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THE ESSENTIAL SPECTRUM OF A SEQUENCE OF LINEAR OPERATORS IN
BANACH SPACES

AYMEN AMMAR!"*, NOUI DJAIDJA? AND AREF JERIBI!

ABSTRACT. In this work we introduce some essential spectra (o, ¢ = 1, ...,5) of a sequence of closed
linear operators (7T, ),en on Banach space, we prove that if (T,),en converges in the generalized
sense to a closed linear operator 7', then there exists ng € N such that, for every n > ng, we have
oei(Ao — (Tn + B)) C 0ci(Mo — (T'+ B)), @ = 1,...,5, where B is a bounded linear operator, and
Ao € C. The same treatment is made when (T, — T') converges to zero compactly.

1. INTRODUCTION

Let X and Y be two Banach spaces. We denote by £(X,Y) (resp., C(X,Y)) the set of all bounded
(resp., closed, densely defined) linear operators from X into Y while K(X,Y") designates the subspace
of compact operators from X into Y. If T € C(X,Y), we write N(T) and R(T') for the null space
and range of T, we set a(T)=dimN (T), B(T) = codimR(T). The classes of Fredholm, upper semi-
Fredholm and lower semi-Fredholm operators from X into Y are, respectively, the following:

P(X,Y):={TeC(X,Y): a(T) <ocand B(T) < oo ,R(T) is closed inY }.
P, (X,Y):={T €C(X,Y): aT) <ooand R(T)is closed in Y }.
®_(X,Y):={T €C(X,Y): B(T) < oo and R(T) is closed in Y }.

The set of semi-Fredholm operators from X into Y is defined by
(X)) =0, (X, Y)UDP_(X,Y).
The set of Fredholm operators from X into Y is defined by
(X, Y): =2, (X, Y)NP_(X,Y).
For T € ®4(X,Y), the number i(T) = a(T) — S(T) is called the index of T'.

Definition 1.1. An operator F' € L(X,Y) is called a Fredholm perturbation if T+ F € ®(X,Y) when-
everT € ®(X,Y). F is called an upper (respectively, lower) Fredholm perturbation if T+F € & (X,Y)
(respectively, ®_(X,Y)) whenever T € ®,(X,Y) (respectively, ®_(X,Y)). The sets of Fredholm, up-
per semi-Fredholm and lower semi-Fredholm perturbations are denoted by F(X,Y), F(X,Y) and
F_(X,Y), respectively.

Let ®°(X,Y), % (X,Y) and ®* (X,Y) denote the set ®(X,Y)NL(X,Y), ¢, (X,Y)NL(X,Y) and
d_(X,Y)NL(X,Y), respectively.

Definition 1.2. Let A be a closable linear operator in a Banach space X. The resolvent set and the
spectrum of A are, respectively, defined as

p(A) :={X € C, such that (A — A) is injective and (A — A)~' € L(X)},

o(A) :=C\p(A).
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Definition 1.3. Let A be a closed linear operator in a Banach space X. We define the sets
oe1(A) :=={N € C, such that \— A ¢ ®,(X)},

oe2(A) :=={N€C, such that \— A ¢ ®_(X)},

oe3(A) :={A€C, suchthat \— A ¢ ®_(X)U P, (X)},
oea(A) :=={N € C, such that \— A ¢ ®(X)},

os(A):= ) o(T+K).

kek(X)
oe1(.) and oe2(.) are the Gustafson and Weidman’s essential spectra. oes(.) is the Kato’s essential
spectrum. oeq(.) is the Wolf’s essential spectrum, and o.5(.) is the Schechter’s essential spectrum.

Proposition 1.1. [8, Theorem 7.27, p.172] Let T € C(X). Then A ¢ oe5(T) if, and only if, ( A—T) €
O(X) andi(A—T) = 0.

Definition 1.4. Let X be a Banach space and E, F be closed subspaces of X. Let Bg be the unit
sphere of E. Let us define

sup dist(z, F), if E # {0},
5(E, F) = ({ z€BE
0, otherwise,

and S(E, F) :=max {§(E,F),5(F,E)}. The quantity 5A(E, F) is called the gap between the subspaces
E and F.

Remark 1.1. (i) The gap measures the distance between two subspaces and it easily follows, from the
definitions,

(i1) 8(E,F) = 6(E,F) and 0(E,F) = §(E,F).
(i2) 6(E, F) =0 if, and only if, E C F.
(i3) 0(E,F) =0 if, and only if, E = F.

(
5 ) is a metric on the set V(X)) of all linear closed subspaces of X and the convergence E, — F

in V(X) is obviously defined by 06(Ey,, F') — 0. Moreover, (V(X),6) is a complete metric space.

Definition 1.5. (i) Let X and Y be two Banach spaces, and let T, S be two closed linear operators
acting from X toY. Let us define

(G GS) = sl int (o= ol + - sl?) |
z € D(T) WeP®)
l]f* + | T])* = 1
S(T, S) is called the gap between S and T.
(ii) Let T and S be two closable operators. We define the gap between T and S by §(T,S) = §(T, S)
and §(T,S) = §(T, S).

Definition 1.6. A sequence (T, )nen of bounded linear operators mapping on X is said to converge to
zero compactly if for allz € X, T,x — 0 and (T,,x,), is relatively compact for every bounded sequence
(Tn)n C X.

Remark 1.2. Clearly, T, converges to 0 implies that T;, converges to zero compactly.

Definition 1.7. Let (T},)nen be a sequence of closable linear operators from X into Y and let T be a
closable linear operator from X into Y. (T),)nen is said to converge in the generalized sense to T if

(T, T) converges to 0 as, n — oo.

2. PRELIMINARIES

Theorem 2.1. [2, Theorem 4] Let A,, be a sequence of bounded linear operators converging to zero
compactly and let T be a closed linear operator. If T is a semi-Fredholm operator, there exists ng € N
such that for all n > ny,
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(i) (T + A,) is semi-Fredholm,
(11) o(T + Ap) < (T),

(#it) B(T + A,) < B(T), and
(i) i(T + Ap) = i(T).

Proposition 2.1. [3, Proposition 7.8.1]. Let (T,,)nen be a sequence of bounded linear operators and
let T € L(X) such that T,, — T converges to zero compactly. Then,

(i) If T,, € F*(X), then T € Fb(X),
(ii) If T,, € F2(X), then T € Fb(X), and
(iii) If T,, € F*(X), then T € F*(X).

Theorem 2.2. [1, theorem 2.1] Let T and S be two closed densely defined linear operators. Then,
we have:

(i) 8(T,S) = 6(S*,T*) and 0(T, S) = 6(S*, T*).
(ii) If S and T are one-to-one, then §(S,T) = 6(S~1, T~1) and g(S T)=46(5"1,T7Y).
(iii) Let A € L(X,Y). Then 6(A+ S, A+T) <2(1+ |[A|2)d(S,T).

~

(iv) Let T be Fredholm operator (respectively semi-Fredholm operator). If 6(T,S) < v(T)(1+[y (T)]Q)_T1 ,
then S is Fredholm operator (respectively semi-Fredholm operator ), a(S) < «(T) and (S) < B(T).
S

Furthermore, there exists b > 0 such that 3(T, S) < b, which implies i(S) = i(T).

(v) Let T € L(X,Y). If S C(X,Y) and g(T, S) < [1 + ||T||2] _5, then S is bounded operator (so that
D(S) is closed).

Theorem 2.3. [1, theorem 2.3] Let (T),)nen be a sequence of closable linear operators from X into
Y and let T be a closable linear operator from X into Y.

(i) The sequence T,, converges in the generalized sense to T if, and only if, T,, + S converges in the
generalized sense to T + S, for all S € L(X,Y).

(it) Let T € L(X,Y). T, converges in the generalized sense to T if, and only if, T,, € L(X,Y) for
sufficiently larger n and T,, converges to T .

(iii) Let Ty, converges in the generalized sense to T. Then, T—1 exists and T—' € L(Y, X), if, and

only if, T71 exists and T;; ' € L(Y, X) for sufficiently larger n and T, ' converges to T~1.
3. THE MAIN RESULT
In this section we investigate the essential spectra (o¢;, @ = 1,...,5) of the sequence of linear

operators in a Banach space X.

Theorem 3.1. Let (T),)nen be a bounded linear operators mapping on X, and let T and B be two
operators in L(X), Ao € C, and U C C is open .

(a) If (Ao — Ty, — B) — (Ao — T — B)) converges to zero compactly, and 0 € U, then there exists ng € N
such that, for all m > ng.
Uei(>\0 - T, — B) - Uei()\o - T — B) +U.
A?’Ld, 5(0’@()\0 - Tn — B), O'ei(/\O T — B)) = 0, i:1,. .. ,5
(b) If (\o — T, — B) converges to zero compactly then there exists ng € N such that for allm > ng
O'ei(()\o — T — B) + ()\0 — Tn — B)) Q Uei(/\O — T — B)
A?’ld, (5(0’@(()\0 -T— B) + ()\0 — Tn — B)),O’ei(/\o -T - B)) = 07 1= 1, ce ,5.
Proof. (a) For i = 1. Assume that the assertion fails. Then by passing to a subsequence, it may be

deduced that, for each n, there exists A, € ge1 (Ao — Ty, — B) such that A, € oe1(MNg —T — B)+U. Tt
is clear that hrn An = A since (A,) is bounded, this implies that A & ge1(Ao —T — B) + U. Using

n—-+
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the fact that 0 € U, hence we have A & o.1(A\g — T — B), and therefore, (A — (A\g — T'— B)) € ®% (X).
Let A, = Ay = A+ (N —T—-B)— (A —T,— B). Since 4,, converges to zero compactly, writing
An— (o —T,—B)=X—(\—T — B)+ A,, and according to Theorem 2.1, we infer that, there exists
ng € N such that for all n > ng we have (A, — (Ao — T, — B)) € (X)) and i(\, — (Ao — T, — B)) =
iA=—(M—T—-B)+A,) =i(A— (N —T — B)).So, A\, € 0e1(Ao — T}, — B), which is a contradiction.
Then
0'61()\0 -7, — B) - 0'61()\0 T - B) + U, for all n > ng.
Since 0 € U, we obtain o.1(Ag — T, — B) C 0.1(Ag —T — B). Hence by Remark 1.1 (iz), we get
5(0’61()\0 — Tn - B),O’el()\o -1 - B)) = 07 for all n > ng.
For i = 2,3,4, by using a similar proof as in (i = 1), by replacing o.1(.), and ®,(X) by oe2(.),

0e3(.), 0ea(.), and ®_(X), P_(X) U D4 (X), ®(X), respectively, we get
If (Mo =T — B) — (Ao — T — B)) converges to zero compactly, and 0 € U, then there exists ng € N
such that, for all n > ng.

Uei(>\0 - Tn - B) Q Uei()\o T - B) -H/I
And

5(0ei(Xo — T — B),0i(Ao — T — B)) = 0.

For i = 5. Assume that the assertion fails. Then by passing to a subsequence, it may be deduced
that, for each n, there exists A\, € oe5(Ao — T, — B) such that A\, € oe5(Ao—T —B) +U. It is
clear that nll)rfw An = A since (A,) is bounded, this implies that A € oe5(Ao — 7 — B) + U. Using
the fact that 0 € U, we have A & o.5(\o — T — B) and therefore, A — (A\g — T — B) € ®*(X) and
iA=MN—-T-B))=0.Let A, =X, = A+ (A —T—DB)— (N — T, — B). Since A,, converges to
zero compactly, writing A, — (Ao — T, — B) = A— (Ao — T — B)+ A,, and according to Theorem 2.1, we
infer that, there exists ng € N such that for all n > ng we have A, — (Ao — T, — B) € ®(X) and i(\, —
(Ao —To— B)) = i(A = (ho = T = B) + A,) = i(A — (Ao — T — B)) = 0. S0, Ay & 0es (o — T — B),
which is a contradiction. Then

0'65()\0—Tn—B)gU’eg,()\()—T—B)-l-u, for alannO.
Since 0 € U, we have o.5( g — Ty, — B) C 0e5(Ao — T — B). Hence by Remark 1.1 (iz), we have
5(065(>\07TnfB),O'@5(A07TfB)) :0, for allnzno.

(b) For i=1.Let A & 0c1(\o — T — B). Then, (A — (Ao — T — B)) € % (X). Since (Ao — T, — B)
converges to zero compactly and applying [2, Theorem 4] to the operators (A\g—T—B) and (A\g—T,,— B),
we prove that, there exists ng € N such that (A—(Ag =T — B)+(A\g — T, — B)) € &, (X) for all n > ny.
Hence A & g¢1((Ao — T — B) + (A — T, — B)). We conclude that

0'61()\0 — Tn — B) g O'el(/\o - T — B)
Now applying Remark 1.1 (i3) we obtain
§(oe1((Mo—T —B)+ (Mo — T, — B)),0e1(Ao — T — B)) =0, for all n > ny.

For i = 2,3,4, by using a similar proof as in (i = 1), by replacing o.1(.), and ®,(X) by oe2(.),
0e3(.), 0ea(.), and @_(X), ®_(X) U D4 (X), ®(X), respectively, we get

If (Ao — T,, — B) converges to zero compactly then there exists ng € N such that for all n > ng.

Uei((/\O —T+ B) + (/\0 -1, — B)) - Uei(/\O T — B)
And,
(5(Jei((A0 -1 — B) + (AO — Tn - B)),Uei()\o -1 — B)) = O, for all n Z no.

For i=5. Let A€ 0e5(Ag — T — B). Then, (A — (Ao — T — B)) € ®*(X) and
i(A— (Ao —T —B)) = 0. Since (A\g — T, — B) converges to zero compactly and by applying the [2,
Theorem 4] to the operators (A\g — T — B) and (Ag — T;, — B), we prove that, there exists ng € N
such that (A — (A =T — B) + (A — T}, — B)) € ®(X) for all n > ng. Hence A € o.5((Ag — T — B) +
(Mo — T, — B)). We conclude that

065(>\0 — Tn — B) Q 0'85()\0 — T — B)
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Now applying Remark 1.1 (i) we have
5(085(()\0 —T—-B)+ (M —T,—B)),0e5(X0 =T — B)) =0, for all n > ng. O

Theorem 3.2. Let (T,)nen be a sequence of closed linear operators mapping on Banach spaces X
and let T € C(X),and let B and L be two operators in L(X), Ao € C such that T,, converges in the
generalized sense to T, and Ay € p(T + B), U C C is open.

(a) If 0 € U, then there exists ng € N such that, for every n > ng, we have

Uei(/\O_Tn_B) gUei(/\o—T—B)—l—u. (31)

And, 5(%«@0 T, — B),0e(ho — T — B)) —0,i=1,...,5.

(b) There exist e > 0 and n € N such that, for all | L|| < e, we have
ei(Mo—Tpn — B+ L) Coei(Aog—T — B)+U, for all n > ng.

And, 5<aei()\o—Tn—B+L),aei()\o—T—B)) - 6(aei()\0—T—B+L),aei(/\0—T—B)), i=1,...,5
%

Proof. (a) For i =1, since (B — Ag) be a bounded operator and A\ € p(T'+ B). According to Theorem
2.3 (i) and (i4i)the sequence (A\g — T}, — B) converges in the generalized sense to (Ao — T — B), and
Ao € p(T,, + B) for a sufficiently large n and (Ao — T, — B) ™' converges to (Ao — T — B) ™. Now to
prove such that the inclusion (3.1)holds it suffices to prove there exist ng € N, such that for all n > ng,
we have

oMo —T, —B) ' Coa(N—T—-B)"'+U. (3.2)
In first step by an indirect proof, we suppose that the (3.2) does not hold, and for each n € N there
exists A\, € ge1(Ag — Ty, — B) 7! such that A\, € 0e1(Ag — T — B)~! +U. It is clear that lim X, = A

n—-+oo

since (\,) is bounded, this implies that A & o.1(A\g — T — B)~! +U. Using the fact that 0 € U hence
we have A € o¢1(Ao — T — B)~!. Therefore (A— (Ao — T — B)~!) € % (X) and applying Theorem 2.3
(i), we conclude that
SAn—=No=Tn =B " A=(N—-T—=B)"1) =0, as n — .

Let Y(A — (A =T — B)™!) = § > 0. Then there exists N € N such that, for all n > N we have
A —N—Th—B) ' A= -T-B)1) < \/1‘_1?. According Theorem 2.2 (iv) we infer (A, —
(Ao — T, — B)™1) € @ (X). Then we obtain A, & ge1((Ao — T, — B)~!), which this is a contradicts
our assumption. Hence (3.2) holds. Now, if A € oe1 (Ao — Ty, — B) then § € g¢1((Ao — T — B)71).
According then (3.1) we conclude that

1

3 coa((M—-T—-B)H+U. (3.3)
Since 0 € U, then (3.3) implies that + € oc1((Ao — T — B)~'). We have to prove
/\60'61(/\07T*B)+Z/[. (34)

We will proceed by contradiction, we suppose that A &€ o.1(Ag — T — B) + U. The fact that 0 € U
implies that A & o¢1(Ao — T — B) and so, + & oe1((Ag —T — B)™!) which this is a contradicts our
assumption. So A € g.1(Ag — T — B)+U. Therefore (3.1) holds. Since U is an arbitrary neighborhood
of 0 and by using the relation (3.1) we have ge1 (Ao — T, — B) C 0e1(T + B — Ng), for all n > ng.
Hence by Remark 1.1 (i2)

6(01(ho = T = B),0e1(do = T = B)) = 8(0e1(ho — T = B),0er (o — T+ B) ) =0

for all n > ng.This ends the proof (i=1).
For i = 2,3,4, by using a similar proof as in ((a) for i = 1), by replacing oe1(.), and ®(X) by
0e2(.); 0e3(.), ea(.), and ®_(X), &_(X)U P, (X), ®(X), respectively, we get
Uei(/\O — Tn — B) g Uei()\O T — B) +U

And, (S(O’ei()\o —T,—B),0ci(Mo—T — B)) =0, for all n > nyg.
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For i = 5, since (A\g — B) be a bounded operator and Ag € p(T + B), according to Theorem 2.3
(i) and (i9) the sequence (Ao — 1), — B) converges in the generalized sense to (Mg — T — B), and
Xo € p(T,, + B) for a sufficiently large n and (Ao — Ty, — B) ™" converges to (A\g — T — B)~'. Now to
prove that (3.1)holds it suffices to prove there exist ng € N, such that for all n > ng, we have

oes(Mo =Ty — B) ' Cows(Mo—T —B)™' +U. (3.5)
In first step by an indirect proof, we suppose that the inclusion (3.5) does not hold, and for each

n € N there exists A\, € ge5(X\o — T, — B)~! such that A\, & oe5(A\g — T — B)~! +U. Tt is clear that
lim A, = A since (\,) is bounded, this implies that A\ & o.5(\g — T — B)~! + U. Using the fact

n—-+o0o
that 0 € U, hence we have A & o.5(A\g — T — B)~!. Therefore (A — (\g =7 — B)™!) € ®*(X) and
i(A — (Ao — T — B)~1)=0, and applying Theorem 2.3 (ii), we conclude that
A= —Ty—B) " A=(N—-T—=B)"") = 0asn— oco.
Let y(A — (Ao — T — B)™1!) = § > 0. Then there exists N € N such that, for all n > N we have
~ 0
d—No—Th—B) ' A=MN—-T—-B)H< .
( ( 0 ) ( 0 ) ) = m
According to Theorem 2.2 (iv) we infer (A, — (Ao — T}, — B)™1) € ®°(X) and
iA— (Mo =T, — B)™ 1) =i(A— (Ao — T — B)~1)=0. Then we obtain \,, & c.5((A\o — T, — B)~ 1),
which this is a contradicts our assumption. Hence (3.1) holds. Now, if A € ge5(Ag — T, — B) then
1 € 0e5((Ao — T, — B)™1). According then (3.1) we conclude that

1

1 cows(Mo—T—-B)Y)+U. (3.6)
Since 0 € U, then (3.6) implies that + € oe5(Ag — T — B)~!. We have to prove
)\60'55(/\07T*B)+u. (37)

We will proceed by contradiction , we suppose that A & ge5(Ao — T — B) + U. The fact that 0 € U
implies that A & oc5(Ao — T — B) and so, § & 0es((Ao — T — B)™!) which this is a contradicts our
assumption. So A € ge5(Ag —T — B) +U. Therefore (3.1)holds. Since U is an arbitrary neighborhood
of 0 and by using (3.1) we have o.5(Ag — T, — B) C 0¢5(Ao — T — B) for all n > ng. Hence by Remark
1.1 (i2)

(5(0’65(>\0 — Tn — B),O’e5(/\0 - T — B)) = (5(0’65(/\0 — Tn — B),O’e5()\0 - T — B)) =0
for all n > ng.This ends the proof of, (a) .

(b) For i = 1, since A\g € p(T+ B), then (T+B—\o) ! exists and bounded. We put
Let L € £(X) such that || L|| < &1 this implies

Lo -T—-B)"|<1.
By according Theorem 2.3 (i) the squence (Ag—T;, — B+ L) converges in the generalized sense to (Ao —

T—B+L), and the Neumann series Y po (=L (Ao — T — B)™ Mk converges to (I+L (Mg —T — B)~")~1
and

1 _
To—T-B)-1] — €1

1

L= L]l (=T = B)"||

Since \g—T —B+ L) = XN—-T-B) YU +LX—-T-B)""))"1, then \g € p(T + B + L).
Now applying ((a)for i = 1), we deduce that there exists ng € N such that ce1(Ag — T, — B+ L) C
O—el(>\0 —-T-B + L)+U, for all n 2 no. Let A ¢ Uel(>\0 7T7B). Then ()\7 (AO 7T*B)) € @+(X)
By applying [8, Theorem 7.9] there exists €2 > 0 such that for || L|| < €2, one has (A—(A\g—T—B)—L) €
¥, (X) and, this implies that A & c.1(Ao — T — B 4+ L). From what has been mentioned and if we
take &€ = min(eq,e2) then for all |L]] < &, there exists ng € N such that o1 (Ao — T, — B+ L) C
oe1(Mo — T — B) + U, for all n > ng. Since 0 € U then we have

§(0e1(Ao = Ty = B+ L), 001(Ag — T — B)) = 0

IT+L(o—T—-B))7"<

and
6(0’61()\0 —T— B+L),O’el()\0 —T—B)) = 0
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Therefore, (¢ = 1) holds.
For i = 2,3,4. By using a similar proof as in ((b)for ¢ = 1), by replacing o.1(.), and ®;(X) by
0e2(.), 0e3(.), ea(.), and ®_(X), D_(X)U P, (X), ®(X), respectively, we get
There exist € > 0 and n € N such that, for all ||L]] < &, we have
0ei(do—Tn — B+ L) Coei(Mo—T— B)+ U, for all n > nyg.
And,

6(ae¢(/\0 T~ B+L),0e(No—T — B)) — 5(%@0 T - B+L),0u(ho—T - B)).

For i =5, since \g € p(T + B), then (A9 — T — B)~! exists and bounded. We put H(/\o—Til—B)‘ll\ =£;.
Let L € £(X) such that ||L|| < &7 this implies

Lo -T-B)""| <1
By according theorem 2.3 (i) we have (Ao — T}, — B+ L) converges in the generalized sense to (Ag —71 —

B+ L) , and the Neumann series Y5> (=L (Ao — T — B) ™ ")¥ converges to (I + L (Ao —T — B) ")~

and
1

L= LIl (o =T = B) |

Since A —T —B+ L)' = MA—-T—-B) YU +LM—-T-B)"")"!, then g € p(T + B + L).
Now applying ((a)for i = 5), we deduce that there exists ng € N such that o.5(Ag — T, — B+ L) C
Oes(Mo—T —B+L)+U, for all n > ng. Let A € 0e5(Ag—T — B). Then (A—(Ag—T —B)) € ®(X). By
applying [8, Theorem 7.9] there exists 2 > 0 such that for ||L]| < €2, one has (A— (N —T —B)—L) €
O(X)and i(A—(Ao—T—B—L)) =i(A—(Ao—T — B) =0. This implies that A € ge5(A\g—T — B+ L).
From what has been mentioned and if we take € = min(eq, €2) then for all || L|| < €, there exists ng € N
such that ge5(Ao — T, — B+ L) C oe5(Ag — T — B) + U, for all n > ng. Since 0 € U then we have

(5(0’65()\0 - Tn — B+ L),Uef,()\o -1 - B)) =0= 5(0’65()\0 —-T—-B+ L),O’e5()\0 -1 - B))

Therefore, (i = 5) holds. O

(I+L(X-T-B) "<
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