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SOME ESTIMATIONS ON CONTINUOUS RANDOM VARIABLES INVOLVING

FRACTIONAL CALCULUS

ZOUBIR DAHMANI1, AMINA KHAMELI1, MOHAMED BEZZIOU1,3 AND MEHMET ZEKI

SARIKAYA2,∗

Abstract. Using fractional calculus, new fractional bounds estimating the w− weighted expectation,

the w− weighted variance and the w−weighted moment of continuous random variables are obtained.
Some recent results on classical bounds estimations are generalized.

1. Introduction

It is known that the integral inequalities play an important role in the theory of differential equations,
probability theory and in applied sciences. For more details, we refer to [2, 3, 11–13, 16] and the
references therein. Moreover, the study of the integral inequalities using fractional calculus is also of
great importance, we refer the reader to [1, 4–6,8, 14,15] for further information and applications.
In this sense, in a recent work [4], by introducing new concepts on probability theory using fractional
calculus, the author extended some classical results of the papers [3, 11].
Then, based on [4], the authors in [9] introduced other classes of weighted concepts and generalized
some classical results of [3, 12].
Very recently, in [7], the author presented some fractional applications for continuous random variables
having probability density functions (p.d.f.) defined on finite real lines.
Motivated by the papers in [4, 7, 9, 11], in this work, we focus our attention on the applications of
fractional calculus on probability theory. We establish new fractional bounds that estimate the w−
weighted expectation, the w− weighted variance and the w−weighted moment of continuous random
variables. Some recent results on classical random variable bound estimations are also generalized.

2. Preliminaries

In this section, we recall some preliminaries that will be used in this work. We begin by the following
definition.

Definition 2.1. [10] The Riemann-Liouville fractional integral operator of order α ≥ 0, for a con-
tinuous function f on [a, b] is defined as

Jαa [f (t)] =
1

Γ (α)

t∫
a

(t− τ)
α−1

f (τ) dτ, α > 0, a < t ≤ b, (2.1)

J0
a [f (t)] = f (t) ,

where Γ (α) :=
∞∫
0

e−uuα−1du.

For α > 0, β > 0, we have:

Jαa J
β
a [f (t)] = Jα+β

a [f (t)] (2.2)
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and

Jαa J
β
a [f (t)] = Jβa J

α
a [f (t)] . (2.3)

Let us now consider a positive continuous function w defined on [a, b]. We recall the w−concepts [9] :

Definition 2.2. The fractional w−weighted expectation function of order α > 0, for a random variable
X with a positive p.d.f. f defined on [a, b] is defined as

EX,α,w (t) := Jαa [twf (t)] =
1

Γ (α)

t∫
a

(t− τ)
α−1

τw (τ) f (τ) dτ, a ≤ t < b, α > 0, (2.4)

where w : [a, b]→ R+ is a positive continuous function.

Definition 2.3. The fractional w−weighted expectation function of order α > 0 for the random
variable X − E (X) is given by

EX−E(X),α,w (t) :=
1

Γ (α)

t∫
a

(t− τ)
α−1

(τ − E (X))w (τ) f (τ) dτ, a ≤ t < b, α > 0. (2.5)

where f : [a, b]→ R+ is the (p.d.f) of X.

Definition 2.4. The fractional w−weighted expectation of order α > 0 for a random variable X with
a positive p.d.f. f defined on [a, b] is defined as

EX,α,w :=
1

Γ (α)

b∫
a

(b− τ)
α−1

τw (τ) f (τ) dτ, α > 0. (2.6)

For the w−weighted fractional variance of X, we recall the definitions [9]:

Definition 2.5. The fractional w−weighted variance function of order α > 0 for a random variable
X having a positive p.d.f. f on [a, b] is defined as

σ2
X,α,w (t) : = Jαa

[
(t− E (X))

2
wf (t)

]
(2.7)

=
1

Γ (α)

t∫
a

(t− τ)
α−1

(τ − E (X))
2
w (τ) f (τ) dτ, a ≤ t < b, α > 0.

Definition 2.6. The fractional w−weighted variance of order α > 0 for a random variable X having
a positive p.d.f. f on [a, b] is given by

σ2
X,α,w :=

1

Γ (α)

b∫
a

(b− τ)
α−1

(τ − E (X))
2
w (τ) f (τ) dτ, α > 0. (2.8)

For the fractional w−weighted moments, we recall the following definitions [9]:

Definition 2.7. The fractional w−weighted moment function of orders r > 0, α > 0 for a continuous
random variable X having a p.d.f. f defined on [a, b] is defined as

MXr,α,w (t) := Jαa [trwf (t)] =
1

Γ (α)

t∫
a

(t− τ)
α−1

τ rw (τ) f (τ) dτ, a ≤ t < b, α > 0. (2.9)

Definition 2.8. The fractional w−weighted moment of orders r > 0, α > 0 for a continuous random
variable X having a p.d.f. f defined on [a, b] is defined by

MXr,α,w :=
1

Γ (α)

b∫
a

(b− τ)
α−1

τ rw (τ) f (τ) dτ, α > 0. (2.10)

Based on the above definitions, we give the following remark:
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Remark 2.1. (1:) If we take α = 1, w(t) = 1, t ∈ [a, b] in Definition 2, we obtain the classical expec-
tation: EX,1,1 = E (X) .
(2:) If we take α = 1, w(t) = 1, t ∈ [a, b] in Definition 5, we obtain the classical variance: σ2

X,1,1 =

σ2 (X) =
b∫
a

(τ − E (X))
2
f (τ) dτ.

(3:) If we take α = 1, w(t) = 1, t ∈ [a, b] in Definition 7, we obtain the classical moment of order

r > 0,Mr :=
b∫
a

τ rf (τ) dτ .

3. Main Results

In this section, based on [7], we establish new w−weighted integral inequalities (with new fractional
bounds) for random variables with p.d.f. that are defined on finite real intervals. We begin by proving
the following property that generalizes an important property of the classical variance:

Theorem 3.1. Let X be a continuous random variable having a p.d.f. f : [a, b] → R+, and let
w : [a, b]→ R+ be a positive continuous function. Then for all α > 0, n = [α− 1] we have :

σ2
X,α,w = EX2,α,w − 2E (X)EX,α,w + E2 (X)

Γ(α− n)

Γ(α)

n∑
i=0

[[
(−1)iCinb

n−iMXi,α−n,w

]
(3.1)

Proof. By Definition 6, we can write :

σ2
X,α,w :=

1

Γ (α)

b∫
a

(b− τ)
α−1

(τ − E (X))
2
w (τ) f (τ) dτ, α > 0. (3.2)

Hence,

σ2
X,α,w = EX2,α,w − 2E (X)EX,α,w + E2 (X) Jαwf(b). (3.3)

On the other hand, we have

Jαwf(b) =
1

Γ(α)

n∑
i=0

[(−1)iCinb
n−i

b∫
a

(b− τ)
s
τ iwf(τ)dτ

 , (3.4)

where α = n+ s;n = [α]; s ∈ (0; 1).
Definition 8 allows us to write

Jαwf(b) =
Γ(α− n)

Γ(α)

n∑
i=0

[[
(−1)iCinb

n−iMXi,α−n,w

]
. (3.5)

Then, using (3.3) and (3.5), we get (3.1). �

Remark 3.1. a*: Taking w(t) = 1 on [a, b] in the above theorem, we obtain Theorem 3.3 of [7].
b*: Taking α = 1 and w(t) = 1, t ∈ [a, b], we obtain σ2

X,1,1 = E(X2)− E2(X).

Another result is the following:

Theorem 3.2. Let X be a continuous random variable with a p.d.f. f : [a, b] → R+, and let w :
[a, b]→ R+ be a positive continuous function. Then for all α > 0, n = [α−1] the following estimations
are valid. (

EX2,α,w − 2E (X)EX,α,w + E2 (X)
Γ(α− n)

Γ(α)

n∑
i=0

[[
(−1)iCinb

n−iMXi,α−n,w

])

×

(
Γ(α− n)

Γ(α)

n∑
i=0

[[
(−1)iCinb

n−iMXi,α−n,w

])
−
(
EX−E(X),α,w

)2
≤ ‖f‖2∞ Jαa w(b)

[
Jαa
[
w(b)b2

]
− (Jαa [w(b)b])2

]
, f ∈ L∞ [a, b] (3.6)
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and (
EX2,α,w − 2E (X)EX,α,w + E2 (X)

Γ(α− n)

Γ(α)

n∑
i=0

[[
(−1)iCinb

n−iMXi,α−n,w

])

×

(
Γ(α− n)

Γ(α)

n∑
i=0

[[
(−1)iCinb

n−iMXi,α−n,w

])
−
(
EX−E(X),α,w

)2
(3.7)

≤ 1

2
(b− a)

2

(
Γ(α− n)

Γ(α)

n∑
i=0

[[
(−1)iCinb

n−iMXi,α−n,w

])2

.

Proof. To prove the above theorem, we use Theorem 3.1 of [4]. We find that:

1

Γ2 (α)

b∫
a

b∫
a

(b− x)
α−1

(b− y)
α−1

(x− y)
2
p (x) p (y) dxdy (3.8)

= 2Jαa [p(b)] Jαa
[
p(b)(b− E(X))2

]
− 2(Jαa [p(b)(b− E(X)])2

Then, taking p (t) = w(t)f (t) , t ∈ [a, b] in (3.8), it yields that

1

Γ2 (α)

b∫
a

b∫
a

(b− x)
α−1

(b− y)
α−1

(x− y)
2
w(x)f (x)w(y)f (y) dxdy

= 2Jαa [wf(b)]σ2
X,α,w − 2

(
EX−E(X),α,w

)2
. (3.9)

By the hypothesis f ∈ L∞ ([a, b]), we obtain

1

Γ2 (α)

b∫
a

b∫
a

(b− x)
α−1

(b− y)
α−1

(x− y)
2
w(x)w(y)f (x) f (y) dxdy

≤ 2 ‖f‖2∞
[
Jαa [w (b)] Jαa

[
w(b)b2

]
− (Jαa [w(b)b])2

]
. (3.10)

Thanks to (3.9),(3.10),(3.5) and applying Theorem 1, we obtain (3.6).
On the other hand,

1

Γ2 (α)

b∫
a

b∫
a

(b− x)
α−1

(b− y)
α−1

w(x)w(y) (x− y)
2
f (x) f (y) dxdy (3.11)

≤ sup
x,y∈[a,b]

|(x− y)|2 1

Γ2 (α)

b∫
a

b∫
a

(b− x)
α−1

(b− y)
α−1

w(x)w(y)f (x) f (y) dxdy

= (b− a)
2

(Jαa [wf(b)])2.

So, by (3.9),(3.11),(3.1) and (3.5), we obtain (3.7). �

Remark 3.2. (1) If we take w = 1 on [a, b] in Theorem 2, we obtain the first part of Theorem
3.5 of [7],

(2) and taking α = 1, w = 1 on [a, b], we obtain the first part of Theorem 1 in [3].

In what follows, we prove a more general theorem.

Theorem 3.3. Suppose that X is a continuous random variable with a p.d.f. f : [a, b]→ R+ and let
w : [a, b]→ R+ b a continuous function. Then,
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(I): For all α > 0, β > 0;n = [α− 1],m = [α− 1](
EX2,β,w − 2E (X)EX,β,w + E2 (X)

Γ(β −m)

Γ(β)

m∑
i=0

[[
(−1)iCimb

m−iMXi,β−m,w

])
(3.12)

×

(
Γ(α− n)

Γ(α)

n∑
i=0

[[
(−1)iCinb

n−iMXi,α−n,w

])
+

Γ(β −m)

Γ(β)

n∑
i=0

[[
(−1)iCimb

m−iMXi,β−m,w

]
×

(
EX2,α,w − 2E (X)EX,α,w + E2 (X)

Γ(α− n)

Γ(α)

n∑
i=0

[[
(−1)iCinb

n−iMXi,α−n,w

])
−2EX−E(X),α,wEX−E(X),β,w

≤ ‖f‖2∞

[
Jαa [w(b)] Jβa

[
w(b)b2

]
+ Jβa [w(b)] Jαa

[
w(b)b2

]
−2Jαa [w(b)b] Jβa [w(b)b]

]
, f ∈ L∞ ([a, b]) .

(II) Also, the following estimation(
EX2,β,w − 2E (X)EX,β,w + E2 (X)

Γ(β −m)

Γ(β)

n∑
i=0

[[
(−1)iCinb

n−iMXi,β−n,w

])

×

(
Γ(α− n)

Γ(α)

n∑
i=0

[[
(−1)iCinb

n−iMXi,α−n,w

])
+

(
Γ(β −m)

Γ(β)

m∑
i=0

[[
(−1)iCimb

m−iMXi,β−m,w

])

×

(
EX2,α,w − 2E (X)EX,α,w + E2 (X)

Γ(α− n)

Γ(α)

n∑
i=0

[[
(−1)iCinb

n−iMXi,α−n,w

])
−2EX−E(X),α,wEX−E(X),β,w (3.13)

≤ (b− a)
2

(
Γ(α− n)

Γ(α)

n∑
i=0

[[
(−1)iCinb

n−iMXi,α−n,w

])(Γ(β −m)

Γ(β)

m∑
i=0

[[
(−1)iCimb

m−iMXi,β−m,w

])

is also valid for any α > 0, β > 0.

Proof. We have (see [4]):

1

Γ (α) Γ (β)

b∫
a

b∫
a

(b− x)
α−1

(b− y)
β−1

(x− y)
2
p(x)p(y)dxdy

= Jαa [wf(b)] Jβa
[
wf(b)(b− E(X))2

]
+ Jβa [wf(b)] Jαa

[
wf(b)(b− E(X))2

]
−2Jαa [wf(b)(b− E(X))] Jβa [wf(b)(b− E(X))] . (3.14)

In (3.14), if we take p = wf, we obtain

1

Γ (α) Γ (β)

b∫
a

b∫
a

(b− x)
α−1

(b− y)
β−1

(x− y)
2
w(x)w(y)f (x) f (y) dxdy

= Jαa [wf(b)]σ2
X,β,w + Jβa [wf(b)]σ2

X,α,w − 2EX−E(X),α,wEX−E(X),β,w. (3.15)

On the other hand, it is clear that

1

Γ (α) Γ (β)

b∫
a

b∫
a

(b− x)
α−1

(b− y)
β−1

(x− y)
2
w(x)w(y)f (x) f (y) dxdy (3.16)

≤ ‖f‖2∞
[
Jαa [w(b)] Jβa

[
w(b)b2

]
+ Jβa [w(b)] Jαa

[
w(b)b2

]
− 2Jαa [w(b)b] Jβa [w(b)b]

]
.

Consequently, by (3.15), (3.16) and (3.1), we obtain (3.12).
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For the second inequality of Theorem 3, we observe that

1

Γ (α) Γ (β)

b∫
a

b∫
a

(b− x)
α−1

(b− y)
β−1

(x− y)
2
w(x)w(y)f (x) f (y) dxdy

≤ sup
x,y∈[a,b]

|(x− y)|2 1

Γ (α) Γ (β)

b∫
a

b∫
a

(b− x)
α−1

(b− y)
β−1

w(x)w(y)f(x)f(y)dxdy

≤ (b− a)2Jαa [wf(b)] Jβa [wf(b)] . (3.17)

So, applying Theorem 1 and thanks to (3.15) and (3.17), we get (3.13). �

Remark 3.3. (i) : Applying Theorem 14 for α = β, we obtain Theorem 12.
(ii) : Taking w equal to 1 on [a, b] in theorem 14, we obtain the last part of Theorem 3.7 of [7].

Also, we present to reader the following estimation:

Theorem 3.4. Let f be the p.d.f of X on [a, b] and w : [a, b] → R+.Then for all α > 0, n = [α − 1]
the following fractional inequality holds:

(
EX2,α,w − 2E (X)EX,α,w + E2 (X)

Γ(α− n)

Γ(α)

n∑
i=0

[[
(−1)iCinb

n−iMXi,α−n,w

])

×

(
Γ(α− n)

Γ(α)

n∑
i=0

[[
(−1)iCinb

n−iMXi,α−n,w

])
−
(
EX−E(X),α,w

)2
(3.18)

≤ 1

4
(b− a)

2

(
Γ(α− n)

Γ(α)

n∑
i=0

[[
(−1)iCinb

n−iMXi,α−n,w

])2

.

Proof. In [4], it has been proved that

0 ≤ Jαa [p (b)] Jαa
[
p(b) (b− E(X))2

]
− (Jαa [p(b) (b− E(X))])2 ≤ 1

4
(b− a)

2
(Jαa [p(b)])

2
. (3.19)

Hence, taking p(b) = wf(b) in (3.19), we observe that

Jαa [wf(b)]σ2
X,α,w −

(
EX−E(X),α,w

)2 ≤ 1

4
(b− a)

2
(Jαa [wf(b)])

2
. (3.20)

Thanks to Theorem 1 and by the relation (3.5), we obtain (3.18). �

Remark 3.4. Taking w(t) = 1, t ∈ [a, b] in Theorem 4, we obtain Theorem 3.8 of [7] .

Another result related to the moments is the following theorem.
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Theorem 3.5. Let f be the p.d.f of the random variable X on [a, b] and w : [a, b] → R+. Then for
all α > 0, β > 0;n = [α− 1],m = [β − 1], the inequality

Γ(α− n)

Γ(α)

n∑
i=0

[[
(−1)iCinb

n−iMXi,α−n,w

]
×

(
EX2,β,w − 2E (X)EX,β,w + E2 (X)

Γ(β −m)

Γ(β)

m∑
i=0

[[
(−1)iCimb

m−iMXi,β−m,w

])

+
Γ(β − 1 +m)

Γ(β)

m∑
i=0

[[
(−1)iCimb

m−iMXi,β−m,w

]
(3.21)

×

(
EX2,α,w − 2E (X)EX,α,w + E2 (X)

Γ(β − 1 +m)

Γ(α)

n∑
i=0

[[
(−1)iCinb

n−iMXi,α−n,w

])

+2 (a− E (X)) (b− E (X))

(
Γ(α− n)

Γ(α)

n∑
i=0

[[
(−1)iCinb

n−iMXi,α−n,w

])

×

(
Γ(β −m)

Γ(β)

m∑
i=0

[[
(−1)iCimb

n−iMXi,β−m,w

])
.

≤ (a+ b− 2E(X))

 (
Γ(α−n)

Γ(α)

∑n
i=0

[[
(−1)iCinb

n−iMXi,α−n,w

])
EX−E(X),β,w

+
(

Γ(β−m)
Γ(β)

∑m
i=0

[[
(−1)iCimb

m−iMXi,β−m,w

])
EX−E(X),α,w


is valid.

Proof. We have [
Jαa [p(b)] Jβa

[
p(b)(b− E(X))2

]
+ Jβa [p(b)] Jαa

[
p(b)(b− E(X))2

]
−2Jαa [p(b)(b− E(X))] Jβa [p(b)(b− E(X))]

]2
(3.22)

≤
[
(MJαa [p(b)]− Jαa [p(b)(b− E(X))])

(
Jβa [p(b)(b− E(X))]− m̃Jβa [p(b)]

)
+ (Jαa [p(b)(b− E(X))]− m̃Jαa [p(b)])

(
MJβa [p(b)]− Jβa [p(b)(b− E(X))]

)]2
.

Taking : p = wf,M = b− E(X), m̃ = a− E(X) in (3.22), we can write

Jαa [wf(b)]σ2
X,β,w + Jβa [wf(b)]σ2

X,α,w + 2 (a− E (X)) (b− E (X)) Jαa [wf(b)] Jβa [wf(b)]

≤ (a+ b− 2E(X))
[
Jαa [wf(b)]EX−E(X),β,w + Jβa [wf(b)]EX−E(X),α,w

]
. (3.23)

By Theorem 1 and using (3.5), we get (3.21). �

Remark 3.5. If we take w = 1 in Theorem 5, we obtain Theorem 3.10 of [7].

We prove also:

Theorem 3.6. Let X be a continuous random variable having a p.d.f. f : [a, b]→ R+, w : [a, b]→ R+.
Then, for all α > 0, the following two inequalities hold:

Γ(α− n)

Γ(α)

n∑
i=0

[[
(−1)iCinb

n−iMXi,α−n,w

]
EXr−1(X−E(X)),α,w −

(
EX−E(X),α,w

)
MXr−1,α,w

≤ ‖f‖2∞
[
Jαa [w(b)] Jαa [brw(b)]− Jαa [bw(b)] Jαa

[
br−1w(b)

]]
(3.24)

and (
Γ(α− n)

Γ(α)

n∑
i=0

[[
(−1)iCinb

n−iMXi,α−n,w

])
EXr−1(X−E(X)),α,w −

(
EX−E(X),α,w

)
M

Xr−1 ,α,w

≤ (b− a)

2

(
br−1 − ar−1

)(Γ(α− n)

Γ(α)

n∑
i=0

[[
(−1)iCinb

n−iMXi,α−n,w

])2

. (3.25)
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Proof. We have

1

Γ2(α)

∫ b

a

∫ b

a

(b− x)α−1(b− y)α−1p(x)p(y)(g(x)− g(y))(h(x)− h(y))

= 2Jαa [p(b)] Jαa [pgh(b)]− 2(Jαa [pg(b)] Jαa [ph(b)]) (3.26)

Taking p = wf, g(b) = b− E(X) and h(b) = br−1, we obtain

1

Γ2 (α)

b∫
a

b∫
a

(b− x)
α−1

(b− y)
α−1

(x− y)
(
xr−1 − yr−1

)
w(x)w(y)f(x)f(y)dxdy

= 2Jαa [wf(b)]EXr−1(X−E(X)),α,w − 2
(
EX−E(X),α,w

)
MXr−1,α,w. (3.27)

Therefore,

1

Γ2 (α)

b∫
a

b∫
a

(b− x)
α−1

(b− y)
α−1

(x− y)
(
xr−1 − yr−1

)
w(x)w(y)f(x)f(y)dxdy

≤ ‖f‖2∞
[
2Jαa [w(b)] Jαa [brw(b)]− 2Jαa [bw(b)] Jαa

[
br−1w(b)

]]
. (3.28)

Combining (3.27), (3.28) and (3.5), we obtain (3.24).
To obtain (3.25), it suffices to see that

1

Γ2 (α)

b∫
a

b∫
a

(b− x)
α−1

(b− y)
α−1

(x− y)
(
xr−1 − yr−1

)
w(x)w(y)f(x)f(y)dxdy

≤ (b− a)
(
br−1 − ar−1

)
(Jαa [wf(b)])2 (3.29)

and to combine (3.28), (3.29) and (3.5). �

Remark 3.6. Taking α = 1, we obtain Theorem 3.1 of [11].

Theorem 3.7. Let X be a continuous random variable having a p.d.f. f : [a, b]→ R+, w : [a, b]→ R+.
Then we have:

(I∗): For any α > 0, β > 0;n = [α− 1],m = [β − 1]

(
Γ(α− n)

Γ(α)

n∑
i=0

[[
(−1)iCinb

n−iMXi,α−n,w

])
EXr−1(X−E(X)),β,w

+

(
Γ(β −m)

Γ(β)

m∑
i=0

[[
(−1)iCimb

m−iMXi,β−m,w

])
EXr−1(X−E(X)),α,w

−EX,α,wMXr−1,β,w − EX,β,wMXr−1,α,w (3.30)

≤ ‖f‖2∞
[
Jαa [w(b)] Jβa [brw(b)] + Jβa [w(b)] Jαa [brw(b)]

− Jαa [bw(b)] Jβa
[
br−1w(b)

]
− Jβa [bw(b)] Jαa

[
br−1w(b)

]]
where f ∈ L∞ [a, b] .
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(II∗): The inequality(
Γ(α− n)

Γ(α)

n∑
i=0

[[
(−1)iCinb

n−iMXi,α−n,w

])
EXr−1(X−E(X)),β,w

+

(
Γ(β −m)

Γ(β)

m∑
i=0

[[
(−1)iCimb

m−iMXi,β−m,w

])
EXr−1(X−E(X)),α,w

−EX,α,wMXr−1,β,w − EX,β,wMXr−1,α,w

≤ (b− a)

2

(
br−1 − ar−1

)(Γ(α− n)

Γ(α)

n∑
i=0

[[
(−1)iCinb

n−iMXi,α−n,w

])
(3.31)

×

(
Γ(β −m)

Γ(β)

m∑
i=0

[[
(−1)iCimb

m−iMXi,β−m,w

])
holds for all α > 0, β > 0;n = [α− 1],m = [β − 1].

Proof. In [4], it has been proved that

1

Γ(α)Γ(β)

∫ b

a

∫ b

a

(b− x)α−1(b− y)β−1p(x)p(y)(g(x)− g(y))(h(x)− h(y))

= Jαa [p(b)] Jαa [pgh(b)] + Jβa [p(b)] Jβa [pgh(b)] (3.32)

−(Jαa [pg(b)] Jαa [ph(b)])− (Jβa [pg(b)] Jβa [ph(b)])

In (3.32), we take p = wf, g(b) = b− E(X), h(b) = br−1. We obtain

1

Γ (α)

1

Γ (β)

b∫
a

b∫
a

(b− x)
α−1

(b− y)
β−1

)(x− y)
(
xr−1 − yr−1

)
w(x)w(y)f(x)f (y) dxdy

= Jαa [wf(b)]EXr−1(X−E(X)),β,w + Jβa [wf(b)]EXr−1(X−E(X)),α,w (3.33)

−EX,α,wMXr−1,β,w − EX,β,wMXr−1,α,w.

On the other hand, it is clear that

1

Γ (α)

1

Γ (β)

b∫
a

b∫
a

(b− x)
α−1

(b− y)
β−1

(x− y)
(
xr−1 − yr−1

)
w(x)w(y)f(x)f(y)dxdy

≤ ‖f‖2∞
[
Jαa [w(b)] Jβa [brw(b)] + Jβa [w(b)] Jαa [brw(b)] (3.34)

− Jαa [bw(b)] Jβa
[
br−1w(b)

]
− Jβa [bw(b)] Jαa

[
br−1w(b)

]]
.

Consequently, by (3.33), (3.34) and (3.5), we deduce (3.30).
To prove the second part, we observe that

1

Γ (α)

1

Γ (β)

b∫
a

b∫
a

(b− x)
α−1

(b− y)
β−1

w(x)w(y)(x− y)
(
xr−1 − yr−1

)
f(x)f(y)dxdy

= (b− a)
(
br−1 − ar−1

)
Jαa [wf(b)] Jβa [wf(b)] . (3.35)

Then, we take into account (3.33) and (3.35). We obtain (3.31). �

Remark 3.7. Taking α = β in the above theorem, we obtain Theorem 5.
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