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ON GENERALIZED INEQUALITIES OF HERMITE-HADAMARD TYPE FOR
CONVEX FUNCTIONS

CETIN YILDIZ!*, M. EMIN OZDEMIR?

ABSTRACT. In this paper, new integral inequalities of Hermite-Hadamard type are developed for
n—times differentiable convex functions. Also a parallel development is made base on concavity.

1. INTRODUCTION

A function f : [a,b] C R — R is said to be convex if whenever z,y € [a,b] and ¢ € [0, 1], the following
inequality holds:

[t + (1= t)y) <tf(x) + (1 —1)f(y).

We say that f is concave if (—f) is convex. This definition has its origins in Jensen’s results from [6]
and has opened up the most extended, useful and multi-disciplinary domain of mathematics, namely,
convex analysis. Convex curves and convex bodies have appeared in mathematical literature since
antiquity and there are many important results related to them.

On November 22, 1881, Hermite (1822-1901) sent a letter to the Journal Mathesis. This letter was
published in Mathesis 3 (1883, p: 82) and in this letter an inequality presented which is well-known
in the literature as Hermite-Hadamard integral inequality:

f<a+b>§ 1 /abf(m)dng(a)*f(b) (1.1)

2 b—a 2

where f: I CR — R is a convex function on the interval I of a real numbers and a,b € I with a < b.
If the function f is concave, the inequality in (1.1) is reversed.

The inequalities (1.1) have become an important cornerstone in mathematical anlysis and optimiza-
tion. Many uses of these inequalities have been discovered in a variety of settings. Moreover , many
inequalities of special means can be obtained for a particular choice of the function f. Due to the rich
geometrical significance of Hermite-Hadamard’s inequality, there is growing literature providing its
new proofs, extensions, refinements and generalizations, see for example ( [4], [7]- [11], [13], [14]- [19])
and the references therein.

In 2000, Cerone et. al. (see [3]) proved the following generalization for n—times differentiable
functions.

Theorem 1.1. Let f : [a,b] — R be a mapping such that the derivative f*=1) (n > 1) is absolutely
continuous on [a,b]. Then

/ “ar - Z(l), (&= @)1 D (@) + (-1 - 2) 1 f P ()]

for all xz € [a, b].

Received 10" January, 2017; accepted 22" March, 2017; published 24 May, 2017.
2010 Mathematics Subject Classification. 26D15, 26D10.
Key words and phrases. Hermite-Hadamard inequality; Holder inequality; convex functions.

(©2017 Authors retain the copyrights of
their papers, and all open access articles are distributed under the terms of the Creative Commons Attribution License.

52



CONVEX FUNCTIONS 53

For other recent results concerning the n—times differentiable functions see [1]- [3], [5], [7], [12], [17],
[18] where further references are given.
In [8], Kavurmaci et. al. obtained the following theorems.

Theorem 1.2. Let f : I C R — R be a differentiable mapping on I° such that ' € Lla,b], where
a,b € I with a <b. If | f'| is convex on [a,b], then the following inequality holds:

T — Qa a — X b

( W(gjﬁf; oL / F(w)du (1.2)
(= a)? [2F @]+ 1F @] . - [If@)]+2 )

(b—a) [ 6 % (b-a) { 6 }

for each x € [a, b].

Theorem 1.3. Let f : I C R — R be a differentiable mapping on I° such that ' € Lla,b], where
a,b el witha <b. If |f’|ﬁ is convex on [a,b] and for some fixed ¢ > 1, then the following inequality
holds:

(x—a)f(a) + (b—x)f (b) I
— 5= a/a flw)du (1.3)

Q=

S [(x — P F@ L@+ (=) [ @)+ 1S B ]
b—a

and q = #.

Theorem 1.4. Let f : I C R — R be a differentiable mapping on I° such that ' € Lla,b], where

a,b € I with a <b. If |f'|7 is convex on [a,b] and for some fized ¢ > 1, then the following inequality
holds:

(@—a)f(@+b-a)f(®) 1 [
- b—a/a f(uw)du

(b—a)
< 5(3)

l(w —a)? [If ()| + 2| f'(a)]%]

(1.4)

« + (b= 2)2[|f ()| + 21f'(b)]4]7

b—

—_

for each x € [a, b].
The main purpose of the present paper is to establish several new inequalities for n— times differ-
antiable mappings that are connected with the celebrated Hermite-Hadamard integral inequality.
2. MAIN REsSuULTS

Lemma 2.1. Let f : [a,b] — R be n-times differentiable functions. If f) € Lla,b], then

b _ @) W a) + (<1 (b — )R E) (1)
/a f)dt = kZ:O ] (2.1)
+(f1)"w /1(t ="t + (1 - ta)dt
n! 0
+(—1)"w /1(1 — )" f) (tw + (1 — t)b)dt
n! 0

where « € [a,b] and n natural number, n > 1.
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Proof. The proof is by mathematical induction.

The case n =1 is [ [8], Lemma 1].

Assume that (2.1) holds for "n” and let us prove it for "n 4+ 17. That is, we have to prove the
equality

' (@ = @)t ) + (<D — @) ) (0)
/a f)ydt = 2 CEmY (2.2)
+<_1)n+1m /Ol(t — )" D (1 4 (1 — t)a)dt
n (b_x)n+2 ! n (n+1)
+(—1) H(er)!/o (1 =)™ O (kg 4 (1 — )b)dt

where z € [a, b].
Then, we can write

(J} — a)n+2 ! n+1 p(n+1)
- Jo
b—x)nt? 1
(b= ] / (1 —t)" LD (g 4 (1 — t)b)dt
n . 0
and integrating by parts gives
1
I _ (x — a>7l+2 (t _ 1)n+1 f(’!l) (t‘/I’. + (1 B t)a>

(n+1)! T—a 0

m+1
T —a

1
/ t—1)" " (tx + (1 — t)a)dt}
0

1

(b —z)+ w1 St £ (1= 1)b)
+<n+u!{“—”'* b,
+m +b1 /1(1 - t)nf(n)(tx +(1- t)b)dt}
=0 Jo
r —a)"t r—a) [l
B (_”M((H)l;f R | e=0ms s - ayae
— )t _ gttt

(b(n+)1)!f(n)(b) - (bn:)/o (1=)"f™) (tz + (1 = t)b)dt.

Now, using the mathematical induction hypothesis, we get

(2.3)
1 b B 1 n—l(x . a)kJrlf(k:) (a) + (71)k(b _ x)kJrlf(k) (b)
SIRLURNCE D =
n2x_an+1 n b— )t n
o + G 0 1
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Multiplying the both sides of (2.3) by (—1)"™, we obtain

/b ft)dt = nz_: x —a)Ft FF) (@) + (=1)F(b — x)F+1 ) (b)

(k+ 1)!
T — n+1 —r n+1
HEZ O )+ (- B
—(=1)" {W/O (t —1)" LD (1 4 (1 — t)a)dt
+(b(nf):;2 Al(l — )LD (4 (1 — t)b)dt}
@ a)M W(a) + (DR — 2)M W) ()
e (k+1)!
et O [y (-
it (0= 2)" 2 g 1
+(—1)" ! RS /0(1 £ Y (i + (1 — t)b)d.
Thus, the identity (2.2) and the lemma is proved. O

Theorem 2.1. Let f : I C R — R be n—times differentiable function, a,b € I and a < b. If
f™ € Lla,b] and | f™| (n>1) is convex on [a,b], then we have

ol o RFLER) (g k(h — p)kt1 £(k)
f dt_};)( Ly <>(< ;( L (b) 2.4
x—a"l
i (e bl
(biz)n+1 n
i (n+2)! {f( (@ )’ ‘}

where x € [a, b)].

Proof. From Lemma 2.1 and using the properties of modulus, we can write

n—1
(z — a)F+1 £ (@) + (~1)F(b — )1 1) (b)
/ UCLEDYD 1)

kO

x—a)" Tt
— )+l 1

FO (t+ (1 - t)a)’ dt

FO 4+ (1 - t)b)‘ dt.
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Since | f (”)| is convex on [a, b], it follows that

/f dt-ri(x‘@k“f(“() (= 1)k (b — &)+ F0) (3)

pors (k4 1)!
< B [aor o]+ a-nlow]] o
+OZ Lo [fow)] + - oo a
- L (0] ] + [}
ot @]+ eanln])
This completes the proof. 0

Remark 2.1. In the inequality (2.4), if we choose n =1, then we have the inequality (1.2).

Corollary 2.1. In the inequality (2.4), if we choose n =2, x = %2 and f'(z) = f'(a +b— ) (that
is, f' symmetric function), then we have

a b
‘f();f(b)—bia/(lf(t)dt

< Pl Lsir@iee | (“50)| + 1o}
(b*a)z " "
< Oy o,

Theorem 2.2. Let f : I C R — R be n—times differentiable function, x € [a,b] and a < b. If
f™ € Lla,b] and |f(")’q (n > 1) is convex on [a,b], then we the following inequality:

b n—1 k+1 £(k) E(p — p)k+1 £(k)
Z Tr—a f¥(a)+ (=1)*(b—=x f) (b

(2.5)
k=0

() {ep e
np+1 n! 2
b=yt [[Fo@)] + 0]
WL [1 "] r]}

Proof. Using Lemma 2.1 and Holder integral inequality, we obtain

1 1 _
whereEJrafl.

(@ = @) B (a) + (=15 (b — )1 B (b)
/ UCLEDYD it 1)

k=0

< W(/Ol( ”Pdt> (/ ‘f(" tr+ (1 —t)a )‘ dt)é
+(bnx!)n+1</01(1 "pdt> (/ ’f m+(1—t)b)‘ dt)l
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Since ’f(”) |q is convex on [a, b], then
b n=1l, —  Nk+1 (k) _1\k(ph — \E+1 (k)
T—a a)+ (-1)"(b—= b
. 2 E+ 1!
1 1
(@—a)"™ (1 \? /1 ‘ (n) "’ ‘ @ () Tar)
< 1-— ") ’
< S o) U @l v a-nlr@] e
1 1
(b— CC)n-H 1 H /1 ’ (n) ’q ‘ (n) ‘q a
0w U [t[r @) + a=n s )] a
1
(Vv e—ar [+ @)
 \mp+1 n! 2
1
(b—.%‘)n'H l|f(n)(m)‘q+|f(n)(b)|q‘| q}
+ |
n! 2
which completes the proof. 0
Remark 2.2. In Theorem 2.2, if we choose n =1, then we have the inequality (1.3)
Corollary 2.2. In Theorem 2.2, if we choose n = 2, © = ‘ITH’ and f'(x) = f'(a+b—x) (that is, [’
symmetric function), then we obtain

b—a

(b—a)? 1 »
<
- 16 2p+1

X { I s I (£ 10 ;}
2 2 .

Theorem 2.3. Let f: I C R — R be n—times differentiable function and a < b. If f(™ € L[a,b] and
|f(”)‘q is convex on [a,b], then we get

‘f(“)‘;ﬂb)— L[ o

f 1)t - Z @) 70 (@) + ()Mo= ) D 1)

> S 2.
x {(x O L @]+ m 7 (a) }
A [ el s s el

where % + % =1 and z € [a,].
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Proof. From Lemma 2.1 and using the properties of modulus, we get

b n—1 ($ _ a)k+1f(k)(a) + (—l)k(b _ x)k+1f(k) (b)
/a OLEDY (k+ 1)l

k=0

< (m_na!)nﬂ/ol(lt)” f(”)(t:c+(1—t)a)’dt
+(b—;!)"+1 /Ol(l_t)n f<n>(m+(1_t)b)’dt
- S [ S el

Using the Holder integral inequality, we can write

' S @ = @) O @) + (DFb - ) 0)
/a f)dt — (k+1)!

k=0
1

% (/01 [m]“dt) ’ (/01(1—t)p
o ([ )™ (o

Since |f(™) ’q is convex on [a, b], then

F™ 4+ (1 - t)a)‘th> ’

1
q

F™ (tx + (1 - t)b)‘q dt) .

’ = (@ — )P P (a) + (= 1)F (b — )PP (b
/a f(t)dt_z (k4 1)! :

k=0

< (x_nﬂ (/01(1 - t)”éf—f’dty_; 1(/01(1 1y [t
40 _s!)nﬂ (/01(11—t)”qq1”dt>1q (/01(1 —t)P [t
X{(m—a)"“[ 1 1

n! p+2 (p+1)(p+2)

— g)ntl q qla
S e el s el }

o) (a)’q] dt)é

1

1@+ -0

1@+ -1

)| dt) '

1

|’

12| +

which completes the proof of the theorem.
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Corollary 2.3. In Theorem 2.3, if we choose n =1, we have

—a a — X b
o300 W) L[

g—1 \'7¢
2g—p—1

(z —a)? 1 VRN, 1 sl !
{ ey 2O gy

(b—2)? [ 1
(b—a) [(p+1)(p+2)

/ q 1 / q%
. P+ s 1] }

Corollary 2.4. In the inequality (2.7), if we choose x = %32, then we obtain

HAd® L [
<lja<w?;4>lé
- { L?i2 £+ (p+ 1)1(p+ 2) q} “
(%) }
a+b

Corollary 2.5. In Theorem 2.3, if we choose n =2, x = %32 and f'(x) = f'(a +b—x) (that is, f'
symmetric function), then we have

a b
‘f( =T LCL

< (b—a)® g—1 \'7s
- 16 3g—p—1

x {[pizif’%aﬂum P (36) ]

b q
f// (a;‘ ) +pJ1r2|fH(b)q:| }

Theorem 2.4. Forn > 1, let f : I C R — R be n—times differentiable function and a < b. If
f™ € Lla,b] and ‘f(")|q is convex on [a,b], for ¢ > 1, then the following inequality holds:

,(a+0b
()
1 1

p+2

Q=

+[ !
(p+1)(p+2)

o]

+[ !
(p+1)(p+2)

(2.8)

b n=1l, —  Nk+1 (k) _1N\e(p — k1 £(k)
(x—a fUa)+ (=) (b—=x JH (b
/a Foya— S ) ( )(k(+1;! ) )

k=0

(n+ 1) |7 (@) + !f(”)(w)!q] :

(x —a)"t!

(n+1)!

b=y [ @)+ (n+ 1) [fO )]
(n+1)! (n+2) '

(n+2)

+
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Proof. From Lemma 2.1 and using the well known Power-mean integral inequality, we have

b S (@ — ) B (a) + (1R — )P ) (b
/af(ﬂdt—z( ) ()(k(—H;!( ) (b)

o e (o) ([
2 ([a-ora)” ([

Since ’f(") ’q is convex on [a, b], for ¢ > 1, then we obtain

k=0
1—

£tz + (1 — t)a)‘th) ’

1
a

FO (b + (1 — t)b)‘th)

’ (@ — @) (@) 4 (<) (b — )F ) (3)
/a F(tydt = (k+1)!

k=0
1

(@ 773)%1 (ni 1)1é (/01(1 — )" [t‘f(")(x)’q +(1—1) ‘f(")(a)’q] dt)q

U (= 1)1_; </01(1 ol + a-o o) a)

(n+1)|f"(a)|" + !f(”)(w)!q] '

(33 _ a)n+l
(n+1)!

(n+2)

e e el

(n+1)! (n+2)

Hence, the proof of the theorem is completed. O

Remark 2.3. In Theorem 2.4, if we choose n =1, we obtain the inequality (1.4).

Corollary 2.6. In the inequality (2.8) if we choose n =2, x = %$2 and f'(z) = f'(a+b— ) (that
is, f' symmetric function), then we get

b
[Ty

3 <b—a>2{
- 48

Theorem 2.5. Let f : I C R — R be n—times differentiable function and a < b. If f") € Lla,b] and
‘f(")‘q is concave on [a,b], then we obtain

31" (a)” + [ (452)|"

1
q
1 +

|f// (a;b)|q +3f//(b)|q];}
1 .

/” Fydt Z (z = @)1 B (a) + (=1 (b — )1 ) (b) 29)

k=0
f(n) (a+$>’+ (b_x)n-H f(n) (‘T;—b>’}

1 % (.’L‘ _ a)n+1
np+1 n! n!

1,1 _
whereg—i—a—l.
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Proof. From Lemma 2.1 and Hélder integral inequality, we obtain

(x —a)*T P (@) + (=1)*(b — )" f ) (b)
t)dt — 2.10
/‘f (k+1)! (2.10)
1
_ )+l 1 q
< M{(/( ”pdt) </ ‘f”)m (1-1t)a )’ dt>
n! 0
1 1
+(/(1 "MO (/‘Wﬂm+u—ﬂm'ﬁ>}.
0
Since ] f |q is concave on [a,b], we can write the following inequalities via Jensen inequality:
(2.11)
1 q 1 q
/‘unx+u—ﬂ®‘ﬁ - /TFVWWx+u—ﬂ@‘ﬁ
0 0
1 1 q
< (/ todt) o o (tz +1(1 —t)a)dt
0 Jo t0dt
q
_ (n) a-+x
()
and similarly
b
/ ’f (tz + (1 — t)b) dt<‘f(”)<x+ )’ . (2.12)
Thus, if we use (2.11) and (2.12) in the inequality (2.10), we obtain the inequality of (2.9). This
completes the proof. O

Corollary 2.7. In the inequality (2.9) if we choose n =2, x = 22 and f'(z) = f'(a+b— ) (that
is, f’ symmetric function), then we obtain

‘f@)Q /‘f Hat

S G ) )

Theorem 2.6. Let f: I C R — R be n—times differentiable function and a < b. If f € Lla,b] and
‘f(”)‘q is concave on [a,b], for ¢ > 1, then the following inequality holds:

(2.13)
g/f g~ § =IO + D=0 )
(k+1)!
< (z —a)"*! f(n) (n+1a+a n (b—a)"! £ z+(n+1)b .
(n+1)! n+ 2 (n+1)! n+ 2
Proof. From Lemma 2.1 and using the well known Power-mean inequality, we have
”lx—aﬁﬂf (@) + (=D*(b — ) (b)
(2.14)
(k+1)!

1— 1
q

(g ([

@x+@—®@rﬁ>

1
a

)(tx 4 (1 — t)b)’q dt)
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Using the Jensen inequality, we can write

(2.15)
/01(1_15)” (”)(tx+(1—t)a)’th
< (/01(1—t)"dt> Fm Jo 1 fo ffit)ildt—t)a)dt I
- ()b <>)
and similarly

Thus, if we use (2.15) and (2.16) in the inequality (2.14), we obtain the inequality of (2.13). The proof
of the theorem is completed. O

Corollary 2.8. In Theorem 2.6, if we choose n =2, x = “t2 and f'(z) = f'(a+b— ) (that is, '

symmetric functz’on), then we have
Ta+0b a+Tb
1" 11
(59l (52l
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