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CHARACTERIZATIONS OF ABEL GRASSMANN’S GROUPOIDS BY THE

PROPERTIES OF THEIR DOUBLE-FRAMED SOFT IDEALS

ASGHAR KHAN1,∗, MUHAMMAD IZHAR1 AND ASLIHAN SEZGIN2

Abstract. In this paper, we introduce the concept of double-framed soft ideals and investigate

properties of these ideals in regular, intra-regular, right regular and left regular AG-groupoids. We

also characterize intra-regular AG-groupoids in terms of the double-framed soft ideals.

1. Introduction

The uncertainty which appeared in economics, engineering, environmental science, medical science
and social science and so many other applied sciences is too complicated to be solved within traditional
mathematical framework. Molodtsov [1] introduced the concept of soft set which can be used as a
generic mathematical tool for dealing with uncertainties. Molodtsov pointed out several directions for
the applications of soft sets. Worldwide, there has been a rapid growth in interest in soft set theory
and its applications. Evidence of this can be found in the increasing number of quality articles on
soft sets and related topics that have been published in recent years. Maji et al. [2] described the
application of soft set to a decision making problem. Maji et al. [3] also studied several operations on
soft sets. Jun et al. [4] introduced the notion of soft ordered semigroup. At present, soft set theory is
applied to different algebraic structure. We refer the reader to the papers [5–13].

The idea of generalization of a commutative semigroup, (known as left almost semigroup) was
introduced by M. A. Kazim and M. Naseeruddin in 1972 (see [15]). Some other names have also been
used in literature for left almost semigroups. Cho et al. [16] studied this structure under the name of
right modular groupoid. Holgate [17] studied it as left invertive groupoid. Similarly, Stevanovic and
Protic [18] called this structure an Abel-Grassmann groupoid (or simply AG-groupoid), which is the
primary name under which this structure in known nowadays. There are many important applications
of AG-groupoids in the theory of flocks [19].

Recently, Jun et al. extended the notions of union and intersectional soft sets into double-framed
soft sets and defined double-framed soft subalgebra of a BCK/BCI-algebra and studied the related
properties in [21]. In [14], Jun et al. also defined the concept of a double-framed soft ideal (briefly,
DFS ideal) of a BCK/BCI-algebra and gave many valuable results.

In the present paper, we apply the idea given by Jun et al. in [21], to AG-groupoids and introduce
the concept of double-framed soft ideals in AG-groupoids and investigate their related properties. The
respective examples of these notions are investigated. Intra-regular AG-groupoids are characterized
using the DFS ideals of AG-groupoids.

2. Preliminaries

A groupoid (S, ·) is called an AG-groupoid if it satisfies the left invertive law:

(ab)c = (cb)a for all a, b, c ∈ S.

This structure is closely related with a commutative semigroup because if an AG-groupoid contains
right identity then it becomes a commutative monoid. An AG-groupoid may or may not contain a left
identity. If there exist a left identity in an AG-groupoid then it is unique.
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Every AG-groupoid S satisfies the medial law: (ab)(cd) = (ac)(bd) for all a, b, c, d ∈ S. Every AG-
groupoid S with left identity satisfies the paramedial law: (ab)(cd) = (db)(ca) for all a, b, c, d ∈ S. In an
AG-groupoid S with left identity, using the paramedial law, it is easy to prove that (ab)(cd) = (dc)(ba)
for all a, b, c, d ∈ S.
In an AG-groupoid S with left identity, we have a(bc) = b(ac) for all a, b, c ∈ S.
An AG-groupoid S is called AG∗∗-groupoid if x(yz) = y(xz) for all x, y, z ∈ S.
Throughout this paper, S will represent an AG-groupoid unless otherwise stated. For nonempty
subsets A and B of S we have AB := {ab|a ∈ A and b ∈ B}.
A nonempty subset A of an AG-groupoid S is called sub AG-groupoid of S if A2 ⊆ A.
A nonempty subset A of an AG-groupoid S is called left ( resp. right) ideal of S if SA ⊆ A (resp.
AS ⊆ A).
If A is both a left and a right ideal of S then it is called a two-sided ideal or simply an ideal of S.
We denote by L[a2], R[a2] and J [a2], the priciple left ideal, right ideal, two sided ideal of an AG-
groupoid S generated by a2 ∈ S. Note that the principal left ideal, right ideal, two sided ideals of an
AG-groupoid S generated by a2 are equal. That is L[a2] = R[a2] = J [a2] = Sa2 = a2S = Sa2S =
{sa2 : s ∈ S}. The reader is invited to read [25,26]
An AG-groupoid S is called;

i) right regular if for all a ∈ S, there exist x ∈ S such that a = (aa)x.
ii) left regular if for all a ∈ S, there exist x ∈ S such that a = x(aa).
iii) regular if for all a ∈ S, there exist x ∈ S such that a = (ax)a.
iv) intra-regular if for all a ∈ S, there exist x, y ∈ S such that a = (xa2)y.

3. Soft set (basic operations)

In [6], Atagun and Sezgin introduced some new operations on soft set theory and defined soft sets
in the following way:
Let U be an initial universe, E a set of parameters, P (U) the power set of U and A ⊆ E. Then soft
set fA over U is a function defined by: fA : E −→ P (U) such that fA(x) = ∅ if x /∈ A.
Here fA is called an approximate function. A soft set over U can be represented by the set of ordered
pairs

fA := {(x, fA(x)) : x ∈ E, fA(x) ∈ P (U)} .
It is clear that a soft set is a parameterized family of subsets of U . The set of all soft sets over U is
denoted by S(U).

Definition 3.1. Let fA, fB ∈ S(U). Then fA is a soft subset of fB , denoted by fA⊆̃fB if fA(x) ⊆ fB(x)

for all x ∈ E. Two soft sets fA, fB are said to be equal soft sets if fA⊆̃fB and fB⊆̃fA and is denoted
by fA=̃fB .
Definition 3.2. Let fA, fB ∈ S(U). Then the union of fA and fB , denoted by fA∪̃fB , is defined by
fA∪̃fB = fA∪B , where fA∪B(x) = fA(x) ∪ fB(x), for all x ∈ E.
Definition 3.3. Let fA, fB ∈ S(U). Then the intersection of fA and fB , denoted by fA∩̃fB , is defined
by fA∩̃fB = fA∩B , where fA∩B(x) = fA(x) ∩ fB(x), for all x ∈ E.
Definition 3.4. [22] Let fA, fB ∈ S(U). Then the soft product of fA and fB , denoted by fA◦̃fB , is
defined by

(fA◦̃fB) (x) :=


⋃
x=yz

{fA(y) ∩ fB(z)} if ∃ y, z ∈ S such that x = yz

∅ otherwise.

Throughout this paper, let E = S, where S is an AG-groupoid and A,B,C, · · · are sub AG-
groupoids, unless otherwise stated.
Definition 3.5. [21] A double-framed soft pair 〈(α, β) ;A〉 is called a double-framed soft set of A
over U (briefly, DFS -set of A), where α and β are mappings from A to P (U).
The set of all DFS-sets of S over U will be denoted by DFS(U).

For a DFS-set 〈(α, β) ;A〉 of A and two subsets γ and δ of U , the γ-inclusive set and the δ-exclusive
set of 〈(α, β) ;A〉, denoted by iA(α; γ) and eA(β; δ), respectively, are defined as follows:

iA(α; γ) := {x ∈ A|α (x) ⊇ γ}
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and

eA(β; δ) := {x ∈ A|β (x) ⊆ δ}
respectively. The set

DFA (α, β)(γ,δ) := {x ∈ A|α (x) ⊇ γ, β (x) ⊆ δ}

is called a double framed soft including set [21] of 〈(α, β) ;A〉 .
It is clear that DFA (α, β)(γ,δ) := iA(α; γ) ∩ eA(β; δ).

Let 〈(α, β) ;A〉 and 〈(f, g) ;B〉 be two double-framed soft sets of A over U . Then the int-uni
soft product [23] is denoted by 〈(α, β) ;A〉♦ 〈(f, g) ;B〉 and is defined as a double framed soft set
〈(α◦̃f, β◦̃g) ;S〉 defined to be a double-framed soft set over U , in which α◦̃f, and β◦̃g are soft mappings
from S to P (U), given as follows:

α◦̃f : S −→ P (U), x 7−→


⋃
x=yz

{α (y) ∩ f (z)} if ∃ y, z ∈ S such that x = yz,

∅ otherwise,

β◦̃g : S −→ P (U), x 7−→


⋂
x=yz

{β (y) ∪ g (z)} if ∃ y, z ∈ S such that x = yz,

U otherwise.

One can easily see that the operation “♦” is well-defined.
Let 〈(α, β) ;A〉 and 〈(f, g) ;B〉 be two double-framed soft sets of A and B respectively over a common

universe U . Then 〈(α, β) ;A〉 is called a double-framed soft subset (briefly, DFS subset) of 〈(f, g) ;B〉,
denoted by 〈(α, β) ;A〉 v 〈(f, g) ;B〉, if

i) A ⊆ B,

ii) (∀e ∈ A)

(
α and f are identical approximations. i.e. α(e) ⊆ f(e)
βc and gc are identical approximations. i.e. β(e) ⊇ g(e)

)
.

For any two DFS sets 〈(α, β) ;A〉 and 〈(f, g) ;A〉 of A over U , the DFS int-uni set [21] of 〈(α, β) ;A〉
and 〈(f, g) ;A〉 , is defined to be a DFS set

〈(
α∩̃f, β∪̃g

)
;A
〉

whereα∩̃f, and β∪̃g are mappings given

by α∩̃f : A→ P (U) , x→ α (x) ∩ f (x), β∪̃g : A→ P (U) , x→ β (x) ∪ g (x).
It is denoted by 〈(α, β) ;A〉 u 〈(f, g) ;A〉 =

〈(
α∩̃f, β∪̃g

)
;A
〉
.

For a non-empty subset A of S, the DFS set XA=(χA, χ
c
A;A) is called the double framed charac-

teristic soft set where

χA : S → P (U), x→
{
U if x ∈ A
∅ if x /∈ A ,

χcA : S → P (U), x→
{
∅ if x ∈ A
U if x /∈ A .

We have the following lemmas.

Lemma 3.1. (cf. [24]) If S is an AG-groupoid then the set (DFS(U),♦) is an AG-groupoid.

Lemma 3.2. (cf. [24]) If S is an AG-Groupoid then the medial law holds in DFS(U).
That is for 〈(α, β) ;S〉 , 〈(f, g) ;S〉 , 〈(h, k) ;S〉 and 〈(p, q) ;S〉 ∈ DFS(U), we have
(α◦̃f) ◦̃ (h◦̃p) = ((h◦̃p) ◦̃f) ◦̃α and (β◦̃g) ◦̃ (k◦̃q) = ((k◦̃q) ◦̃g) ◦̃β.

Lemma 3.3. (cf. [24]) If S is an AG-groupoid with left identity then the paramedial law holds in
DFS(U). That is for all 〈(α, β) ;S〉 , 〈(f, g) ;S〉 , 〈(h, k) ;S〉 and 〈(p, q) ;S〉 ∈ DFS(U),
(α◦̃f)◦̃(h◦̃p) = (p◦̃f)◦̃(h◦̃α) and (β◦̃g)◦̃(k◦̃q) = (q◦̃g)◦̃(k◦̃β)

Lemma 3.4. Let 〈(α, β) ;S〉 , 〈(f, g) ;S〉 , 〈(h, k);S〉 and 〈(p, q) ;S〉 ∈ DFS(U) then,
i) 〈(α, β) ;S〉 � (〈(f, g) ;S〉 u 〈(h, k);S〉) = (〈(α, β) ;S〉 � 〈(f, g) ;S〉) u (〈(α, β) ;S〉 � 〈(h, k);S〉) .
ii) If 〈(f, g) ;S〉 v 〈(h, k);S〉 then 〈(α, β) ;S〉 � 〈(f, g) ;S〉 v 〈(α, β) ;S〉 � 〈(h, k);S〉 .
iii) If 〈(α, β) ;S〉 v 〈(f, g) ;S〉 and 〈(h, k);S〉 v 〈(p, q) ;S〉 then 〈(α, β) ;S〉�〈(h, k);S〉 v 〈(f, g) ;S〉�

〈(p, q) ;S〉 .

Proof. Straightforward. �
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Lemma 3.5. Let A and B be two non empty subsets of an AG-groupoid S then the following properties
hold:

i) If A ⊆ B then XAv XB .
ii) XA uXB = XA∩B .
iii) XA �XB = XAB .

Proof. Straightforward. �

4. Double-framed soft ideals

In this section, we define double-framed soft AG-groupoids, double-framed soft left (resp. right)
ideal of S over U and discuss their properties in regular, intra-regular, right regular and left regular
AG-groupoids.

Definition 4.1. [24] Let S be an AG-groupoid and 〈(α, β);A〉 be a DFS-set of A over U . Then
〈(α, β) ;A〉 is called a double-framed soft AG-groupoid (briefly, DFS AG-groupoid) of A over U if it
satisfies α (xy) ⊇ α (x) ∩ α (y) and β (xy) ⊆ β (x) ∪ β (y) for all x, y ∈ A.

Example 4.1. Consider an AG-groupoid S = {0, 1, 2, 3, 4} with the following multiplication table:

· 0 1 2 3 4
0 4 1 1 2 4
1 1 1 1 1 1
2 1 1 1 1 1
3 1 1 1 2 1
4 4 1 1 1 4

Consider a double-framed soft 〈(α, β) ;S〉 of S over U = Z− defined by:
α (0) = {−1} , α (1) = {−1,−2,−3,−4,−5,−6} , α (2) = {−1,−2,−3} , α (3) = {−1,−3} ,

α(4) = {−1,−3,−5}.
β (0) = {−1,−2,−3,−4,−5} , β (1) = {−1,−2} , β(2) = {−1,−2,−3,−4} ,

β (3) = {−1,−2,−3,−4,−6} , β(4) = {−2,−4}.
By routine checking it is easy to verify that 〈(α, β);S〉 is a double-framed soft AG-groupoid of S over
U .

Again consider U =

{[
x x
0 0

]
|x ∈ Z3

}
, the set of all 2 × 2 matrices with entries from Z3 be the

universal set. Define a double-framed soft set 〈(f, g) ;B〉 of S over U as follows:

f (0) =

{[
0 0
0 0

]
,

[
2 2
0 0

]}
= f(2), f (1) = f(3) =

{[
0 0
0 0

]
,

[
1 1
0 0

]}
,

f (4) =

{[
1 1
0 0

]
,

[
2 2
0 0

]}
.

g (0) =

{[
0 0
0 0

]
,

[
1 1
0 0

]}
= g (2) , g(1) = g(3)

{[
0 0
0 0

]
,

[
2 2
0 0

]}
,

g (4) =

{[
0 0
0 0

]
,

[
1 1
0 0

]
,

[
2 2
0 0

]}
.

Since f (3 · 3) = f (2) + f (3) ∩ f(3) and/or g (0 · 0) = g (4) * g (0) ∪ g(0). Hence, 〈(f, g) ;B〉 is not a
DFS AG-groupoid of S over U .

Theorem 4.1. Let 〈(α, β) ;A〉 be a DFS-set over U . Then 〈(α, β) ;A〉 is a DFS AG-groupoid over U
if and only if

〈(α, β) ;A〉♦ 〈(α, β) ;A〉 v 〈(α, β) ;A〉 .

Proof. Assume that 〈(α, β) ;A〉 is a DFS AG-groupoid over U . Let a ∈ A ⊆ S. If (α◦̃α) (a) = ∅
and (β◦̃β) (a) = U, then obviously, (α◦̃α) (a) ⊆ α (a) and (β◦̃β) (a) ⊇ β (a) . Suppose that there exist
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x, y ∈ S such that a = xy. Then

(α◦̃α) (a) =
⋃
a=xy

{α (x) ∩ α (y)} ⊆
⋃
a=xy

α (xy)

=
⋃
a=xy

α (a) = α (a) ,

and

(β◦̃β) (a) =
⋂
a=xy

{β (x) ∪ β (y)} ⊇
⋂
a=xy

β (xy)

=
⋂
a=xy

β (a) = β (a) .

Thus, (α◦̃α) (a) ⊆ α (a) and (β◦̃β) (a) ⊇ β (a) .Hence 〈(α, β) ;A〉♦ 〈(α, β) ;A〉 v 〈(α, β) ;A〉 .
Conversely, assume that 〈(α, β) ;A〉♦ 〈(α, β) ;A〉 v 〈(α, β) ;A〉 . Hence α◦̃α ⊆ α and β◦̃β ⊇ β. Let

x, y ∈ A ⊆ S and a = xy, then we have

α (xy) = α (a) ⊇ (α◦̃α) (a)

=
⋃
a=xy

{α (x) ∩ α (y)} ⊇ α (x) ∩ α (y)

and

β (xy) = β (a) ⊆ (β◦̃β) (a)

=
⋂
a=xy

{β (x) ∪ β (y)} ⊆ β (x) ∪ β (y) .

Hence, 〈(α, β) ;A〉 is a DFS AG-groupoid over U . �

Theorem 4.2. For a DFS-set 〈(α, β) ;A〉 of A, the following are equivalent:
(1) 〈(α, β) ;A〉 is a DFS AG-groupoid of A.
(2) The non-empty γ-inclusive set and δ-exclusive set of 〈(α, β) ;A〉 are sub AG-groupoids of S for

any subsets γ and δ of U .

Proof. Suppose that 〈(α, β) ;A〉 is DFS AG-groupoid of A. Let γ and δ be subsets of U such that
iA(α; γ) 6= ∅ 6= eA(β; δ). Then there exist x, a ∈ A such that α(x) ⊇ γ and β(a) ⊆ δ. Let p, q ∈
iA(α; γ) then α(p) ⊇ γ and α(q) ⊇ γ. Since 〈(α, β) ;A〉 is DFS AG-groupoid of A, hence α(pq) ⊇
α(p) ∩ α(q) ⊇ γ ∩ γ = γ. Thus pq ∈ iA(α; γ) and so iA(α; γ) is sub AG-groupoid of S. Now suppose
v, u ∈ eA(β; δ) then β(v) ⊆ δ and β(u) ⊆ δ. Since 〈(α, β) ;A〉 is DFS AG-groupoid of A, hence
β(vu) ⊆ β(v) ∪ β(u) ⊆ δ ∪ δ = δ. Thus vu ∈ eA(β; δ) and so eA(β; δ) is sub AG-groupoid of S.

Conversely, suppose the non-empty γ-inclusive set and δ-exclusive set of 〈(α, β) ;A〉 are sub AG-
groupoids of S for any subsets γ and δ of U . Let x, y ∈ A such that α(x) = γ1, α(y) = γ2, β(x) = δ1,
β(y) = δ2. Let us take γ = γ1 ∩ γ2 and δ = δ1 ∪ δ2..Now α(x) = γ1 ⊇ γ1 ∩ γ2 = γ and so x ∈ iA(α; γ).
Similarly y ∈ iA(α; γ). By hypothesis, iA(α; γ) is a sub AG-groupoid of S, hence xy ∈ iA(α; γ)
and so α(xy) ⊇ γ = γ1 ∩ γ2 = α(x) ∩ α(y). Also as β(x) = δ1 ⊆ δ1 ∪ δ2 = δ then x ∈ eA(β; δ).
Similarly y ∈ eA(β; δ). By hypothesis, eA(β; δ) is a sub AG-groupoid of S, hence xy ∈ eA(β; δ) and so
β(xy) ⊆ δ = δ1 ∪ δ2 = β(x) ∪ β(y). Therefore 〈(α, β;A)〉 is a DFS AG-groupoid of A. �

For any DFS-set 〈(α, β) ;E〉 of E, let 〈(α∗, β∗);E〉 be a DFS-set of E defined by

α∗ : E → P (U), x→
{
α(x) if x ∈ iE(α; γ)

η otherwise

β∗ : E → P (U), x→
{
β(x) if x ∈ eE(β; δ)

ρ otherwise

where γ, δ, η and ρ are subsets of U with η ( α(x) and ρ ) β(x).

Theorem 4.3. If 〈(α, β) ;A〉 is a DFS AG-groupoid of A over U then so is 〈(α∗, β∗);A〉.
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Proof. Suppose that 〈(α, β) ;A〉 is a DFS AG-groupoid of A over U then non-empty γ-inclusive set and
δ-exclusive set of 〈(α, β) ;A〉 are sub AG-groupoids of S for any subsets γ and δ of U . Let x, y ∈ A.
If x, y ∈ iA(α; γ) then xy ∈ iA(α; γ) and hence α∗(xy) = α(xy) ⊇ α(x) ∩ α(y) = α∗(x) ∩ α∗(y). If
x /∈ iA(α; γ) or y /∈ iA(α; γ) then α∗(x) = η or α∗(y) = η. Hence α∗(xy) ⊇ η = α∗(x) ∩ α∗(y).

Now if x, y ∈ eA(β; δ) then xy ∈ eA(β; δ) and hence β∗(xy) = β(xy) ⊆ β(x)∪ β(y) = β∗(x)∪ β∗(y).
If x /∈ eA(β; δ) or y /∈ eA(β; δ) then β∗(x) = ρ or β∗(y) = ρ. Hence β∗(xy) ⊆ ρ = β∗(x) ∪ β∗(y).
Therefore 〈(α∗, β∗);A〉 is a DFS AG-groupoid of A. �

The converse of this theorem is not true in general.

Example 4.2. Suppose there are ten patients in the initial universe U given by:
U = {p1, p2, p3, p4, p5, p6, p7, p8, p9, p10}.

Let E = {e1, e2, e3, e4} be set of parameters showing status of patients in which
e1 stands for the parameter “chest pain”
e2 stands for the parameter “head ache”
e3 stands for the parameter “tooth ache”
e4 stands for the parameter “back pain”

with the following multiplication table

· e1 e2 e3 e4
e1 e3 e3 e3 e4
e2 e4 e4 e3 e3
e3 e4 e4 e4 e4
e4 e4 e4 e4 e4

Define a DFS set 〈(α, β);E〉 by

α : E −→ P (U), x −→


{p1, p2, p3, p5} if x = e1
{p1, p2, p3, p4, p5} if x = e2
{p1, p3, p5, p7} if x = e3
{p1, p3, p5, p7, p9} if x = e4

β : E −→ P (U), x −→


{p1, p3} if x = e1
{p1, p3, p5} if x = e2
{p1, p2} if x = e3
{p1, p2} if x = e4

then iE(α; γ) = {e3, e4} for γ = {p1, p3, p5, p7} and eE(β; δ) = {e3, e4} for δ = {p1, p2}.
According to the definition, we have 〈(α∗, β∗);E〉 is defined as

α∗ : E −→ P (U), x −→


{p1, p3} if x = e1
{p1, p3} if x = e2

{p1, p3, p5, p7} if x = e3
{p1, p3, p5, p7, p9} if x = e4

β∗ : E −→ P (U), x −→


{p1, p2, p3, p4, p5} if x = e1
{p1, p2, p3, p4, p5} if x = e2

{p1, p2} if x = e3
{p1, p2} if x = e4

By routine checking, we have 〈(α∗, β∗);E〉 is DFS AG-groupoid. But 〈(α, β);E〉 is not DFS AG-
groupoid because α(e3) = α(e1e1) + α(e1) ∩ α(e2) or β(e3) = β(e1e1) * β(e1) ∪ β(e1).

Theorem 4.4. Let A be a nonempty subset of an AG-groupoid S. Then A is a sub AG-groupoid of S
if and only if the DFS-set XA = 〈(χA, χcA) ;A〉 is a DFS AG-groupoid of S over U .

Proof. Straightforward. �

Let 〈(α, β) ;A〉 and 〈(α, β) ;B〉 be two DFS-sets over U then (α∧, β∨)-product of 〈(α, β) ;A〉 and
〈(α, β) ;B〉 is defined [21] to be a DFS-set 〈(αA∧B , βA∨B);A×B〉 over U in which
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αA∧B : A×B → P (U), (x, y)→ α(x) ∩ α(y)

βA∨B : A×B → P (U), (x, y)→ β(x) ∪ β(y)

Theorem 4.5. For any AG-groupoids E and F as set of parameters, let 〈(α, β);E〉 and 〈(α, β);F 〉 be
DFS AG-groupoids of E and F respectively. Then (α∧, β∨)-product of 〈(α, β);E〉 and 〈(α, β);F 〉 is a
DFS AG-groupoid of E × F .

Proof. We note that E × F is also an AG-groupoid with the operation (a, b) ∗ (c, d) = (ac, bd) for all
(a, b), (c, d) ∈ E × F .
Let (u, v), (s, t) ∈ E × F , we have αE∧F ((u, v) ∗ (s, t)) = αE∧F (us, vt) = α(us) ∩ α(vt)
⊇ α(u) ∩ α(s) ∩ α(v) ∩ α(t) = α(u) ∩ α(v) ∩ α(s) ∩ α(t) = αE∧F (u, v) ∩ αE∧F (s, t),
and
βE∨F ((u, v) ∗ (s, t)) = βE∨F (us, vt) = β(us) ∪ β(vt) ⊆ β(u) ∪ β(s) ∪ β(v) ∪ β(t)
= β(u) ∪ β(v) ∪ β(s) ∪ β(t) = βE∨F (u, v) ∪ βE∨F (s, t).
Hence (α∧, β∨)-product of 〈(α, β);E〉 and 〈(α, β);F 〉 is a DFS AG-groupoid of E × F . �

Definition 4.2. A DFS-set 〈(α, β) ;A〉 of A over U is called a double-framed soft left (resp. right)
ideal (briefly, DFS left (right) ideal) of A over U if it satisfies:

α (ab) ⊇ α (b) ( resp. α (ab) ⊇ α (a))
and β (ab) ⊆ β (b) (resp. β (ab) ⊆ β (a)) for all a, b ∈ A.

A DFS-set 〈(α, β) ;A〉 of A over U is called a double-framed soft two-sided ideal (briefly, DFS two-sided
ideal) of A over U if it is both a DFS left and a DFS right ideal of A over U .

Example 4.3. There are six women patients in the initial universe set U given by

U := {p1, p2, p3, p4, p5, p6}.
Let S := {e0, e1, e2} be the set of status of each patient in U with the following type of disease
e0 stands for the parameter “headache”,
e1 stands for the parameter “chest pain”,
e2 stands for the parameter “mental depression”,

with the following binary operation ∗ given in the Cayley table:

∗ e0 e1 e2
e0 e0 e0 e0
e1 e2 e2 e2
e2 e0 e0 e0

Then (S, ∗) is an AG-groupoid. Consider a DFS-set 〈(α, β) ;S〉 over U as follows:

α : S −→ P (U), x 7−→

 {p1, p2, p3} if x = e0,
{p2, p3} if x = e1,
{p1, p2, p3} if x = e2,

and

β : S −→ P (U), x 7−→

 {p2, p4} if x = e0,
{p1, p2, p3, p4} if x = e1,
{p1, p2, p4} if x = e2.

Then one can easily show that 〈(α, β) ;S〉 is a DFS ideal over U . However, if we define another
double-framed soft set 〈(f, g) ;S〉 such that

f : S −→ P (U), x 7−→

 {p1, p2, p6} if x = e0
{p1} if x = e1
{p2, p4, p6} if x = e2

and
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g : S −→ P (U), x 7−→

 {p2, p4, p6} if x = e0
{p1, p6} if x = e1
{p1, p2, p3} if x = e2

.
Then 〈(f, g) ;S〉 is not DFS ideal of S over U , because

f (e2 ∗ e0) = f (e0) = {p1, p2, p6} + {p2, p4, p6} = f (e2)

and/or
g (e2 ∗ e0) = f (e0) = {p2, p4, p6} * {p1, p2, p3, p4} = g (e2) .

Proposition 4.1. Let 〈(α, β) ;A〉 be a DFS-set over U . Then 〈(α, β) ;A〉 is a DFS ideal of S over U
if and only if α (xy) ⊇ α (x) ∪ α (y) and β (xy) ⊆ β (x) ∩ β (y) for all x, y ∈ S.

Proof. Let 〈(α, β) ;A〉 be a DFS ideal of S over U. Then α (xy) ⊇ α (y) , α (xy) ⊇ α (x) and β (xy) ⊆
β (y) , β (xy) ⊆ β (x) for all x, y ∈ S. Thus, α (xy) ⊇ α (x) ∪ α (y) and β (xy) ⊆ β (x) ∩ β (y) for all
x, y ∈ S.

Conversely, suppose that α (xy) ⊇ α (x) ∪ α (y) and β (xy) ⊆ β (x) ∩ β (y) for all x, y ∈ S. Then
α (xy) ⊇ α (x) ∪ α (y) ⊇ α (x) , α (y) and β (xy) ⊆ β (x) ∩ β (y) ⊆ β (x) , β (y) . Hence 〈(α, β) ;A〉 is a
DFS ideal of S over U. �

Proposition 4.2. Let 〈(α, β) ;A〉 be a DFS-set over U . If 〈(α, β) ;A〉 is a DFS left (resp., right or
two-sided) ideal over U . Then 〈(α, β) ;A〉 is a DFS AG-groupoid over U .

Proof. Straightforward. �

Proposition 4.3. If S is an AG-groupoid with left identity e then every DFS right ideal is DFS ideal.

Proof. Let 〈(α, β) ;A〉 be a DFS right ideal of A over U . Now let x, y ∈ A, then α(xy) = α((ex)y) =
α((yx)e) ⊇ α(yx) ⊇ α(y) and β(xy) = β((ex)y) = β((yx)e) ⊆ β(yx) ⊆ β(y). Hence α(xy) ⊇ α(y) and
β(xy) ⊆ β(y) for all x, y ∈ A. Thus 〈(α, β) ;A〉 is DFS left ideal and hence 〈(α, β) ;A〉 is DFS ideal of
A over U . �

The converse of the above theorem is not true in general.

Example 4.4. Let S = {1, 2, 3, 4} with the following multiplication table:

· 1 2 3 4
1 2 2 4 4
2 2 2 2 2
3 1 2 3 4
4 1 2 1 2

It is easy to see that 3 is left identity in S.
Consider a DFS-set 〈(α, β) ;S〉 over U = Z as follows:

α : S −→ P (U), x 7−→


4Z if x = 1,
Z if x = 2,
8Z if x = 3,
2Z if x = 4

and

β : S −→ P (U), x 7−→


8Z if x = 1,
16Z if x = 2,
Z if x = 3,
4Z if x = 4

Then one can easily show that 〈(α, β) ;S〉 is a DFS left ideal over U . However, 〈(α, β);S〉 is not DFS
right ideal over U because α(1) = α(41) + α(4) and/or β(4) = β(14) * β(1).
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Proposition 4.4. (cf. [24]) Let A be a nonempty subset of an AG-groupoid S. Then A is an ideal of
S if and only if the DFS-set XA = 〈(χA, χcA) ;A〉 is a DFS ideal of S over U .

Proof. Straightforward �

Theorem 4.6. (cf. [24]) A DFS set 〈(α, β);A〉 is DFS left (resp. right ) ideal of A over U if and only
if XA � 〈(α, β);A〉 v 〈(α, β);A〉 (resp. 〈(α, β);A〉 �XA v 〈(α, β);A〉).

Proof. Straightforward �

Theorem 4.7. If 〈(α, β) ;S〉 is a DFS left (resp. right) ideal of S over U then so is 〈(α∗, β∗);S〉.

Proof. Suppose that 〈(α, β) ;S〉 is a DFS left ideal of S over U then non-empty γ-inclusive set and δ-
exclusive set of 〈(α, β) ;S〉 are left ideals of S for any subsets γ and δ of U . Let a, b ∈ S. If b ∈ iS(α; γ)
then ab ∈ iS(α; γ). Thus α∗(ab) = α(ab) ⊇ α(b) = α∗(b). If b /∈ iS(α; γ) then ab ∈ iS(α; γ) or ab /∈
iS(α; γ). If ab ∈ iS(α; γ) then α∗(ab) = α(ab) ⊃ η = α∗(b). If ab /∈ iS(α; γ) then α∗(ab) = η = α∗(b).
In either case α∗(ab) ⊇ α∗(b) for all a, b ∈ S.

Now if b ∈ eS(β; δ) then ab ∈ eS(β; δ) and hence β∗(ab) = β(ab) ⊆ β(b) = β∗(b). If b /∈ eS(β; δ)
then ab ∈ eS(β; δ) or ab /∈ eS(β; δ). If ab ∈ eS(β; δ) then β∗(ab) = β(ab) ⊂ ρ = β∗(b). If ab /∈ eS(β; δ)
then β∗(ab) = ρ = β∗(b). In either case β∗(ab) ⊆ β∗(b). Therefore 〈(α∗, β∗);S〉 is a DFS left ideal of
S. over U .
In a similar fashion, we can prove the result for DFS right ideal. �

The converse of the above theorem is not true in general.

Example 4.5. Suppose U = Z and S = {0, 1, 2} with the following multiplication table

· 0 1 2
0 0 0 0
1 2 2 2
2 0 0 0

Then (S, ·) an AG-groupoid. Consider a DFS 〈(α, β);S〉 over U as follows:

α : S → P (U), x 7−→

 4Z if x = 0
6Z if x = 1
4Z if x = 2

and

β : S → P (U), x 7−→

 16Z if x = 0
6Zif x = 1

16Z if x = 2

Then for γ = δ = 4Z we have iS(α; γ) = eS(β; δ) = {0, 2}.
Now define 〈(α∗, β∗);S〉 as follows:

α∗ : S → P (U), x 7−→

 4Z if x = 0
12Z if x = 1
4Z if x = 2

and

β∗ : S → P (U), x 7−→

 16Z if x = 0
Z if x = 1

16Z if x = 2

Routine calculations shows that 〈(α∗, β∗);S〉 is a DFS left ideal over U . But 〈(α, β);S〉 is not DFS left
ideal over U since α(0) = α(01) + α(1) and/or β(0) = β(01) * β(1).
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Theorem 4.8. For any AG-groupoids E and F as set of parameters, let 〈(α, β);E〉 and 〈(α, β);F 〉
be DFS left (resp. right) ideals of E and F respectively. Then (α∧, β∨)-product of 〈(α, β);E〉 and
〈(α, β);F 〉 is a DFS left (resp. right) ideal of E × F .

Proof. By definition, the (α∧, β∨)-product of 〈(α, β);E〉 and 〈(α, β);F 〉 is a DFS 〈(αE∧F , βE∨F );E × F 〉
in which
αE∧F : E × F → P (U), (x, y)→ α(x) ∩ α(y) and βE∨F : E × F → P (U), (x, y)→ β(x) ∪ β(y).
We note that E × F is also an AG-groupoid with the operation (a, b) ∗ (c, d) = (ac, bd) for all
(a, b), (c, d) ∈ E × F .
Let (u, v), (s, t) ∈ E×F , we have αE∧F ((u, v) ∗ (s, t)) = αE∧F (us, vt) = α(us)∩α(vt) ⊇ α(s)∩α(t) =
αE∧F (s, t),
and βE∨F ((u, v) ∗ (s, t)) = βE∨F (us, vt) = β(us) ∪ β(vt) ⊆ β(s) ∪ β(t) = βE∨F (s, t). Hence (α∧, β∨)-
product of 〈(α, β);E〉 and 〈(α, β);F 〉 is a DFS left ideal of E × F . �

Theorem 4.9. A DFS-set of a right regular AG-groupoid S is DFS left ideal iff it is a DFS right ideal
of S over U.

Proof. Let S be a right regular AG-groupoid and let 〈(α, β);A〉 be a DFS-left ideal of A over U . Now
let a, b ∈ A ⊆ S, so a ∈ S. But since S is right regular so there exist an element x such that a = (aa)x.
Now α(ab) = α(((aa)x)b) = α((bx)(aa)) ⊇ α(aa) ⊇ α(a) and β(ab) = β(((aa)x)b) = β((bx)(aa)) ⊆
β(aa) ⊆ β(a). Hence 〈(α, β);A〉 is DFS-right ideal of A over U.

Conversely, let 〈(α, β);A〉 be a DFS-right ideal of A over U. Take a, b ∈ A ⊆ S, so a ∈ S. But
since S is right regular so there exist an element x such that a = (aa)x. Now α(ab) = α(((aa)x)b) =
α((bx)(aa)) = α((ba)(xa)) ⊇ α(ba) ⊇ α(b) and β(ab) = β(((aa)x)b) = β((bx)(aa)) = β((ba)(xa)) ⊆
β(ba) ⊆ β(b). Hence 〈(α, β);A〉 is DFS-left ideal of A over U. �

Proposition 4.5. A DFS-set of an intra-regular AG-groupoid S is a DFS right ideal if and only if it
is a DFS left ideal.

Proof. Let 〈(α, β) ;A〉 be a DFS right ideal of A over U . Let a, b ∈ A. Since a ∈ S and S is intra-regular
AG-groupoid so there exists x, y ∈ S such that a = (xa2)y. Then we have
α(ab) = α(((xa2)y)b) = α((by)(xa2)) ⊇ α(by) ⊇ α(b). Also β(ab) = β(((xa2)y)b) = β((by)(xa2)) ⊆
β(by) ⊆ β(b). Hence 〈(α, β) ;A〉 is DFS left ideal of A over U .

Conversely, assume that 〈(α, β) ;A〉 is a DFS left ideal of A over U . Now α(ab) = α(((xa2)y)b) =
α((by)(xa2)) ⊇ α(xa2) ⊇ α(a2) ⊇ α(a). Also β(ab) = β(((xa2)y)b) = β((by)(xa2)) ⊆ β(xa2) ⊆
β(a2) ⊆ β(a). Hence 〈(α, β) ;A〉 is DFS right ideal of A over U . �

Proposition 4.6. A DFS right ideal of a regular AG-groupoid S is a DFS left ideal of S.

Proof. Let 〈(α, β);S〉 be a DFS right ideal of a regular AG-groupoid S. Let x, y ∈ S. Since x ∈ S and
S is regular so there exist a ∈ S such that x = (xa)x. Thus,
α(xy) = α(((xa)x)y) = α((yx)(xa)) ⊇ α(yx) ⊇ α(y) and β(xy) = β(((xa)x)y) = β((yx)(xa)) ⊆

β(yx) ⊆ β(y). Hence 〈(α, β);S〉 is DFS left ideal. �

Proposition 4.7. Every DFS right ideal of a regular AG-groupoid S is idempotent.

Proof. Let 〈(α, β);S〉 be a DFS right ideal of a regular AG-groupoid S. Then 〈(α, β);S〉� 〈(α, β);S〉 v
〈(α, β);S〉 �XS v 〈(α, β);S〉 .
Now we show that 〈(α, β);S〉 v 〈(α, β);S〉� 〈(α, β);S〉 . Since S is regular, so for any x ∈ S, there exist
an element y ∈ S such that x = (xy)x.

We have (α◦̃α)(x) =
⋃
x=ab

{α(a) ∩ α(b)} ⊇ α(xy) ∩ α(x) ⊇ α(x) ∩ α(x) = α(x)

and (β◦̃β)(x) =
⋂
x=ab

{β(a) ∪ β(b)} ⊆ β(xy) ∪ β(x) ⊆ β(x) ∪ β(x) = β(x).

Hence 〈(α, β);S〉 v 〈(α, β);S〉 � 〈(α, β);S〉 and so 〈(α, β);S〉 = 〈(α, β);S〉 � 〈(α, β);S〉, which is the
desired result.

�

Proposition 4.8. Let 〈(α, β) ;S〉 be a DFS right ideal and 〈(f, g) ;S〉 a DFS left ideal of S over U ,
respectively. Then 〈(α, β) ;S〉♦ 〈(f, g) ;S〉 v 〈(α, β) ;S〉 u 〈(f, g) ;S〉.
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Proof. Let 〈(α, β) ;S〉 be a DFS right ideal and 〈(f, g) ;S〉 be DFS left ideal of S over U . Then
〈(α, β);S〉 v XS and 〈(f, g) ;S〉 v XS always true.
We have 〈(α, β);S〉 � 〈(f, g) ;S〉 v 〈(α, β);S〉 �XS v 〈(α, β);S〉
and 〈(α, β);S〉 � 〈(f, g) ;S〉 v XS♦ 〈(f, g) ;S〉 v 〈(f, g) ;S〉 . It follows that 〈(α, β);S〉 � 〈(f, g) ;S〉 v
〈(α, β);S〉 u 〈(f, g) ;S〉 . �

Definition 4.3. A DFS 〈(α, β);A〉 of A over U is called DFS semiprime if α(a) ⊇ α(a2) and β(a) ⊆
β(a2) for all a ∈ A.

Theorem 4.10. For a non empty subset A of an AG-groupoid S, the following conditions are equiv-
alent:

i) A is semiprime.
ii) The DFS characteristics function XA is DFS semiprime.

Proof. (i)⇒(ii). Assume that A is semiprime. Let a ∈ A. If a2 ∈ A then a ∈ A since A is semiprime.
Thus χA(a) = U = χA(a2) and χcA(a) = ∅ = χcA(a2).
If a2 /∈ A then χA(a2) = ∅ ⊆ χA(a) and χcA(a2) = U ⊇ χcA(a). Hence XA is DFS semiprime.

(ii)⇒(i). Assume XA is DFS semiprime. Let a2 ∈ A. Then U = χA(a2). But χA(a) ⊇ χA(a2) = U .
Hence χA(a) = U and so a ∈ A.
Also χcA(a) ⊆ χcA(a2) = ∅, so χcA(a) = ∅. Thus a ∈ A. Hence A is semiprime. �

Proposition 4.9. For any DFS AG-groupoid 〈(α, β);A〉 of A over U , the following conditions are
equivalent:

i) 〈(α, β);A〉 is DFS semiprime.
ii) α(a) = α(a2) and β(a) = β(a2) for all a ∈ A.

Proof. (i)⇒(ii). Assume 〈(α, β);A〉 is DFS semiprime and let a ∈ A. Now α(a) ⊇ α(a2) = α(aa) ⊇
α(a)∩α(a) ⊇ α(a), so α(a) = α(a2). Also β(a) ⊆ β(a2) = β(aa) ⊆ β(a)∪β(a) = β(a), so β(a) = β(a2).
(ii)⇒(i). It is obvious. �

Proposition 4.10. For an AG-groupoid S with left identity e, the following conditions are equivalent:
i) S is left regular.
ii) Every DFS left ideal of S is DFS semiprime.

Proof. (i)⇒(ii). Assume that S is left regular. Let 〈(α, β);S〉 is DFS left ideal of S. Let a ∈ S. Since
S is left regular so there exist x ∈ S such that a = x(aa).
Now α(a) = α(x(aa)) ⊇ α(aa) = α(a2) and β(a) = β(x(aa)) ⊆ β(aa) = β(a2). Thus 〈(α, β);S〉 is
DFS semiprime.
(ii)⇒(i). Assume (ii) holds. Since Sa2 is left ideal so XSa2 =

〈
(χSa2 , χ

c
Sa2);Sa2

〉
is DFS left ideal and

so by hypothesis XSa2 =
〈
(χSa2 , χ

c
Sa2);Sa2

〉
is DFS semiprime.

Since S is AG-groupoid with left identity so a2 ∈ Sa2 and hence U = χSa2(a2) ⊇ χSa2(a) ⊇ χSa2(a2).
Thus χSa2(a) = U Hence a ∈ Sa2.
In the other case ∅ = χcSa2(a2) ⊆ χcSa2(a) ⊆ χcSa2(a2). So χcSa2(a) = ∅which imply a ∈ Sa2. Hence in
any case a ∈ Sa2 and so S is left regular. �

5. Characterizations of intra-regular AG-groupoids in terms of DFS ideals

In this section, we give some characterizations of intra-regular AG-groupoids using their DFS ideals.

Proposition 5.1. For an AG groupoid S, the following conditions are equivalent:
i) S is intra-regular.
ii) Every DFS ideal 〈(α, β);A〉 is DFS soft semiprime.
iii) α(a) = α(a2) and β(a) = β(a2) for every DFS ideal 〈(α, β);A〉 for all a ∈ A.

Proof. (i)⇒(iii). Suppose that S is intra-regular. Let 〈(α, β);A〉 is a DFS ideal which is semiprime.
Take a ∈ A ⊆ S, so there exist x, y ∈ S such that a = (xa2)y. Thus,
α(a) = α((xa2)y) ⊇ α(xa2) = α(x(aa)) ⊇ α(aa) ⊇ α(a) and so α(a) = α(a2).
Now β(a) = β((xa2)y) ⊆ β(xa2) = β(x(aa)) ⊆ β(aa) ⊆ β(a) and so β(a) = β(a2).
(iii)⇒(i). Assume that for every DFS ideal 〈(α, β);A〉 of A over U , we have α(a) = α(a2) and



CHARACTERIZATIONS OF ABEL GRASSMANN’S GROUPOIDS 73

β(a) = β(a2) for all a ∈ A.
Since J [a2] is an ideal of S, so XJ[a2] is DFS ideal of S. Since a2 ∈ J [a2], we have

χJ[a](a) = χJ[a2](a
2) = U . Thus a ∈ J [a2] = (Sa2)S. Also χcJ[a2](a) = χcJ[a2](a

2) = ∅. In this case, too,

a ∈ J [a2] = (Sa2)S. Hence S is intra-regular.
(iii)⇒(ii). Obvious.
(ii)⇒(iii). Let 〈(α, β);A〉 is a DFS ideal which is semiprime. Now α(a) ⊇ α(a2) = α(aa) ⊇ α(a). Thus
α(a) = α(a2).
Also β(a) ⊆ β(a2) = β(aa) ⊆ β(a). Thus β(a) = β(a2). This completes the proof. �

Theorem 5.1. For an AG-groupoid S with left identity e, the following conditions are equivalent.
i) S is intra-regular.
ii) L ∩R ⊆ LR for every left ideal L and every right ideal R of S and R is semiprime.
iii) 〈(α, β);A〉 u 〈(f, g);B〉 v 〈(α, β);A〉 � 〈(f, g);B〉 .for every DFS left ideal 〈(α, β);A〉 and every

DFS right ideal 〈(f, g);B〉 and 〈(f, g);B〉 is DFS semiprime.

Proof. (i)⇒(iii). Assume that S is intra-regular. Let 〈(α, β);A〉 is DFS left ideal and 〈(f, g);B〉 is
DFS right ideal over U . Since S is intra-regular, so for a ∈ S, there exist elements x, y in S such
that a = (xa2)y = ((x(aa))y) = ((a(xa))y) = (y(xa))a = (y(xa))(ea) = (ye)((xa)a) = (xa)((ye)a) =
(xa)((ae)y).

Now (α◦̃f)(a) =
⋃
a=pq

{α(p) ∩ f(q)} ⊇ α(xa) ∩ f((ae)y) ⊇ α(a) ∩ f(ae) ⊇ α(a) ∩ f(a)

and (β◦̃g)(a) =
⋂
a=pq

{β(p) ∪ g(q)} ⊆ β(xa) ∪ g((ae)y) ⊆ β(a) ∪ g(ae) ⊆ β(a) ∪ g(a).

Hence 〈(α, β);A〉 u 〈(f, g);B〉 v 〈(α, β);A〉 � 〈(f, g);B〉 .
Now f(a) = f((xa2)y) = f((xa2)(ey)) = f((ye)(a2x)) = f(a2((ye)x)) ⊇ f(a2)
and g(a) = g((xa2)y) = g((xa2)(ey)) = g((ye)(a2x)) = g(a2((ye)x)) ⊆ g(a2).
Thus 〈(f, g);B〉 is DFS semiprime.
(iii)⇒(ii). Assume that (iii) holds. Let L and R be left ideal and right ideal of S respectively Then
XL is DFS left ideal and XR is DFS right ideal. Thus by hypothesis XL u XR v XLR and XR is
DFS semiprime. Let a ∈ L ∩ R then a ∈ L and a ∈ R. Hence U = χL∩R(a) = (χL ∩ χR)(a) ⊆
(χL ◦ χR)(a) = χLR(a).That is χLR(a) = U and so a ∈ LR.
In the other case ∅ = χcL∩R(a) = (χcL ∪ χcR)(a) ⊇ (χcL ◦ χcR)(a) = χcLR(a). That is χcLR(a) = ∅ and
so a ∈ LR. Hence in any case L ∩ R ⊆ LR. By Theorem 4.10, since XR is DFS semiprime, so R is
semiprime.
(ii)⇒(i). Assume that (ii) holds. We prove S is intra-regular. Let a ∈ S. Then a = ea ∈ Sa, where
Sa is left ideal of S and a2 ∈ a2S and a2S is right ideal of S.
By hypothesis a2S is semiprime and so a ∈ a2S. Thus a ∈ Sa ∩ a2S ⊆ (Sa)(a2S) = (Sa2)(aS) ⊆
(Sa2)(SS) ⊆ (Sa2)S. Hence S is intra-regular. �

Lemma 5.1. For an AG groupoid S with left identity, the following conditions are equivalent:
i) S is intra-regular.
ii) R ∩ L = RL for every left ideal L and right ideal R of S and R is semiprime.

Proof. Proof is available in [25]. �

Theorem 5.2. For an AG-groupoid S with left identity e, the following conditions are equivalent:
i) S is intra-regular.
ii) 〈(α, β);A〉 u 〈(f, g);B〉 = 〈(α, β);A〉 � 〈(f, g);B〉 .for every DFS right ideal 〈(α, β);A〉 and every

DFS left ideal 〈(f, g);B〉 and 〈(α, β);A〉 is DFS semiprime.

Proof. (i)⇒(ii). Let 〈(α, β);A〉 is DFS right ideal and 〈(f, g);B〉 DFS left ideal of S over U.
By Proposition 4.8, 〈(α, β);A〉 � 〈(f, g);B〉 v 〈(α, β);A〉 u 〈(f, g);B〉.
Next we have since S is intra-regular, so for each a ∈ S, there exist x, y ∈ S such that a = (xa2)y.
Thus a = (xa2)y = (x(aa))y = (a(xa))y = (y(xa))a = ((ey)(xa))a = ((ax)(ye))a.

Hence (α◦̃f)(a) =
⋃
a=pq

{α(p) ∩ β(q)} ⊇ α((ax)(ye)) ∩ β(a) ⊇ α(ax) ∩ β(a) ⊇ α(a) ∩ β(a)
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and (β◦̃g)(a) =
⋂
a=pq

{β(p) ∪ g(q)} ⊆ β((ax)(ye)) ∪ g(a) ⊆ β(ax) ∪ g(a) ⊆ β(a) ∪ g(a),

and so 〈(α, β);A〉 u 〈(f, g);B〉 v 〈(α, β);A〉 � 〈(f, g);B〉. Thus 〈(α, β);A〉 u 〈(f, g);B〉 = 〈(α, β);A〉 �
〈(f, g);B〉.
Also α(a) = α((xa2)y) = α((xa2)(ey)) = α((ye)(a2x)) = α(a2((ye)x)) ⊇ α(a2),
and β(a) = β((xa2)y) = β((xa2)(ey)) = β((ye)(a2x)) = β(a2((ye)x)) ⊆ β(a2). Thus 〈(α, β);A〉 is DFS
semiprime.
(ii)⇒(i). Assume (ii) holds. Let L be a left ideal and R be a right ideal of S. Then XL is DFS left
ideal and XR is DFS right ideal. By hypothesis, XR uXL = XR �XL and XR is DFS semiprime.
Since XR is DFS semiprime, so by Theorem 4.10, R is semiprime.
Let a ∈ R ∩ L, then a ∈ R and a ∈ L. Hence U = χR∩L(a) = χR(a) ∩ χL(a) = (χR◦̃χL)(a) = χRL(a),
so a ∈ RL. Also ∅ = χcR∩L(a) = χcR(a) ∩ χcL(a) = (χcR◦̃χcL)(a) = χcRL(a), so a ∈ RL. In any case
R ∩ L ⊆ RL. The other inclusion RL ⊆ R ∩ L is obvious, since S is intra-regular.
Thus R ∩ L = RL. This along with R is semiprime implies that S is intra-regular. �
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