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ON HYERS-ULAM STABILITY FOR NONLINEAR
DIFFERENTIAL EQUATIONS OF NTH ORDER

MAHER NAZMI QARAWANI

ABSTRACT. This paper considers the stability of nonlinear differential equa-
tions of nth order in the sense of Hyers and Ulam. It also considers the Hyers-
Ulam stability for superlinear Emden-Fowler differential equation of nth order.
Some illustrative examples are given.

1. INTRODUCTION

In 1940, Ulam [1] posed the stability problem of of functional equations: Given
a group Giand a metric group Go with metric p(.,.). Given £ > 0, does there exist
a § > 0 such that if f: Gy — G satisfies p(f(x),h(z)) < § for all x,y € G1,then
a homomorphism h : G; — G2 exists with p(f(z),h(x)) < efor all z,y € G1?
The problem for approximately additive mappings, on Banach spaces, was solved
by Hyers [2]. The result obtained by Hyers was generalized by Rassias [3].

During the last two decades many mathematicians have extensively investigated
the stability problems of functional equations (see [4-11]).

Alsina and Ger [12] were the first mathematicians who investigated the Hyers-
Ulam stability of the differential equation g’ = g.They proved that if a differentiable
function y : I — R satisfies |y’ — y| < e for all ¢ € I,then there exists a differentiable
function g : I — R satisfying ¢'(¢) = g(t) for any t € I such that |g — y| < 3e,for all
t € I. This result of alsina and Ger has been generalized by Takahasi et al [13] to
the case of the complex Banach space valued differential equation y’ = Ay.

Furthermore, the results of Hyers-Ulam stability of differential equations of first
order were also generalized by Miura et al. [14], Jung [15] and Wang et al. [16].

Li [17] established the stability of linear differential equation of second order in
the sense of the Hyers and Ulam y” = Ay. Li and Shen [18] proved the stability
of nonhomogeneous linear differential equation of second order in the sense of the
Hyers and Ulam y” + p(x)y’ + q(z)y + r(z) = 0, while Gavruta et al. [19] proved
the Hyers-Ulam stability of the equation y” + 5(z)y = 0 with boundary and initial
conditions.

The author in his study [20] estabilshed the Hyers-Ulam stability of the equations
of the second order

2" =F(z,2)

with the initial conditions z(xg) = 0 = 2/(z9).
In this paper we investigate the Hyers-Ulam stability of the following nonlinear
differential equation of nth order
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(1) vy = f(t,y, vy ey ")

with the initial conditions

(2) y(to) = vo , ¥'(to) = y1, s ¥V (to) = Y

where y € C(I), I = [to,t1], (t.[y]) = (t,y. v/, y", .,y V) €D, tel, —0 <
to < t; < oo, and  f(t,y,y,y",...,y" V) is defined on a closed bounded set
D C R™*! that satisfies the condition

3) ) = £t [2])] < gty 2D =20

(tl _ to)n—l

where g(t) : I — (0,00) is integrable function.
Moreover we establish the Hyers-Ulam stability of the problem (1),(2) for f satisfying
the Lipschitz condition

(4) (L) — £ D] < Ao g D (t) — 20 1)

where Ay > 0.

Definition 1 We will say that the equation (1) has the Hyers -Ulam stability if
there exists a positive constant K > 0 with the following property:

For every ¢ > 0, y € C")(I), if

(5) ™ — ft )| <e

with the initial condition (2), then there exists a solution z(t) € C™(I) of the
equation (1), such that |y(t) — z(¢)| < Ke, where K is a constant that does not
depend on € nor on y(t).

2. MAIN RESULTS ON HYERS-ULAM STABILITY

Theorem 1 If y € C™(I) and f(t,y,v,y", ...,y D) satisfies condition (3)
on a closed bounded set D C R™*1, then the initial value problem(1),(2) is stable
in the sense of Hyers and Ulam.

Proof. Let ¢ > 0 and y(¢) be an approximate solution of the initial value prob-
lem (1),(2).We will show that there exists a function z(t) € C™(I) satisfying the
equation (1) and the initial condition (2) such that

ly(t) — 2(t)] < Ke

From the inequality (5) we have

(6) —e <y —ft,[y) <e

Integrating the last inequality n times, we obtain

n—1

(™ y(t) - X e - (nll)!j(t — )" f (s, [y])ds| < {t=to)"

n!
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It is clear that
n—1
z(t) = Z f=toun +ff 4(7{9,)1)! ds

satisfies equation (1) and the initial condition (2).
Consider the difference

() —=@)] < |yt) - Z (t—to) (nll)!j(t—s)”_lf(S,[y])ds
— s n—1
/ o) = Fsn ) s
/

Applying Gronwall’s inequality, we obtain from inequalities (7) and (8)

(t1 —to)"e

() = =(0] < PP exp | = [ oty

to

Whence

<
Jmax ly(t) - 2(t)| < Ke

Hence the initial value problem ( ),(2) is stable in the sense of Hyers and Ulam.

Theorem 2 If y € C™(I) and f(t,y,v,y", ...,y D) satisfies the Lipschitz
condition (4) on a closed bounded set D C R™*! then the initial value prob-
lem(1),(2) is stable in the sense of Hyers and Ulam.

Proof. Given ¢ > 0, assume that y is an approximate solution of Eq. (1). We
will show that there exists a function z(t) € C™(I) satisfying equation (1) such
that

ly(t) — 2()] < Ke

From the inequality (5) we have

(9) —e <y — f(t,[y) <e
By integrating the inequality (9) k times, we obtain

(t —to)ke
k!

k=1, _ t
(10) y(n—k)(t) _ ZO ( to)jz!;nwrg _ (ni1)! [(t=s)""1f (s, [y])ds| <
J= to

where 1 < k <n.
We can easily verify that the function z(¢)

k—1 j t o1

n— t—t n—k+j —S

L) = 3 R 4 ] (s, () e ds
J= Lo

must satisfy the initial value problem (1),(2)
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Now let A(n=F) = |y(n*k) _ Z(nfk)| .
Then, using the inequalities (4),(10), we get the estimation

An=k) < y(n—k) (t) — kz—:l (t—to);?n—kﬁﬂ B (nil)! j(t . S)n—lf(s7 [y])ds
j=0 to
1 [ n—1
e / F(s, 1) = F(s, 12D (¢ = 5)" s
)k n [
(11) < (tl kfo) £ n (nA_o 1)' / ‘y(n—k)(s) _ Z(n—k)(s)‘ (t _ S)n—lds

to

Thus, according to (4),(10) and (11), from Gronwall’s inequality it follows that

_ ke _ n
YR (1) — Z(n—k)<t)‘ < (th k;fo) exp (AO(SI;I f)t;) >

Consequently for k = n, we have

t)—z(t)| <
torgggtlly() 2(t)] < p

t —to)" )
(t1 —to)"e exp Ao(t1 —to)
(n)!

Hence the initial value problem (1),(2) is stable in the sense of Hyers and Ulam.

Remark 1 Suppose that y € C(™(I) satisfies the inequality (9) with the zero
initial condition y(to) = 0, ¢'(to) = 0, ..., ¥ V(tg) = 0. If f(¢t,[z]) satisfies
Lipschitz condition (4) and f(¢,0,,...,0) = 0, then one can similarly show that the
zero solution zg = 0 of equation (1) is stable in the sense of Hyers and Ulam.

3. HYERS-ULAM STABILITY FOR SUPERLINEAR NTH ORDER
DIFFERENTIAL EQUATION

In this section we investigate the Hyers Ulam stability of solutions for superlinear
nth order differential equation

(12) y™ = h(t) |y" sgny ,  a>1

with the initial condition

(13) y(to) = wo , ¥/ (to) = 1, s "D (t0) = Yo

where y € C"(I), I = [tg, 1], —00 < tg < t; < 00, and h(t) : I — R is continuous.

Theorem 3 If y € C™)(I),and h(t) : I — R is continuous, then the initial value
problem (12),(13) is stable in the sense of Hyers and Ulam.

Proof. Given € > 0,Suppose y(t) is an approximate solution of the initial value
problem (12),(13).We show that there exists an exact solution z(t) € C(")(I) satisfying the
equation (12) such that

ly(t) — 2(t)] < Ke
where k& is a constant that does not explicitly depend on e nor on y(t).
From the inequality (5) we have

(14) —e < y™ — h(t) |y|* sgny < ¢

By integrating the last inequality n times, we obtain
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n—1, ¢ o t—tg)"e
(15) |y — S Cm L P a() ol sgny.(t — sy tds| < L)
k=0 to n:
where 1 < k <n.
We can easily verify that the function z(¢)
n—1 (tft )k 1 t o 1
2(t) = kZ::O P 4 (n_l)!t{h(s) |2|* sgnz.(t — s)" " lds

must satisfy the initial value problem (12),(13).
Now since the derivative ’%&ya)‘ is bounded on S, then the function
f(t,y) = h(t) |y|* sgny satisfies Lipschitz condition
[f(ty) = F2) < Lly@t) —=(0)] ,(ty),(t2) €S
where S = [tg,t1] x [-M,M] C R? and M = X ly(t)] .

Since h is continuous on I, then 3 By > 0, |A(t)| < By, and from the inequality
(15), we get the estimation

(t1 —to)"e
n!

y(t) — =(0)] < + i [ ) = 2(0) = 9

From Gronwall’s inequality it follows that

ly(t) — 2(t)] <

t1 —to)" BoL(ty —tg)™
(t o)é‘exp(o(l 0) )

n! n!
Consequently, we have

max [y(t) — 2(t)] < LL=t0"E o ((tl—to)" )

to<t<t n! (n)!

Hence the initial value problem (12),(13) is stable in the sense of Hyers and
Ulam.

Remark 2 Suppose that y € C(")(I) satisfies the inequality (6) with the zero
initial condition y(to) =0, ¢'(to) =0, ..., y™ V(o) = 0. If the function h : I —
R is continuous, then one can similarly establish the Hyers-Ulam stability of zero
solution zp = 0 of (12).

Examplel Consider the problem
(16) y® = 8sint+ef
(17) y®(tg) = 0, k=04

and the inequality

(18) —e <y® —y’sint+e <e

where (t,y) € [to,t1] x [=My, My], My = JDax ly(t)] -
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Integrating the inequality (18) five times and using the initial condition (17), we

get that
t

y(t) — % /(y3 sint 4+ e')(t — s)*ds| <

to
One can easily show that z(t)

(t —to)%e
5!

t

1
2(t) = 3 /(z3 sint + e')(t — s)*ds
to
has to satisfy the initial value problem (16),(17).

Now Let us estimate the difference:
t

ly(t) — z(t)] < |y(t) — é/(t —s) (> sint + e')ds
to
. t
+§ /(t —s)t ly* — 2°||sint| ds
to
¢

2 [(e= o)t ly ol as

to

(tl — to)SE
5!

IN

Therefore, we obtain

t) — 2(t)| <
torgtagtl\y() z(t)] < o

(tl - t0)5€ exp (Mf(f,l{)'— t0)5 )

Hence the initial value problem (16),(17) is stable in the sense of Hyers and Ulam.
4. A SPECIAL CASE OF EQUATION (11)

Consider the equation

(19) y" = h(t)y
with the initial conditions
(20) y(to) =vo . ¥'(to) = y1, -, ¥V (t0) = Yn-1

where y € CU(I), T = [tg,t1], —00 <ty < t; < 00, and h(t) : I — R is continuous.
Theorem 4 If y € C™(I),and h(t) : I — R is continuous, then the initial value
problem(19),(20) is stable in the sense of Hyers and Ulam.
Proof. assume that € > 0 and that y is n times continuously differentiable real-
valued function on I = [tg,t1]. We will show that there exists a function z(t) €
c2(I) satisfying equation (19) such that

ly(t) — 2(t)] < Ke
We have
(21) —e <y —h(t)y<e
By integrating the inequality (21) n times, we obtain
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1 itk J t—tg)"e
y(t) = 3 Lt 1 [ gnein(s)yas| < L)
k=0 to n:

where 1 < k <n.
It is easily to verify that the function z(t)

n—1 X t
A0) = T R ke (- )" h(s)ads
= to

satisfies the initial value problem (19),(20).
One can get the estimation

(t1 —to)"e Bg

@) (o) - (0] < B s e g — (0] (- 9 s

Using Gronwall’s inequality we have

Hence N .
(tl - t()) S exp <Bo(t1 - t()) )
(n)!
Therefore, the initial value problem (19),(20) is stable in the sense of Hyers and
Ulam.
Example 2 Consider the equation

t) —z(t)] <
(ax y(t) —2(t)] < —

(23) y — (1 4cost)y =0

(24) y(0) =0, y'(0) =1, y"(0)
and the inequality

1, ¢"(0) = 0

‘y(4)—(1+cost)y ‘ <e

where 0<t<b, beR.
Integrating the last inequality four times, we get

t? 1 t3
y(t)—t—«—?— 6/(t—s)3(1+cost)yds < ?5
0
One can easily find that z(t)
t? 1 3
z(¢) :t_7+6 (t —s)° (1 + cost) zds

0

satisfies the equation (23) and initial condition (24)
Then, we obtain an estimation

(1) — 2(0)] < 2 exp(v/12)

Hence Eq. (23) has the Hyers -Ulam stability.
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