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AN APPLICATION OF §-QUASI MONOTONE SEQUENCE

HIKMET SEYHAN OZARSLAN*

ABSTRACT. In this paper, a known theorem dealing with |A, pn|r summability method of infinite
series has been generalized to |A, pn; 0|, summability method. Also, some results have been obtained.

1. INTRODUCTION

A sequence (d,,) is said to be J-quasi-monotone, if d,, — 0, d,, > 0 ultimately and Ad,, > —d,,
where Ad,=d,, — d,+1 and 6 = (J,,) is a sequence of positive numbers (see [1]). Let > a, be a given
infinite series with partial sums (s, ). Let (p,) be a sequence of positive numbers such that

n
Pn=ZpU—>oo as n—oo, (Pj=p_;=0, i>1). (1.1)
v=0
The sequence-to-sequence transformation

1 n
Zp = B Zpysv (1.2)
™ y=0

defines the sequence (z,,) of the Riesz mean or simply the (N , pn) mean of the sequence (s,), generated

by the sequence of coefficients (p,) (see [5]). The series Y- ay, is said to be summable |N,p,|,, k > 1,
if (see [2])

I

[e’e) Pn k—1
> () Az |* < oo, (1.3)
ne1 \Pn

where
n

D
Azn_l ——mz_gpv_lav, nz 1.

Let A = (an,) be a normal matrix, i.e., a lower triangular matrix of nonzero diagonal entries. Then
A defines the sequence-to-sequence transformation, mapping the sequence s = (s,,) to As = (A,(s)),
where

An(s) :Zamsv, n=20,1,... (1.4)

v=0

The series Y ay, is said to be summable |A, p,;d|x, & > 1 and 6 > 0, if (see [6])

) Sk+k—1
S (2T Bl < (1.5)

Pn

n=1

where
AA,(s) = An(s) — Ay (s).

If we set 6 = 0, then |A, p,;d[; summability reduces to |A,p,[x summability (see [8]). If we take
any = &= and 6 = 0, then |A, p,; |, summability reduces to |N, p,|r summability.

n
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In the special case 6 = 0 and p,, = 1 for all n, |A, p,;§|r summability is the same as |A[, summability
(see [9]). Also, if we take an, = 5=, then [A, pn;d, summability is the same as | N, p,; 6| summability
(see [4]).

Before stating the main theorem we must first introduce some further notations.

Given a normal matrix A = (a,,), we associate two lower semimatrices A = (@) and A = (d,,) as
follows:

n
Apy = § ani, n,v=0,1,.. (16)
1=v
and
ago = Ao = Agos Opy = Gpy — Gp—1,9, N = 1,2,.. (17)

It may be noted that A and A are the well-known matrices of series-to-sequence and series-to-series
transformations, respectively. Then, we have

Ay, (5) = Xn:anvsv = iam;av (18)
v=0 v=0

and
n

AAp(s) = ) anya. (1.9)
v=0

2. KNOWN RESULTS
In [3], Bor has proved the following theorem dealing with | N, p,,|; summability.

Theorem 2.1. Let (X,,) be a positive non-decreasing sequence, (A,) — 0 as n — oo and (p,) be a
sequence of positive numbers such that

P, = O(npn) as n — oo. (2.1)
Suppose that there exist a sequence of numbers (B,) which is 0-quasi monotone with
> nXnpdn < 00, Y BpX, is convergent and |AN,| < |By| for all n. If

m

%\tﬂk =0(X,,) as m — 00, (2.2)

n=1""

then the series . ap\, is summable |N,py|x, k> 1.

Later on, in [7], Ozarslan and Sakar have proved the following theorem dealing with |4, p, |, summa-
bility factors of infinite series.

Theorem 2.2. Let A = (any) be a positive normal matriz such that

a/nO = 17 n:O717"'7 (23)

Gn—1,v Z Gny fOT‘ n Z v+ 17 (24)
Dn

=0 (%) (25)

|dn,v+1| =0 (U |Av&mz|) . (26)

If (X,,) is a positive non-decreasing sequence and the conditions of Theorem 2.1 are satisfied, then the
series Y apAy, is summable |A, ppli, k> 1.
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3. MAIN RESULT

The purpose of this paper is to generalize Theorem 2.2 for |A, p,; d|; summability.
Now, we shall prove the following more general theorem.

Theorem 3.1. Let A = (any) be a positive normal matriz such that

m+1 5k Sk—1
P, R P,
Z <> |Ayan,| = O { <> } as m — o00.
n=v+1 Pn Py
If all conditions of Theorem 2.2 with condition (2.2) replaced by:

m P 6k—1
Z <n> ltwl® = O(X,) as m — oo,

n=1 n

are satisfied, then the series Y anAy, is summable |A,pp; 0|k , k> 1 and 0 <6 < 1/k.
We require the following lemmas for the proof of Theorem 3.1.

Lemma 3.1. ( [3]). Under the conditions of Theorem 3.1, we have that
Al X, =0(1) as n— oo

(3.2)

(3.3)

Lemma 3.2. ([3]). Let (X,,) be a positive non-decreasing sequence. If (B,) is d-quasi monotone with

> nX, 0, < oo and . B, X, is convergent, then
nB,X,=0(1) as n— oo,

i nX,|AB,| < co.

n=1
4. PROOF OF THEOREM 3.1
Let (I,,) denotes A-transform of the series Zankn. Then, by (1.8) and (1.9), we have
an'u)\’u
nv U)\ - - v

Applying Abel’s transformation to this sum, we get that

AL, = ZA (a"v U)Zrar—&—am ZraT

v+1 . v+1,
= Z A, (am)> Avly + Z v an,v+1A)‘th

v
v=1 v=1

n+1
+ Z [07% v+1>\v+1l ann)\ntn

= In,l + In,2 + In,S + In,4-

To complete the proof of Theorem 3.1, by Minkowski’s inequality, it is sufficient to show that

o /p N\ Okth-1
> (") L. |" < oo, for r=1,234.
=\ pn

(3.4)

(3.5)
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1

First, when k > 1, applying Hélder’s inequality with indices k and k', where % T 77 =1, we have that

m+1 P Sk+k—1 m+1 P Sk+k—1 /n—1
> () Lalf = o)) () (ZA
2 Pn DPn

By (1.6) and (1.

Av (&nv)

Thus using (1.6), (2

Hence, we get

m—+1

D

n=2

(

Py

Pn

n=2

m+1 P Sok+k—1 /n—1
o0 () (e

n=2 n

n—1 k-1
% (Z |AU(&M)) .

7), we have that

= Qpv — Anu4+1 = Apy — dnfl,v - dn,v+1 + dnfl,erl = Qno

.3) and (2.4)
n—1 n—1
Z |Av(dnv)| = Z(an—l,v - anv) < Apn -
v=1 v=1

k
o)l Awl[t )
ool Ity |k>

—an—1,v-

)Mlun,uk ouff(P”) <nZ|A DAL, |’“>

Pn

n=2

m m—+1 P
= oY Sl S ( n
v=1 n=v+1 Pn
m Sk—1
P,
_ omz() PWITAL
p— DPov
m—1

+ I
>
El
i
/N =
S
2 -
;v/—\
L
:\—/oq
= =
=
L
=
S

m—1

= 0(1) ) [AMIXy +O0(1)[Am|X
v=1
m—1

= 0() Y BuXy +O01)|Am| Xom
v=1

= O(1) as m — oo,

by virtue of the hypotheses of Theorem 3.1 and Lemma 3.1.

)M (A ()]
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Again, by using Holder’s inequality, we have that

mtl p N Sktk-1 . mAl g N Sktko1 fn-l k
Z(p) Loal* = 0(1)2() (Zmn,mmutvo

n=2 n n=2 pn v=1
mAl o p o\ Sktk-1 fn-]

- 0wy (p) <2v|Av<am>||Bv||tv|’“>
n=2 n v=1

X

ne1 k—1
<ZvAv(dnv)| |Bv|> .

By using (3.4), we get

mil g N Sktk-l . mil ook (n-l
Z () |In72| 0(1) Z (p) (Z v |Av(dnv)| Bv”tv|k>
n=2 n

DPn

n=2 v=1
= oYl Y (1) 1A
v=1 n=v+1 Pn
m P Sk—1
= oY () el
v=1 v

Now, applying Abel’s transformation to this sum, we have that

m+1 P Sk+k—1 . m—1 v P. dk—1 .
3 (p) Lol = 0() S |A (B S (p) ]
r=1 T

n=2 n

m P Sk—1
L OWm B Y (p) e
v=1 v

m—1 m—1
= 0(1) Y _v|AB,|X, +0(1) Y B,X, + O(1)mBp, X,
v=1 v=1

= O(1) as m — oo,

by virtue of the hypotheses of Theorem 3.1 and Lemma 3.2.

Also, as in I, 1, we have that
m—+1 P Sk+k—1 . m—+1 Sk+k—1 /n—1 |t |
n
Z () |ITL,3| Z < > Z |an v+1||)\v+1|
p n=2 v=1
m+

n=2 n
P Sk+k—1 n—1
() > (i)l ol

x (Z )

m+1 ok
= o) Pl S <P> A (@)

IN

v=1 n=v+1 Pn
m 0k—1
P,
= oY () il
=1 v

= O(1) as m — oo,

by using (2.5), (2.6), (3.1), (3.2) and (3.3).



AN APPLICATION OF 6-QUASI MONOTONE SEQUENCE 139

Finally, as in I,, 1, we have that

m ok+k—1 m Sk+k—1
P, P,
> () La® = oY (p) ¥,

el Pn
m P Sk—1
= o)) (p) Pl [An B [

- 0(1)%(5‘)%_1Mnntn|k

= 0O(1) as m— oo,

by using (2.5), (3.1), (3.2) and (3.3). This completes the proof of Theorem 3.1.

It should be noted that if we take § = 0 in Theorem 3.1, then we get Theorem 2.2. In this case,
condition (3.2) reduces to condition (2.2). Also, if we take § = 0 and a,, = 5, then we get Theorem
2.1.
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