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APPROXIMATING DERIVATIVES BY A CLASS OF POSITIVE
LINEAR OPERATORS

BRAMHA DUTTA PANDEY!* AND B. KUNWAR?2

ABSTRACT. Some Direct Theorems for the linear combinations of a new class
of positive linear operators have been obtained for both, pointwise and uni-
form simultaneous approximations. a number of well known positive linear
operators such as Gamma Operators of Muller, Post-Widder and Modified
Post-Widder Operators are special cases of this class of operators.

1. INTRODUCTION

During past few decades a number of sequences of positive linear operators (
henceforth written as operator) both, of the summation and those defined by inte-
grals have been introduced and studied by a number of authors. Some of wellknown
operators of latter type are the Gamma operators of Miiller [7], Post-Widder and
Modified Post-Widder operators [6], Kunwar [4], Sikkema and Rathore [11].

Now we define our linear operator L,, [4] as

(1) Ly (f;2) = D(m,n,a)gmnte=l [5y=mn=ae=n()"™ f(y)du

_ |mn"

a—1
m%m €IR—{0},n>0,acIR.

The equation (1) defines a linear positive approximation methods, which con-
tains as particular cases, a number of well known linear positive operators; e.g.
Post-Widder and Modified Post-Widder operators [6], and the Gamma-operators
of Muller [7] .

In the present paper we study the following problems:

(i) Is it possible to approximate the derivatives of f by the derivatives of L, (f)?

(ii) Can we use certain linear combinations of L,, to obtain a better order of
approximation?

We introduce notations and definitions used in this paper.

Throughout the paper IRT denotes the interval (0,00), < a,b > open interval
containing [a,b] € IR", x5.(x§,) the characteristic function of the interval (z —
§,x+08) {IRT —(x—§,x+8)}. The spaces M(IR"), My(IR"), Loc(IR"), L*(IR™T)
respectively denote the sets of complex valued measurable, bounded and measur-
able, locally integrable and Lebesgue integrable functions on IR™.

Let Q(> 1) be a continuous function defined on IRT.We call Q a bounding
function if for each K C IRT there exist positive numbers nx and Mg such that
Ly, (2) < Mg, z€K.

where D(m,n, «)
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here Qu) =u=%+ " +u¢, where a,b, ¢ > 0.
For this bounding function
Dq = {f : f is locally integrable on IR and is such that

lim sup,,_,¢ % and limsup,,_, % exist}

Dgc) ={f:f € Dgq and f is k- times cotinuously differentiable on
IR" and f € Dq,i=1,2,...,k}
C/"(IRT) = {f : f is m-times continuously differentiable and is such that
f® k=0,1,2,..m are bounded on TR*}.

2. SIMULTANEOUS APPROXIMATION FOR CONTINUOUS
DERIVATIVES

We consider the elementary case of simultaneous approximation by the operators
L,, wherein the derivatives of f are assumed to be continuous. We have termed this
case elementary, for it is possible here to deduce the results on the simultaneous
approximation: (L, f)*) — f*)(k € IN) from the corresponding results on the
ordinary approximation: L, f — f.

Theorem 1. : If f € DQ ,then Ln (f;x) for x €< a,b > exists for all sufficiently
large n and

(2) lim,, s 0o L%k)(f;x) = f®) (), uniformly for x € [a, b].

Proof. We have
Lo(f;2) = D(m,n, @)em™m ot [ u=mn=oe= " f(u)du
A formal k-times differentiation within the integral sign and replacing o by a—k,
let the new operator be denoted by L and the corresponding D(m, n, «) be denoted
by D*(m,n,a).Then
(3) LY (f5w) = S L (£0) (@)

Applying the known approximation L, f — f to (3), we find that

L (fr0) = BUmmed pe(£8) (@) = f®)(z) as n - oo,

This completes the proof of the theorem. O

Theorem 2. :If f € Dézk). then at each © € IRT where f5+2) exists
(4)  LP(f50) = FO @) = shzlm+k — 20+ 2)kf O (0)+

+(m+2k—2a+3)x fED (2)+2? fEHD (2)]+0(L),n —

00.
Further if f(*+2) exists and is continuous on < a,b >, then (4) holds uniformly
in z € [a,b].

Proof. Using Voronovskaya formula [1], [6], [10],[11], [12] for L} and (3), the result
follows. O

In a similer manner one can prove the following results:

Theorem 3. : If f is such that f%) exists and is continuous on IR, then
(5) | (fi2) = S P (@)] < wp (n7H)[1+
+min{a?(;5 + o(1)), 25 +0(1))2] + o( ),
(n — oo,z € IRT).
where wgw is the modulus of continuity of F% [13] [2] [3].
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Theorem 4. : Let f be such that f*TY exists on IRT. Then for x € IR*

(6) L (fr2) = O (x)
k[ ()] @)

+wf(k+1>(n72)[xn %{7,L2(m 3) +o(1 )} + 1 {m2(m 3 +o(1)}],
(n — oo,z E IR™).

3. POINTWISE SIMULTANEOUS APPROXIMATION

In the present section we consider the “non-elementary” case of simultaneous
approximation wherein assuming only that f(*)(z) exist at some point z, we solve
the problem of pointwise approximation. Before proving this result we establish:

Lemma 1. Let n>pé€IN (set of natuml numbers). Then
(7) 3zp {:L.a+mn 1 7mnefn )m} _ :L,anra p—1lyp—mn,— (n—p)(2)™

XZ OZV 0 (% k V+k(ﬂ) (m—l)e_k(%)m[l_

(2" gu.ep (2, w)
where [z] denotes the integral part of x € IR and the function g,k p,(z,u) are

certain linear combinations of products of the powers of u™1, z ™! and % 0" Al yme= G}k =
0,1,2,...,p and are independent of n.

Proof. We proceed by induction on p. We note that
(8) 0 {xmn+a—1u—mn —n(%)m}
— x(a 1)( )m(n e~ (n—l)(%)m[(mn—;a—l) (%)me—(g)m_%(%)que—(g)m]
Putting go,0,1(z,u) = (O‘x Ly (u)me*(%)m
goa(z,u) =u"

We observe that (8) is of the form (7). Hence the result is true for p = 1.

Next, let us assume that the lemma holds for a certain p. Then by the induction
hypothesis,

(9) %{xaﬁ-mn—lu—mne—n(%)m}

= go—l ( T )m(nfpfl)ef(nfpfl)(%)m

% ZP-H ( )k u+k{( )7n 1 —( ym o (U)Z’rn 1 —( )’"} gukp+1($ u)
Wherew1th gl,’k’p =0fork>pork<0,v<0orv>[2~] we have put

Gokpi(@,u) = ML g, (@ u)(2)me (D7
mn{ ( )m 1 —( ) _ﬂ( )2m_1e_(ﬂ) }gy,k,p(x,u)—F

+8wgy k2, u) + 1gz/kr 1,p($,u)+
+(k+1){m(m 1)(%) _(%)2(%)2(171—1)@—(%)”—
— 2Bl (2)2Am-1 e (D" +(%) (£)*m=2e= (D" Y gy k1 p(, w).
For k=0,1,2,..,p+1and v =0,1, ”[%7’6]

It is clear that g, g p+1(2,u) satisfies the other required properties and hence the
result is true for p + 1. Hence it follows that (8) holds for all p = 1,2,.... This

completes the proof. O
Theorem 5. : Let m € IN and f € Dq, then
(10) lim Ly (f;2) = f®(2).
n—oo

whenever x € IR is such that f*)(z) exists. Moreover if f*) exists and is
continuous on < a,b >, (10) holds uniformly in x € [a,b).



APPROXIMATING DERIVATIVES BY A CLASS OF POSITIVE LINEAR OPERATORS 61

Proof. If f(*)(x) exists at some x € IR*, given an arbitrary ¢ > 0 we can find a §
satisfying = > § > 0 s.t.
(»)
f(u):Z’; Of pf”)( — )P + hy(w)(u — )% |u—x| <9,

where h,(u) is certain measurable function on [z — §,z + ] satisfying the in-

equality |h(u)| < €, |u— x| < 4. Hence
k ®) (g (K s
(1) L (fie) = e LB () (1L () +
FLI (ha () (u = 2) x50 (w)s @) + L (303 0)
=21t 2yt (say).

Using the fact that L,, maps polynomials to polynomials and the basic conver-
gence Theorem3, we obtain

(12) > = fB (@) Ly (uhs 1) = fP(2),n — oo

It follows from Lemmal that

k—p
L (h (w) (u—2)* x50 (w): ) = @™+~ D(m,n,a) SF_ L2 e

X ;_4'; uw” ™ mh (u) (u —

2)™{(§)me Tk

X[ A(2)me " N gy p 1 (2, u)du
The § above can be chosen so small that
9 —(zym™
|%{(%)me ) }f < Alu—za|,u—2x| <9,
where A is some constant. Since the functions g, , x(z,u) are bounded on [z —
d,z + 0], it is clear that there exists a constant M; independent of n,e and § s.t.

for all n sufficiently large,

| L (o) — 2o (s )| < by by SV b 2
by (3) where M5 is another constant not depending on n.,e and §. Since v <
[552), v+ p — 2EE — [E2P] — EoP < there exists a
constant M mdependent of n,e and ¢ s.t.
(13) > o] < M for all sufficiently large n. To estimate ), first of all we
notice that there exist a positive integer p and a positive constant P such that

[{(2)e= O™ (2™ {1 = (£)™ W gupr(z,u)| < P(L+u"™),u €
IRT

and 0<p<k,0<v< [kgp] Hence by Lemmal, we have
4 € PEh L% et LD (m, )
B e (DN e

I

D
PZp OZV 0 ny+pD(751n;nkaL)Ln k(fXé,xQx) +
D(m,n, .
D ((Z,:—CZ)E) Ly (fX5 25 @)
where L** corresponds to to the operator (1) with « replaced by o + m and
n P P P Y

D**(m,n, a) refers to D(m,n, «) for L:*. We observe that
lim D(m,n a) — lim D(m,n,o)
n—=0 D(m,n—k,a) N—=00 D**(m,n—k,x)

Also, by the definition of the operator L,,, we have
limy, o 7P Ly (FX§ 05 %) = iy o0 nVPPLE L (FXS 05 2)
=0
It follows that > ., — 0 as n — oo. In view of this fact and (11) — —(13), it
follows that there exists an ng s.t.

L (fr2) = fW @)| < 2+ M)e,n > o,
Since M does not depend on € we have (10).
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The uniformity part is easy to derive from the above proof by noting that, to
begin with, § can be chosen independent of = € [a, b] so that |h,(u)| < € for x € [a, ]
whenever |u — x| < 4. Then, it is clear that the various constants occuring in the
above proof can be chosen independent of x € [a,b]. This completes the proof of
the theorem. |

Finally, we show that the asymptotic formula of Theorem2 remains valid in
the pointwise simultaneous approximation as well. We observe that the difference
between Theorem?2 and the following one lies in the assumptions of f . We have

Theorem 6. : If f € Dq, then
(14) LY (f;2) — fP(2) = — 5t [f®) (@)k{(2a — k —5)}+

T 2nm?
+a fO) (@) {2(a—k—3)+ (83— k) } +22 fF+) (2)]+
+o(L),n — .
whenever 2 € TR* is s.t.  f+2)(2) exists. Also if f(*+2)(z) exists and is
continuous on < a,b >, (14) holds uniformly in z € [a, b].
Proof. If f(k+2) exists, we have
k (®) (g
flu) =330 B (= 2)P + h(u, ),
where h(u,x) € Dq and for any € > 0, there exist a § > 0 s.t. |h(u,x)|] <

e |u — z|"*? for all sufficiently |u — x| < 8. Thus,
(15) L (f12) = L2 Qi) + L (h(u, v); ),
where Q= Zﬁig %(u — )P is a polynomial in wu.Clearly

Q€ Dgc). Also,
QW (z) = fP)(z), for p=k,k+ 1,k +2.
Hence, applying Theorem?2, we have
(1) LiP(@Qiz) — fP(2) = — g k(20— k—m - 2)f P (2)+

2nm?
+(20 — 2k —m — 3)z fEFD (2) + 22+ (2)] + o( L),
n — 00.
To establish (14), it remains to show that

k—p x\m
(17) lek)(h(u7 x); x)’ < D(m,n,a)x>! Zﬁ:o Z[D:TO] mn? TP fooo Mgy mmn—o—le=n(y)

< | () tem L = (Y gupok (@, ) {(u, 2) X5, () +

elu— x| Y du
Proceeding as in the proof of Theoremb, we find that the term corresponding
to € in the above is bounded by % for some M independent of € and n and x§ ,—

term contributes only a o(1) quantity (in fact o(-%) for an arbitrary s > 0). Then

n n

in view of arbitraryness of e > 0, (17) follows.
The uniformity part follows as a remark similar to that made for the proof of
the uniformity part of Theoremb5. This completes the proof of the theorem. O
In the rest of the paper, we study the second problem.

4. SOME DIRECT THEOREMS FOR LINEAR COMBINATIONS

In this section we give some direct theorems for the the linear combinations of the
operators L,,. First, we give some definitions. The k'"-moment pu,, x(z),k € IN°
(set of non-negative integers) of the operators L,, [5] is defined by
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(18) tn ke (z) = L, (u — r)kiz) = zkrmk (say).

Clearly, 7,1 is independent of .Now we first prove the lemma on the moments
Hn, k-

Lemma 2. : If k € IN°.Then there exist constants Yy ,,v > [ L] s.t. the follow-
ing asymptotzc expansion is valid:
(19) Ty = Zi[%] Y, 2V, T — 0.

Proof. Let 1 <7 < =. Then

Tk = Lin= s27k=2(1 — s)k exp[nlog{e! — m27(572!1)2671+

1-—n—7
s 2p 2p T\m . —(z)y™
b B (B {(2)me (D7) ey + o((s — 1)) )]ds,

(r=>2)

=e " llj::j s*7F=2(1 — s)k exp[—nm

x exp[{C3(s—1)3+Cy(s—1)*+...4+C2p(s—1)?P +0((s—1)*") }]ds
C!s being constants.

_ 1+n~" —1)2 .
=e " [l 0T (1-s)" eXP[*”mz%]{1+23§312j§[2p+%] bijn'(s—

1) + o(n*=2P7)}ds
b;;s depending on Cjs.

s—1)?
2 ( 2)]

—n rl4n™? (s— 1
=€ 1-n—7 exp[—n e M{El 0 al(g — 1)k+l} | |
X{1+Z3§3’i§j§[2p+%] bijnz(87 1)J}+
o(nl_@p-i-k)'y)]ds
—n 14077 _1)2 ‘
=e 1_:—7 exp[—n 2(s 1) ][23<31<J<[2p+1 1]d”m (s — 1)IHR+ 4

0<I<[2p—1]
o(n*=rtR)7)ds
where d; ;s are certain constants depending on ¢;s and b;s and vanish if j+k+1
is odd.
Using substitutions we get

. e ™ n t[%],% 9 a* i_[j+k+l—1]
=22 . fo ot [1+~m Z(ogsigjg[zm%]) iji" 2
o(n 1—(2p+k)v+1— 2"’)]dt
where dj;; = dmz{ }[7+k+l 1, _
_ i (AL 2— (2p+2+k)y
22 mn3 [ZO<3l<j<[2p+7 1 dzyln +O(n )]
)<l<[2pfl]
where d}f = d:‘]lf(([%])w + 1) and we have made use of the fact that by

enlarging the integral in the above from 0 to oo, we are only adding the terms in n
which decay exponentially and therefore can be absorbed in the o-term.

Next, we analyse the expression

J0.00)—(1—n—v 14n-7) smnta—k=2(1 _g)kens" s = E(n) (say).
We have for any positive integer ¢,
|E(n)] < n¥D**(m, n,a) Ly (Ju— 177 1),
where D**(m, n, a) and L}* are the same as considered in the proof of Theorem5.
By making use of an estimate for the operators L}*, we have

|E(n)| < An9= "5 D™ (m,n, a),
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where A is certain constant not depending upon n. Again making use of the

same estimate as above for D**(m,n, «), we have
k+q+1

e"|E(n)| =o(n"1~ "2 ).
Thus, choosing ¢ s.t.
2(2p+2+k)
p> 1p72v

, we have
foo Smn+o¢7k72(1 o S)kefnsmds
_ 9z e " ) sk j—[LEREIZL 2—(2p+k+2
=225 [Z(ogsig]‘gpzﬁ-%]) disn' T 4 o(n2-Cr ).
0<i<[2p—1]
Now, for all indices under consideration we have
[j+k+l+1] = [j72i+k+l+1] > [ﬂ}
2 2 =12 b
and since p could be chosen arbitrarily large, there exist constants Cy, ,,, v > [%]
s.t. we have the following asymptotic expansion
fooo smn+a7k72(1 o s)kefnsmds
gl emm ) Ck,,,
= 22T Lo
Noting that Cp o = 1, it follows that there exist constants vy ,,v > [%]
s.t. (19) holds. This completes the proof of Lemma2. O

For any fixed set of positive constants «;,i = 0,1,2, ..., k following [9] the linear

combination L,  of the operators Ly, »,% = 0,1,2,...k is defined by

Logn(f;2) aai aaz e agz
) Lon(fiz) oy’ a7? . .. o]

(20) Los(fi) = £ "
Loyn(f;) 0;1 a;z - a;k

where A is the determinant obtained by replacing the operator column by the
entries '1’. Clearly

(21) Ln,k, = Z_];:O O(]? k)LOCjna
for constants C(j,k),j =0,1,2,...,k which satisfy Z§:1 C(j,k)=1.
Ly, is called a linear combination of order k. L, o denotes the operator L,

itself.
Theorem 7. : If f € Dq. If at a point x € IR, fC5+2 exists, then

(22) |Lni(f;2) = f(z)] = O(n~(*+1),
(23) |lhhk+1(f;x)4—f(x)‘::0(n44k+1”7
where k = 0,1,2, ... . Also, if f(25+2) exists and is continuous on < a,b >C IR*,

(22) — —(23) hold uniformly on [a, b].
Proof. First we show that o
(24) Lu(fiw) = f(@) = T 24500 r, 5 + o(n~ (D),

Jj=1 J!

if z € IR is such that f(**2) exists and f € Dg.To prove (24) with the
assumption on f, we have

flu) = fla) = SE2 0@ (4 )i 4 Ry(u); u sz,
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where R, (u) = o((u — 2)?*72),u — 2. It is clear from the definition of 7,, ; that
we only have to show that

(25) Ly (Ru(u);z) = o(n~ 1),

Obviously, R, (u) € Dg. Now, given an arbitrary € > 0, we can choose a § > 0
s.t.

|R.(u)| < e(u—2)2k*2 |u — x| < 6.

Hence, by using the basic properties of L,[1], we note that the result follows.In
this case the uniformity part is obvious. Now, using Lemma2 and (24) we get

(26)  La(f;2) = fla) = Sp? LA W ST L B o (),

which, in the uniformity case holds uniformly in x € [a, b].Since the coefficients
C(j,k) in (21) obviously satisfy the relation

27)  YE_ CG.k)e;” =0,p=1,2,3, ..k

In view of (26), (22) — —(23) are immediate and so is the uniformity part. This
completes the proof of TheoremT. O

In the same spirit we have,

Theorem 8. :Let f € Dqo. If 0 < p < 2k + 2 and f® exists and is con-
tinuous on < a,b >C IRT, for each v € [a,b] and sufficiently large n then
(28)  |Lng(f52) — f(2)] < max[Cn~Ew(f®);n=2), C'n= )]

where C = C(k) and C" = C'(k, f) are constants and w(f®);4) denotes the local
modulus of continuity of f® on < a,b> .

Proof. :There exists a § > 0 s.t. [a — §,b + 0] C< a,b > . It is clear that if
u €< a,b >, there exists an 7 lying between z € [a,b] and u s.t.

(29) | Fw) = f(@) = iy P58 = | < BL (1w — al b yo(f P30 ),

using a well known result on modulus of continuity [13]. If the expression occur-
ing within the modulus sign on L.H.S. of the above inequality is denoted by F(u),
by a well known property of L,,, it follows that

Loyn(Fu(w)x§ . (u);2) = o(n™*H1),

uniformly in z € [a, b]. By (29), we have

(30)  |Layn(Fa(w)x§,(w)io)| < %Ay + Ay ) (agn) Bw(fPinh)

for all n sufficiently large and « € [a,b]. Here Ap, A, are constants depending
on p. Hence, for a constant C), independent of f such that for all z € [a,b],

() |Las(Fe()xg.(w)a)| < Con bu(f@sn~h).

Applying the result (22) for the functions 1,u,u?, u3,...,uP, we find that there
exists a constant C”’ depending on max{|f'(z)|,...,|f)(z)| ;2 € [a,b]} and p such
that for all z € [a,b], _

(32) ‘Ln,k( ?:1 fO;!(x) (u— x)j3$)’ < C'"p~ (kD

Now, (28) is clear from (30) — —(32). This completes the proof of the Theorem.

O
Theorem 9. :Let f € Dq. If at a point x € IR, fCFP+2) epists then

(33) Lg;@(f; z) — f(p)(x)‘ — O(n—(k+1))’ and
(34) L) (f52) - f@ (I)‘ — o(n-(+D),

where k = 0,1,2,... . Also, if fC*P+2) egists and is continuous on < a,b >C
IR", (33) — — — (34) hold uniformly in z € [a,b].
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Proof. If fk+P+2) exists | we can find a neighbourhood (a/,¥') of = s.t. f®) exists
and is continuous on (a’,’). Let g(u) be an infinitely differentiable function with
supp g C (a/,b') s.t. g(u) = 1 for u € [x — d,z + §] for some & > 0. Then an
application of Lemmal shows that

(35) L%c(f(u) — f(w)g(u); ) = o(n=(F+1),
In the uniformity case, we consider a g(u) with supp g C< a,b > with g(u) = 1,

for u € [a — §,b+ ] C< a,b > and then (34) holds uniformly in = € [a,b]. since
fw)g(u) € C’IEP)IR+ we have

(36) LY (fg;x) = P Lo (uP{f(u)g(u)}P); ).

Now, since uP{ f(u)g(u)}) is (2k+2) —times differentiable at = (and continuously
differentiable on (a — 0, b+ 0) in the uniformity case), applying Theorem7 we have

(37) ’Lgﬂ(fg, ) — F® (:c)’ = O(Tf(kJrl)), and
(38) Lgszgc-i—l(fg;x) — @ (x)’ = O(n*(kﬁ’l))’

where, in the uniformity case these holds in € [a,b]. Thus, combining (35) —
— —(38), we get (33) — — — (34). This completes the proof . O

Theorem 10. : Let m € IN, and f € Dq. If 0< q < 2k+2 and f®+9 egists and
is continuous on < a,b >C IR™ for each z € [a,b],then for all sufficiently large n,

(39)  |EOL(F ) — FO@)] < max{Cyn Bl f00inm4), O+
where Cp, = Cp(k), C, = Cp(k, f) are constants and w(fP*9;5) denotes the local
modulus of continuity of f®+9 on < a,b> .

Proof. : The proof of this Theorem follows from Lemmal and Theoremb——9. O
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