)))
= [1+ k(w)(a(w) + b(w) + 2¢(w)) = b(w)ld(f(w, &o(w)), f(w, &1 (w)))
) =

)
k( (
= [1 4 k(w) = b(w)]d(f(w, &o(w)), f(w, &1(w)))

w
As 1+ k(w) < 2k(w), we have

(3.9)  H(T(w,&(w)), T(w,&2(w))) < [2k(w) = b(w)]d(f(w, &o(w)), f(w; &1 (w)))
From (2.3) and (2.1), we have, as f(w,&(w)) € T(w, & (w))

(3.10)
H(T(w,861(w)), T(w, &(w))) < a(w) max{d(f(w, &1 (w)), f(w,&2(w))), d(f(w, &w)), T(w, &(w)))}
+ b(w) max{d(f (w, & (w)), T(w, &1 (w))), d(f (w, &2(w)), T'(w, &2(w)))
yd(f(w, &2(w)), T(w, &1(w)))}
+ c(W)d(f (w, &1(w)), T'(w, &2(w))) + d(f (w, L2(w)), T'(w, &1(w)))]
< [a(w) + b(w)] max{d(f(w, &1 (W), f(w, &2(w))), d(f (w, &2(w)), T(w, &2(w)))}
+e(w)d(f(w, & (), T(w, &2(w)))
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Also by (3.9) since f(w,&1(w)) € T(w,&(w)), we have

d(f(w,&1(w)), T(w, &2(w))) < H(T(w,&(w)), T(w; E2(w)))
< (2k(w) = b(w)))d(f (w, So(w)), f(w, &1(w)))
Thus from (3.10) and (3.6), we have

H(T(w,&(w)), T(w, &2(w))) (w, So(w)), f(w, &1(w)))

(f(w, & W), fw, &1(w)))

(a(w) +b(w) + 2¢(w)) — b(w)e(w)]d(f (w, §o(w)), f(w, &1(w)))
implies that

(3.11) H(T(w,&1(w)), T(w, &2(w))) < [k(w) = b(w)e(w)]d(f (w, &o(w)), f(w, &1(w)))
as a(w) + b(w) + 2c(w) =1
From (3.1) and (3.11), we have

(3.12)
d(f(w, &2(w)), f(w, &3(w))) < k(w)H(T'(w, &1(w)), T(w, L2(w)))

(w,
(W)[k(w) = blw)e(w)]d(f (@, &o(w)), f(w; €1(w)))

IN A

k
k

As k(w) =1+ b(w)c(“’) , we have

k(W) k(W) — b(w)e(w)] = (1 + b(‘*’);(“)) (1 4 dwedw) b(w)c(w))

b (w)e* ()

=1
* 4

Thus from (3.12)

2 w C2 w
A, 620, F, &) < (14 TLTD) (0, €0(), e, 0(0)

Similarly

A, &), Fw.6@) < (1+ 22D 4506 ). fw. &)

Hence by induction

(3.13)
(W) (w)\ (3
A, €0)). £, 6 () < (14 DTN a0, €0(w). fle60(@))

yd(f (W, &1(w)), fw, &2(w)))}
where %] stands for the greatest integer not exceeding 4. Also ,since b(w)c(w) > 0
for all w € Q, from (3.13), we have { f(w, &, (w))} is a Cauchy sequence in f(w x X).

Since f(w x X) = X is complete, there is a measurable mapping f(w,{(w)) €
f(w x X) such that

(3.14) lim f(w,&n(w)) = f(w,§(w))

n—oQ
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Again by triangle inequality and (2.1), we get

d(f (w,§(w)), T(w,§(w))) d(f (@, &nt1(w)), T(w,§(w)))

)+
)+ H(T(w, 60 (@), T(w, §(w)))
)

d(f (w, §(w)), f(w, &nt1(w))

d(f(w, §(w)), f(w, &nr1(w))

d(f(w,&(w)), f(w fn+1(w))

a(w) max{d(f (w, &n (W), f(w, §(w))), d(f(w, §(w)), T(w, §(w))) }

b(w) max{d(f(w, ( ), T(w,&n(w))), d(f (w, &( )
yd(f (w, §(w)), (w En(w)))}

+ c(W)ld(f (w, &n (W), T'(w, §(w))

+ + IANIAIA

S
=
B
ay
£

)+ d(f (@, 6)), T(w, &0(w)))]
Thus
(3.15)
d(f(w,§(w)), T(w,§(w))) < d(f(w,&(w)), flw, £n+1(w)))
+ a(w) max{d(f(w, & (W), f(w,
+ b(w) max{d(f(w, 7( ),
S d(f(w, §(w), f(w, £n+1(W)))}
+C( NA(f(w, &n(w)), T(w, §(w))) + d(f (W, &(w)), f(w, Ens1(w)))]

Taking limit as n — oo, we have

d(f(w,§(W)), T(w,¢(w))) < [a(w) + bw) + e(w)]d(f(w, £(w)), T(w, {(w)))
= [1 = c(w)ld(f(w, W), T(w,§(w)))
implies that d(f(w,{(w)), T(w,&(w))) =0, as 1 —c¢(w) < 1 and for w € Q. Hence as
T(w,&(w)) is closed f(w,{(w)) € T(w,&(w)), for all w € €. O

Remark 3.2. If in Theorem 3.1., f(w,z) =z for all (w,x) € Q x X, then we get
the following random fixed point theorem.

Corollary 3.3. Let (X,d) be a separable complete metric space. (2, %) be a mea-
surable space and let a mapping T : Q@ x X — CB(X) be such that T(w,-) is
continuous for allw € Q, T(-,x) is measurable for all x € X and

H(T(w,z), T(w,y)) < a(w) max{d(z,y),d(z,T(w,y))}
(3.16) + b(w) max{d(z, T'(w, z)), d(y, T(w,y)), d(y, T (w, z)) }
+c(w)ld(z, T(w, y)) + d(y, T (w, x))]
for every x,y € X, where a,b,c : Q — (0,1) are measurable mappings satisfying

(2.2) and (2.83). Then there is a measurable mapping & : Q@ — X such that {(w) €
T(w,&(w)) for all w € Q.

Corollary 3.4. ([6], Corollary 1) Let (X,d) be a separable complete metric space.
(Q,X) be a measurable space and let a mapping T : Q x X — CB(X) be such that
T(w,-) is continuous for all w € Q, T(-,x) is measurable for all x € X and

) (e, T(w, ), d(y, T(w,9))
3l T(w,9) + d(y, T, 2))])
+ b{e) max{d(z, T(w, ), d(y T(w, 1))}
Fe@)d(e, T(w,9)) + d(y, T(w,2))

H(T(w,z), T(w,y)) < a(w)max{d(z,y

(3.17)
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for every x,y € X, where a,b,c : Q@ — (0,1) are measurable mappings satisfying
(2.2) and (2.3). Then there is a measurable mapping & : Q@ — X such that {(w) €
T(w,&(w)) for allw € Q.

Remark 3.5. The nonexpansive type condition (3.16) includes (3.17) if we set

m(z,y) = max{d(z,y),d(z, T (w,z)),d(y, T(w,y)), %[d(iﬂ T(w,y)) +d(y, T(w, )]}
For each x,y such that m(z,y) = d(z,y) and a(w),b(w),c(w) : @ — (0,1)

For each x,y such that m(x,y) = x{d(:v T(w,z)),d(y, T(w,y))} ,define a(w)
0,b(w) = a(w) + b(w )»()ZC(;J)

For each x,y such that m(z,y) = 3[d(z,T(w,y)) + d(y, T (w,x))], define a(w) =
0,b(w) = b(w), c(w) = a(w) + 2¢(w).

Thus Corollary (3.3) is an extension of Corollary (3.4).

N[ =

Finally, we give a simple example in support of Theorem 3.1. and Corollary 3.3
which shows that these results are actually an improvement of the result of Itoh[11].

Example 3.6. Let (X,d) be any measurable space and K = {0,1,2,4,6} be the
subset of the real line. Let the mappings f : QX K — K and T : Q x K — K be
defined such that for each w € §:

f(w,O):2 f(w,l):4 f(wa2):6 f(w74)20 f((.d,6):
T(w,0)=1 T(w,1) =2 T(w,2) =4 4) = w

Then for x =1 and y = 2, we have
4
d(T(w,1), T(w,2)) = 7 max{[4 - 6|, 6 — 4}

1
+ 5 max{[|4 — 6], 116 — 4[|, 16 — 21|}

1
—[l4— 4] +6 -2

+ g lll4 =4l + 116 —2{]
4 1 1
24— 44+ —4
5ttt

=2

Thus, forx =1 andy = 2, f and T satisfy (2.1) with a(w) = 3,b(w) = 55 and
c(w) = %. It is easy to show that f and T satisfy (2.1) for all z,y € K with
the same a(w),b(w) and c(w). Also, the rest of the assumptions of Theorem 3.1 is
satisfied and for £(w) = 4, we have

fw,§(w)) =0=T(w,¢{(w))
Note that T does not satisfy (3.16) either, as for instance, for x =2 and y = 4, we
have

a(w) max{[|2 — 4[|, []2 = O]} + b(w) max{[|2 — 4[|, [|4 = O, |4 — 4/}

+e(W)[l|2 = 0|l + ||4 — 4]]] = 2a(w) + 4b(w) + 2¢(w)
< Ala(w) + b(w) + 2¢(w)] =4 =d(T(w, 2), T (w,4))
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Remark 3.7. Our Theorem 3.1 generalizes and extends the corresponding fixed
point theorems for nonexpansive type single valued mapping of Cirié [3] and Rhoad-
es[17].
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