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FUZZY HYPERIDEALS OF LEFT ALMOST SEMIHYPERGROUPS

ASGHAR KHAN1, MUHAMMAD FAROOQ1, MUHAMMAD IZHAR1,∗ AND BIJAN DAVVAZ2

Abstract. This paper explores the foundations of fuzzy left (resp. right) hyperideals of left almost

semihypergroups (briefly, LA-semihypergroups). We investigate the properties of fuzzy left hyperide-

als and fuzzy right hyperideals in regular and intra-regular LA-semihypergroups. We also characterize
regular and intra-regular LA-semihypergroups in terms of fuzzy hyperideals.

1. Introduction

The idea of generalization of a commutative semigroup, (known as left almost semigroup) was
introduced by Kazim and Naseeruddin in 1972 (see [1]). A groupoid (S, ·) is called an AG-groupoid if
it satisfies the left invertive law:

(ab)c = (cb)a for all a, b, c ∈ S.

This structure is closely related with a commutative semigroup because if an AG-groupoid contains
right identity then it becomes a commutative monoid. An AG-groupoid may or may not contain a left
identity. Some other names have also been used in literature for left almost semigroups. Cho et al. [2]
studied this structure under the name of right modular groupoid. Holgate [3] studied it as left invertive
groupoid. Similarly, Stevanovic and Protic [4] called this structure an Abel-Grassmann groupoid (or
simply LA-semigroup), which is the primary name under which this structure is known nowadays.
There are many important applications of AG-groupoids in the theory of flocks [5]. The concept of a
fuzzy set was introduced by Zadeh [9], in 1965. Since its inception, the theory has developed in many
directions and found applications in a wide variety of fields. Many researchers published high-quality
research articles on fuzzy sets in a variety of international journals. The study of fuzzy set in algebraic
structure has been started in the definitive paper of Rosenfeld 1971 [15], in which he defined fuzzy
subgroup and gave its important properties. In 1981, Kuroki introduced the concept of fuzzy ideals
and fuzzy bi-ideals in semigroups in his paper [16].

The theory of hyperstructures was introduced by Marty in 1934 during the 8th Congress of the
Scandinavian Mathematicians [20]. Marty introduced hypergroups as a generalization of groups. He
published some papers on hypergroups, using them in different contexts as algebraic functions, rational
fractions, non commutative groups. In the following decades and nowadays, a number of different hy-
perstructures are widely studied from the theoretical point of view and for their applications to many
subjects of pure and applied mathematics by many mathematicians. In [17] Corsini and Leoreanu-
Fotea collected numerous applications of algebraic hyperstructures such as: geometry, hypergraphs,
binary relations, lattices, fuzzy sets and rough sets, automata, cryptography, codes, median algebras,
relation algebras, artificial intelligence, and probabilities. Especially, semihypergroups are the sim-
plest algebraic hyperstructures which possess the properties of closure and associativity. Nowadays
many scholars have studied different aspects of semihypergroups see [18,19,21,22]. Recently, Hila and
Dine [12] introduced the notion of LA-semihypergroups. They investigated several properties of hy-
perideals of LA-semihypergroup and defined the topological space and study the topological structure
of LA-semihypergroups using hyperideal theory. In [13], Yaqoob, Corsini and Yousafzai have charac-
terized intra-regular LA-semihypergroups by using the properties of their left and right hyperideals,
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and investigated some useful conditions for an LA-semihypergroup to become an intra-regular LA-
semihypergroup. This non-associative hyper structure has been further explored in [14], by Yousafzai
and Corsini.

In this paper, we introduce the notion of fuzzy left (resp. right) hyperideals in LA-semihypergroups
and present some related examples of these concepts. We characterize regular and intra-regular LA-
semihypergroups in terms of fuzzy hyperideals.

2. Preliminaries

A hypergroupoid is a nonempty set S equipped with a hyperoperation ◦, that is a map ◦ : S × S −→
P ∗ (S), where P ∗ (S) denotes the set of all nonempty subsets of S (see [20]). We shall denote by
x ◦ y, the hyperproduct of elements x, y of S. Let A, B be two nonempty subsets of S. Then the

hyperproduct of A and B is defined as A ◦ B =
⋃

a∈A,b∈B

a ◦ b. We shall write A ◦ x instead of A ◦ {x}

and x ◦A for {x} ◦A.
A hypergroupoid (S, ◦) is called an LA-semihypergroup [12], if it satisfies the left invertive law:

(a ◦ b) ◦ c = (c ◦ b) ◦ a for all a, b, c ∈ S.

Every LA-semihypergroup satisfies the medial law [12]. That is,

(x ◦ y) ◦ (z ◦ w) = (x ◦ z) ◦ (y ◦ w) for all w, x, y, z ∈ S.

Definition 2.1. (see [14]). Let (S, ◦) be an LA-semihypergroup then an element e ∈ S is called

(i) left identity (resp. pure left identity) if ∀ a ∈ S, a ∈ e ◦ a (resp. a = e ◦ a);
(ii) right identity (resp. pure right identity) if ∀ a ∈ S, a ∈ a ◦ e (resp. a = a ◦ e);
(iii) identity (resp. pure identity) if ∀ a ∈ S, a ∈ e ◦ a ∩ a ◦ e (resp. a = e ◦ a ∩ a ◦ e).
An LA-semihypergroup (S, ◦) with pure left identity e, paramedial law holds. That is

(x ◦ y) ◦ (z ◦ w) = (w ◦ z) ◦ (y ◦ x) for all w, x, y, z ∈ S.
An LA-semihypergroup (S, ◦) with pure left identity e, satisfies the following law

x ◦ (y ◦ z) = y ◦ (x ◦ z) (1) .

A nonempty subset A of an LA-semihypergroup (S, ◦) is called an LA-subsemihypergroup of S if
A ◦A ⊆ A.
A nonempty subset A of an LA-semihypergroup (S, ◦) is a called left ( resp. right) hyperideal of S if
S ◦A ⊆ A (resp. A ◦ S ⊆ A).

If A is both a left hyperideal and a right hyperideal of S then it is called a two-sided hyperideal or
simply a hyperideal of S.

An LA-semihypergroup S is called [13];
(i) regular if for all a ∈ S, there exist x ∈ S such that a ∈ (a ◦ x) ◦ a.
(ii) intra-regular if for all a ∈ S, there exist x, y ∈ S such that a ∈ (x ◦ a2) ◦ y.

3. Fuzzy concepts in LA-semihypergroups

Let S be an LA-semihypergroup. A function f from a nonempty set X to the unit interval [0, 1] is
called a fuzzy subset of S.

Let S be an LA-semihypergroup and f be a fuzzy subset of S. Then for every t ∈ (0, 1] the set

U (f ; t) = {x | x ∈ S, f (x) ≥ t} ,

is called the level set of f.
For x ∈ S, define

Ax = {(y, z) ∈ S × S : x ∈ y ◦ z or x = y ◦ z} .
We denote by F (S) the set of all fuzzy subsets of S.
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Let S be an LA-semihypergroup and f, g are any two fuzzy subsets of S. We define the product
f ∗ g of f and g as follows:

(f ∗ g) (x) =
∨

(y,z)∈Ax

{f (y) ∧ g (z)} .

The fuzzy subsets defined by S : S −→ [0, 1],x −→ S (x) = 1 and 0 : S −→ [0, 1] , x −→ 0 (x) = 0
for all x ∈ S are the greatest and least elements of F (S) .

Definition 3.1. Let S be an LA-semihypergroup and ∅ 6= A ⊆ S. Then the characteristic function χA
of A is defined as:

χA : S −→ [0, 1] ,−→ χA (x) =

{
1 if x ∈ A
0 if x /∈ A

Definition 3.2. Let S be an LA-semihypergroup and f be a fuzzy subset of S. Then f is called a fuzzy
LA-subsemihypergroup of S if:

(∀x, y ∈ S)
∧

α∈x◦y
f (α) ≥ f (x) ∧ f (y) .

Definition 3.3. Let S be an LA-semihypergroup and f be a fuzzy subset of S. Then f is called a fuzzy
left (resp. right) hyperideal of S if:

(∀x, y ∈ S)
∧

α∈x◦y
f (α) ≥ f (y) (resp.

∧
α∈x◦y

f (α) ≥ f (x) ).

Definition 3.4. A fuzzy hyperideal f of an LA-semihypergroup S is called idempotent if

f ∗ f = f.

Example 3.1. Let us consider an LA-semihypergroup S = {a, b, c} in the following cayley’s table

◦ a b c
a {a} {a} {a}
b {a} {a} {a, c}
c {a} {a} {a}

Let us define a fuzzy subset f : S −→ [0, 1] as follows

f (x) =

 0.9 if x = a
0.7 if x = b
0.5 if x = c

Then it is easy to observe that f is a fuzzy LA-subsemihypergroup of S.

Example 3.2. Let us consider an LA-semihypergroup S = {e1, e2, e3} in the following cayley’s table

◦ e1 e2 e3
e1 {e1} {e1} {e1}
e2 {e1} {e1} {e1, e3}
e3 {e1} {e1} {e1}

Let us define a fuzzy subset f : S −→ [0, 1] as follows

f (x) =

 0.8 if x = e1
0.4 if x = e2
0.6 if x = e3

Then it is easy to see that f is a fuzzy hyperideal of LA-semihypergroup S.

Example 3.3. Let us consider an LA-semihypergroup S = {e1, e2, e3} in the following cayley’s table

◦ e1 e2 e3
e1 {e1, e3} {e2} {e2, e3}
e2 {e2, e3} {e2, e3} {e2, e3}
e3 {e2, e3} {e2, e3} {e2, e3}
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Let us define a fuzzy subset f : S −→ [0, 1] as follows

f (x) =

 0.5 if x = e1
0.7 if x = e2
0.7 if x = e3

Then it is easy to see that f is a fuzzy hyperideal of LA-semihypergroup S.

Proposition 3.1. The set (F (S) , ∗) is an LA-semihypergroup.

Proof. Clearly F (S) is closed. Let f, g and h be in F (S) . IfAx = ∅ for any x ∈ S. Then ((f ∗ g) ∗ h) (x) =
0 = ((h ∗ g) ∗ f) (x) . Let Ax 6= ∅, then there exist y and z in S such that (y, z) ∈ Ax. Therefore by
using left invertive law, we have

((f ∗ g) ∗ h) (x) =
∨

(y,z)∈Ax

{(f ∗ g) (y) ∧ h (z)}

=
∨

(y,z)∈Ax

 ∨
(p,q)∈Ay

{f (p) ∧ g (q)} ∧ h (z)


=

∨
x∈((p◦q)◦z)

{f (p) ∧ g (q) ∧ h (z)}

=
∨

x∈((z◦q)◦p)

{h (z) ∧ g (q) ∧ f (p)}

=
∨

(w,p)∈Ax

 ∨
(z,q)∈Aw

(h (z) ∧ g (q)) ∧ f (p)


=

∨
(w,p)∈Ax

{(h ∗ g) (w) ∧ f (p)}

= ((h ∗ g) ∗ f) (x) .

Hence (F (S) , ∗) is an LA-semihypergroup. �

Lemma 3.1. Let S be an LA-semihypergroup. Then the medial law holds in F (S) .

Proof. Let f, g, h and k be the arbitrary elements of F (S) . By successive use of left invertive law,
(f ∗ g) ∗ (h ∗ k) = ((h ∗ k) ∗ g) ∗ f = ((g ∗ k) ∗ h) ∗ f = (f ∗ h) ∗ (g ∗ k) . �

Proposition 3.2. An LA-semihypergroup with F (S) = (F (S))
2

is a commutative semihypergroup if
and only if

(f ∗ g) ∗ h = f ∗ (h ∗ g)

holds for all fuzzy subsets f, g, h ∈ F (S) .

Proof. Let S be a commutative semihypergroup. For any fuzzy subsets f, g, h ∈ F (S) . If Ax = ∅
then ((f ∗ g) ∗ h) (x) = 0 = (f ∗ (h ∗ g)) (x) . Let Ax 6= ∅ then (s, t) ∈ Ax, therefore by the use of left
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invertive law and commutative law, we get

((f ∗ g) ∗ h) (x) =
∨

(s,t)∈Ax

{(f ∗ g) (s) ∧ h (t)}

=
∨

(s,t)∈Ax

 ∨
(m,n)∈As

(f (m) ∧ g (n)) ∧ h (t)


=

∨
x∈((m◦n)◦t)

{f (m) ∧ h (t) ∧ g (n)}

=
∨

x∈((t◦n)◦m)

{f (m) ∧ h (t) ∧ g (n)}

=
∨

x∈(m◦(t◦n))

{f (m) ∧ h (t) ∧ g (n)}

=
∨

(m,p)∈Ax

f (m) ∧
∨

(t,n)∈Ap

(h (t) ∧ g (n))


=

∨
(m,p)∈Ax

{f (m) ∧ (h ∗ g) (p)}

= (f ∗ (h ∗ g)) (x) .

Conversely, let (f ∗ g) ∗ h = f ∗ (h ∗ g) holds for all fuzzy subsets f, g, h ∈ F (S) . We have to show
that F (S) is a commutative semihypergroup. Let f and g be any fuzzy subsets of S. If Ax = ∅ for

any x ∈ S, then (f ∗ g) (x) = 0 = (g ∗ f) (x) . Let Ax 6= ∅. Then (s, t) ∈ Ax. Since F (S) = (F (S))
2
.

So f = (h ∗ k) where h and k are any fuzzy subsets of S. Now by using left invertive law, we have

(f ∗ g) (x) = ((h ∗ k) ∗ g) (x) =
∨

(s,t)∈Ax

{(h ∗ k) (s) ∧ g (t)}

=
∨

(s,t)∈Ax

 ∨
(m,n)∈As

(h (m) ∧ k (n)) ∧ g (t)


=

∨
x∈((m◦n)◦t)

{h (m) ∧ k (n) ∧ g (t)}

=
∨

x∈((t◦n)◦m)

{g (t) ∧ k (n) ∧ h (m)}

=
∨

(p,m)∈Ax

 ∨
(t,n)∈Ap

(g (t) ∧ k (n)) ∧ h (m)


=

∨
(p,m)∈Ax

{(g ∗ k) (p) ∧ h (m)}

= ((g ∗ k) ∗ h) (x)

= (g ∗ (h ∗ k)) (x) .

This shows that f ∗ g = g ∗ (h ∗ k) = g ∗ f. Thus commutative law holds in F (S) .
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Now if Ax = ∅. Then ((f ∗ g) ∗ h) (x) = 0 = (f ∗ (h ∗ g)) (x). Let Ax 6= ∅. Then (s, t) ∈ Ax.
Therefore by the use of commutative law and left invertive law we get

((f ∗ g) ∗ h) (x) =
∨

(s,t)∈Ax

{(f ∗ g) (s) ∧ h (t)}

=
∨

(s,t)∈Ax

 ∨
(m,n)∈As

(f (m) ∧ g (n)) ∧ h (t)


=

∨
x∈((m◦n)◦t)

{f (m) ∧ g (n) ∧ h (t)}

=
∨

x∈((t◦n)◦m)

{f (m) ∧ g (n) ∧ h (t)}

=
∨

x∈(m◦(t◦n))

{f (m) ∧ g (n) ∧ h (t)}

=
∨

x∈(m◦(n◦t))

{f (m) ∧ g (n) ∧ h (t)}

=
∨

(m,p)∈Ax

f (m) ∧
∨

(n,t)∈Ap

(g (n) ∧ h (t))


=

∨
(m,p)∈Ax

{f (m) ∧ (g ∗ h) (p)}

= (f ∗ (g ∗ h)) (x) .

�

Theorem 3.1. If S has a pure left identity then the following properties holds in F (S) .

(1) f ∗ (g ∗ h) = g ∗ (f ∗ h) for all f, g and h ∈ F (S) .
(2) (f ∗ g) ∗ (h ∗ k) = (k ∗ h) ∗ (g ∗ f) for all f, g, h and k ∈ F (S) .

Proof. (1). Let x ∈ S. If Ax = ∅. Then (f ∗ (g ∗ h)) (x) = 0 = (g ∗ (f ∗ h)) (x) . Let Ax 6= ∅. Then
(y, z) ∈ Ax. Now by using medial law with pure left identity, we have

(f ∗ (g ∗ h)) (x) =
∨

(y,z)∈Ax

{f (y) ∧ (g ∗ h) (z)}

=
∨

(y,z)∈Ax

f (y) ∧
∨

(p,q)∈Az

(g (p) ∧ h (q))


=

∨
x∈(y◦(p◦q))

{f (y) ∧ g (p) ∧ h (q)}

=
∨

x∈(p◦(y◦q))

{g (p) ∧ f (y) ∧ h (q)}

=
∨

(p,w)∈Ax

g (p) ∧
∨

(y,q)∈Aw

(f (y) ∧ h (q))


=

∨
(p,w)∈Ax

{g (p) ∧ (f ∗ h) (w)}

= (g ∗ (f ∗ h)) (x) .

Thus (f ∗ (g ∗ h)) (x) = (g ∗ (f ∗ h)) (x) for all x ∈ S.
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(2) . If Ax = ∅ for x ∈ S, then ((f ∗ g) ∗ (h ∗ k)) (x) = 0 = ((k ∗ h) ∗ (g ∗ f)) (x) . Let Ax 6= ∅ then
there exist y and z in S such that (y, z) ∈ Ax. Therefore by using paramedial law, we have

((f ∗ g) ∗ (h ∗ k)) (x) =
∨

(y,z)∈Ax

{(f ∗ g) (y) ∧ (h ∗ k) (z)}

=
∨

(y,z)∈Ax

 ∨
(p,q)∈Ay

{f (p) ∧ g (q)} ∧
∨

(u,v)∈Az

{(h (u) ∧ k (v))}


=

∨
x∈((p◦q)◦(u◦v))

{f (p) ∧ g (q) ∧ h (u) ∧ k (v)}

=
∨

x∈((v◦u)◦(q◦p))

{k (v) ∧ h (u) ∧ g (q) ∧ f (p)}

=
∨

(m,n)∈Ax

 ∨
(v,u)∈Am

{k (v) ∧ h (u)}
∨

(q,p)∈An

{g (q) ∧ f (p)}


=

∨
(m,n)∈Ax

{(k ∗ h) (m) ∧ (g ∗ f) (n)}

= ((k ∗ h) ∗ (g ∗ f)) (x) .

Thus (f ∗ g) ∗ (h ∗ k) = (k ∗ h) ∗ (g ∗ f) for all x ∈ S. �

Theorem 3.2. Let S be an LA-semihypergroup. Then L = {f | f ∈ F (S) , f ∗ h = f where h = h ∗ h}
is a commutative monoid in S.

Proof. The fuzzy subset L of S is nonempty since h ∗ h = h, which implies that h is in L. Let f
and g be the fuzzy subsets of S in L, then f ∗ h = f and g ∗ h = g. If Ax = ∅ for x ∈ S, then
(f ∗ g) (x) = 0 = ((f ∗ g) ∗ h) (x) . Let Ax 6= ∅. Then by using medial law, we have

(f ∗ g) (x) =
∨

(y,z)∈Ax

{(f ∗ h) (y) ∧ (g ∗ h) (z)}

=
∨

(y,z)∈Ax

 ∨
(p,q)∈Ay

{f (p) ∧ h (q)} ∧
∨

(u,v)∈Az

{g (u) ∧ h (v)}


=

∨
x∈((p◦q)◦(u◦v))

{f (p) ∧ h (q) ∧ g (u) ∧ h (v)}

=
∨

x∈((p◦u)◦(q◦v))

{f (p) ∧ g (u) ∧ h (q) ∧ h (v)}

=
∨

(m,n)∈Ax

 ∨
(p,u)∈Am

{f (p) ∧ g (u)}
∨

(q,v)∈An

{h (q) ∧ h (v)}


=

∨
(m,n)∈Ax

{(f ∗ g) (m) ∧ (h ∗ h) (n)}

= ((f ∗ g) ∗ (h ∗ h)) (x) .

Thus f ∗ g = (f ∗ g) ∗ (h ∗ h) = (f ∗ g) ∗ h which implies that L is closed.
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Now if Ax = ∅. Then (f ∗ g) (x) = 0 = (g ∗ f) (x) . Let Ax 6= ∅ then (y, z) ∈ Ax. Therefore by using
left invertive law, we have

(f ∗ g) (x) =
∨

(y,z)∈Ax

{(f ∗ h) (y) ∧ g (z)}

=
∨

(y,z)∈Ax

 ∨
(p,q)∈Ay

(f (p) ∧ h (q)) ∧ g (z)


=

∨
x∈((p◦q)◦z)

{f (p) ∧ h (q) ∧ g (z)}

=
∨

x∈((z◦q)◦p)

{g (z) ∧ h (q) ∧ f (p)}

=
∨

(t,p)∈Ax

 ∨
(z,q)∈At

(g (z) ∧ h (q)) ∧ f (p)


=

∨
(t,p)∈Ax

{(g ∗ h) (t) ∧ f (p)}

= ((g ∗ h) ∗ f) (x) .

Thus f ∗ g = (g ∗ h) ∗ f = g ∗ f, which implies that commutative law holds in L and associative law
holds in L due to commutativity. Since for any fuzzy subset f in L, we have f ∗ h = f (where h is
fixed) implies that h is pure right identity in F (S) and hence an identity. �

Lemma 3.2. Let S be an LA-semihypergroup. If S has a pure left identity then

S ∗ S = S.

Proof. Every x in S can be written as x = e ◦ x, where e is the pure left identity in S. Therefore

(S ∗ S) (x) =
∨

(y,z)∈Ax

{S (y) ∧ S (z)}

≥ {S (e) ∧ S (x)}
= 1 = S (x) .

Hence S ∗ S = S. �

Theorem 3.3. Let χA and χB be fuzzy subsets of an LA-semihypergroup S, where A and B are
nonempty subsets of S. Then the following properties hold:

(1) If A ⊆ B then χA ⊆ χB .
(2) χA ∩ χB = χA∩B .
(3) χA ∗ χB = χA◦B .

Proof. (1) . It is obvious.
(2) . Let x ∈ S. If x ∈ A ∩B, then x ∈ A and x ∈ B. So χA (x) = 1 and χB (x) = 1. Thus we have

(χA ∩ χB) (x) = χA (x)∧χB (x) = 1 = χA∩B . If x /∈ A∩B, then x /∈ A and x /∈ B. So χA (x) = 0 and
χB (x) = 0. Thus we have (χA ∩ χB) (x) = χA (x) ∧ χB (x) = 0 = χA∩B . Thus

χA ∩ χB = χA∩B .

(3) . For any x ∈ S. If x /∈ A ◦B, then

χA◦B(x) = 0 (i)

This means that there does not exist y ∈ A and z ∈ B such that x ∈ y ◦ z.
If Ax = ∅ then

(χA ∗ χB)(x) = 0 (ii)

If Ax 6= ∅ and (y, z) ∈ Ax then x ∈ y ◦z. Then y /∈ A or z /∈ B. Thus either χA(y) = 0 or χB(z) = 0.
So we have, χA(y) ∧ χB(z) = 0. Hence (χA ∗ λB)(x) = 0.
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Let x ∈ A ◦ B, then χA◦B(x) = 1. Thus x ∈ a ◦ b, for some a ∈ A and b ∈ B, so (a, b) ∈ Ax. Since
Ax 6= ∅, we have

(χA ∗ χB)(x) =
∨

(y,z)∈Ax

{χA(y) ∧ χB(z)}

≥ χA(a) ∧ χB(b) = 1.

Thus (χA ∗ χB)(x) = 1. Hence χA ∗ χB = χA◦B . �

Theorem 3.4. A fuzzy subset f of an LA-semihypergroup S is a fuzzy LA-subsemihypergroup of S if
and only if

f ∗ f ⊆ f.
Proof. Assume that f is a fuzzy LA-subsemihypergroup of S. If Aa = ∅. Then (f ∗ f) (a) = 0 = f (a) .
If Aa 6= ∅, then there exist x and y in S such that (x, y) ∈ Aa. Then for any α ∈ x ◦ y, we have a ∈ α.
Since f is a fuzzy LA-subsemihypergroup of S, we have

(f ∗ f) (a) =
∨

(x,y)∈Aa

{f (x) ∧ f (y)}

≤
∨

(x,y)∈Aa

f (α)

≤
∨

(x,y)∈Aa

f (a)

= f (a) .

Thus f ∗ f ⊆ f.
Conversely, assume that f ∗ f ⊆ f. Let x, y ∈ S and α ∈ x ◦ y. We have,

f (α) ≥ (f ∗ f) (α)

=
∨

(x,y)∈Aα

{f (x) ∧ f (y)}

≥ {f (x) ∧ f (y)}
f (α) ≥ {f (x) ∧ f (y)} .

Thus
∧

α∈x◦y
f (α) ≥ {f (x) ∧ f (y)} . Thus f is a fuzzy LA-subsemihypergroup of S. �

Theorem 3.5. A nonempty subset A of an LA-semihypergroup S is an LA-subsemihypergroup if and
only if the characteristic fuzzy set χA is a fuzzy LA-subsemihypergroup.

Proof. Let A be a nonempty subset of an LA-semihypergroup S, x and y be arbitrary elements of S.
Let A be an LA-subsemihypergroup of S. Let x, y ∈ A, then x ◦ y ⊆ A. For any α ∈ x ◦ y, we have,

χA (x) = 1 and χA (y) = 1. Hence
∧

α∈x◦y
χA (α) = 1 = χA (x) ∧ χA (y) . Now let x ∈ A and y /∈ A, then

χA (x) = 1 and χA (y) = 0, so we have
∧

α∈x◦y
χA (α) ≥ 0 = χA (x) ∧ χA (y) . Now let both x and y are

not in A, then χA (x) = 0 and χA (y) = 0, so we have
∧

α∈x◦y
χA (α) ≥ 0 = χA (x)∧ χA (y) . Thus for all

x, y ∈ S, we have
∧

α∈x◦y
χA (α) ≥ χA (x) ∧ χA (y) . Thus χA is a fuzzy LA-subsemihypergroup of S.

Conversely, Let χA be a fuzzy LA-subsemihypergroup of S. If the elements x and y are in A, then

χA (x) = 1 = χA (y) . But
∧

α∈x◦y
χA (α) ≥ χA (x) ∧ χA (y) = 1, which implies that χA (α) ≥ 1 for any

α ∈ x ◦ y. Hence for any α ∈ x ◦ y, χA (α) = 1, i.e., α ∈ A. It thus follows that x ◦ y ⊆ A. Hence A is
an LA-subsemihypergroup of S. �

Theorem 3.6. Let S be an LA-semihypergroup and for a nonempty subset A of S the following
statements are equivalent:
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(1) A is left (resp. right) hyperideal of S.
(2) The characteristic fuzzy set χA is a fuzzy left (resp. right) hyperideal of S.

Proof. (1) =⇒ (2) . Assume that A is a left hyperideal of S. Let x, y ∈ S be such that both x and
y are in A. Then since A is left hyperideal of S, x ◦ y ⊆ A. For any α ∈ x ◦ y, we have, χA (x) = 1

and χA (y) = 0. Hence
∧

α∈x◦y
χA (α) = 1 = χA (y) . Now let x ∈ A and y /∈ A, then χA (x) = 1

and χA (y) = 0, so we have
∧

α∈x◦y
χA (α) ≥ 0 = χA (y) . Now let both x and y are not in A, then

χA (x) = 0 and χA (y) = 0, so we have
∧

α∈x◦y
χA (α) ≥ 0 = χA (y) . Thus for all x, y ∈ S, we have∧

α∈x◦y
χA (α) ≥ χA (y) . Thus χA is a fuzzy left hyperideal of S.

(2) =⇒ (1) . Let χA be a fuzzy left hyperideal of S. If the elements x and y are in A, then χA (x) =

1 = χA (y) . But 1 = χA (y) ≤
∧

α∈x◦y
χA (α) , which implies that χA (α) ≥ 1 for any α ∈ x ◦ y. Hence for

any α ∈ x ◦ y, χA (α) = 1, i.e., α ∈ A. It thus follows that S ◦A ⊆ A. Therefore A is left hyperideal of
S. Similarly we can prove that χA is a fuzzy right hyperideal of S when A is right hyperideal of S. �

Theorem 3.7. A fuzzy subset f of an LA-semihypergroup S is a fuzzy left (resp. right) hyperideal of
S if and only if for each t ∈ (0, 1], U(f ; t) 6= φ is a left (resp. right) hyperideal of S.

Proof. Suppose f be a fuzzy left hyperideal of S and x ∈ U(f ; t) and y ∈ S. Then f(x) ≥ t. Since

f is a fuzzy left hyperideal of S, so f(x) ≤
∧

α∈y◦x
f (α). Hence f(α) ≥ t for all α ∈ y ◦ x, this implies

α ∈ U(f ; t) that is y ◦ x ⊆ U(f ; t). Hence U(f ; t) is a fuzzy left hyperideal of S.

Conversely, assume that U(f ; t) 6= ∅ is a left hyperideal of S. Let x ∈ S such that f(x) >
∧

α∈y◦x
f (α)

for all y ∈ S. Select t ∈ (0, 1] such that f(x) = t >
∧

α∈y◦x
f (α). Then x ∈ U(f ; t) but y ◦ x * U(f ; t),

a contradiction. Hence f(x) ≤
∧

α∈y◦x
f (α), that is f is a fuzzy left hyperideal of S. �

Proposition 3.3. Let S be an LA-semihypergroup then the following properties hold.

(1) Let f and g be two fuzzy LA-subsemihypergroups of S. Then f∩g is also fuzzy LA-subsemihypergroup
of S.

(2) The intersection of any family of fuzzy left (resp. right, two sided) hyperideals of S is a fuzzy
left (resp. right, two sided) hyperideal of S.

Proof. (1) . Let f and g be two fuzzy LA-subsemihypergroups of S. Let x,y ∈ S. Then for any α ∈ x◦y,
we have

∧
α∈x◦y

f (α) ≥ f (x) ∧ f (y) and
∧

α∈x◦y
g (α) ≥ g (x) ∧ g (y) . Hence f (α) ≥ f (x) ∧ f (y) and

g (α) ≥ g (x) ∧ g (y) . Thus

(f ∩ g) (α) = f (α) ∧ g (α) ≥ f (x) ∧ f (y) ∧ g (x) ∧ g (y)

= f (x) ∧ g (x) ∧ f (y) ∧ g (y)

= (f ∩ g) (x) ∧ (f ∩ g) (y) .

Hence
∧

α∈x◦y
(f ∩ g) (α) ≥ (f ∩ g) (x)∧(f ∩ g) (y) . Therefore f ∩g is a fuzzy LA-subsemihypergroup

of S.
(2) . Let g =

⋂
i∈I
gi be a family of fuzzy left hyperideals of S. Let x, y ∈ S. Then, since each gi (i ∈ I)

is a fuzzy left hyperideals of S, so
∧

α∈x◦y
gi (α) ≥ gi (y) . Thus for any α ∈ x ◦ y, gi (α) ≥ gi (y) , and we
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have

g (α) =

(⋂
i∈I

gi

)
(α) =

∧
i∈I

(gi (α))

≥
∧
i∈I

gi (y)

=

(⋂
i∈I
gi

)
(y)

= g (y) .

Thus
∧
i∈I
g (α) ≥ g (y) . Therefore g =

⋂
i∈I
gi is a fuzzy left hyperideal of S. �

Proposition 3.4. Let S is an LA-semihypergroup. If f is fuzzy left (resp. right or two-sided) hyper-
ideal of S. Then f is a fuzzy LA-subsemihypergroup.

Proof. Let f be a fuzzy left hyperideal of S. Let x, y ∈ S. Then
∧

α∈x◦y
f (α) ≥ f (y) ≥ f (x) ∧ f (y) .

Thus
∧

α∈x◦y
f (α) ≥ f (x) ∧ f (y) . Therefore f is a fuzzy LA-subsemihypergroup of S. �

Proposition 3.5. A fuzzy subset f of an LA-semihypergroup S is a fuzzy left (resp. right) hyperideal
of S if and only if S ∗ f ⊆ f (resp. f ∗ S ⊆ f).

Proof. Let f be a fuzzy left hyperideal of S and x ∈ S. Then

(S ∗ f) (x) =
∨

x∈y◦z
{S (y) ∧ f (z)}

=
∨

x∈y◦z
{f (z)} (∵ S (y) = 1)

≤
∨

x∈y◦z
f (x) , because f (z) ≤

∧
α∈y◦z

{f (α)} ≤ f (α) for each α ∈ y ◦ z.

= f (x) .

Hence, (S ∗ f)(x) ≤ f(x). Thus S ∗ f ⊆ f.
Conversely, suppose that S ∗ f ⊆ f. We show that f is a fuzzy left hyperideal of S. Let x ∈ S. Then

f (x) ≥ (S ∗ f)) (x)

=
∨

x∈y◦z
{S (y) ∧ f (z)}

=
∨

x∈y◦z
{f (z)} , (because S (y) = 1)

≥ f (z) , for each z such that x ∈ y ◦ z.

Thus
∧

x∈y◦z
f (x) ≥ f (z) . Hence f is a fuzzy left hyperideal of S.

Similarly we can prove the case of fuzzy right hyperideal of S. �

Theorem 3.8. If S is an LA-semihypergroup with pure left identity. Then every fuzzy right hyperideal
is a fuzzy left hyperideal of S.

Proof. Let S be an LA-semihypergroup with pure left identity e, and f be a fuzzy right hyperideal of
S. Since f is a fuzzy right hyperideal of S, so f ∗ S ⊆f. Thus by Lemma 3.2, and left invertive law,
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we have

S∗f = (S ∗ S) ∗ f
= (f∗S) ∗S
⊆ f∗S
⊆ f.

Thus, S∗f ⊆ f. Thus, f is a fuzzy left hyperideal of S. �

Proposition 3.6. The product of two fuzzy left (resp. right) hyperideals of an LA-semihypergroup S
with pure left identity is a fuzzy left (resp. right) hyperideal of S.

Proof. Let f and g be any two fuzzy left hyperideals of S. Then by using (1) , we have,

S∗ (f ∗ g) = f ∗ (S∗g) ⊆ f ∗ g.
Let f and g be any two fuzzy right hyperideals of S. Then by using medial law and 3.2, we have

(f ∗ g) ∗ S = (f ∗ g) ∗ (S ∗ S) = (f ∗ S) ∗ (g ∗ S) ⊆ f ∗ g.
Therefore f ∗ g is a fuzzy hyperideal of S. �

Proposition 3.7. In LA-semihypergroup with pure left identity for every fuzzy left hyperideal f of S,
we have S∗f = f.

Proof. It suffices to show that f ⊆ S∗f. Since every element x ∈ S can be written as x = e ◦ x, where
e is the pure left identity in S,

(S∗f) (x) =
∨

(y,z)∈Ax

{S (y) ∧ f (z)}

≥ {S (e) ∧ f (x)}
= f (x) .

Hence S∗f = f. �

Proposition 3.8. In an LA-semihypergroup S with pure left identity for every fuzzy right hyperideal
h of S, we have h ∗ S = h.

Proof. It suffices to show that h ⊆ h ∗ S. Since every element a ∈ S can be written as a = e ◦ a =
(e ◦ e) ◦ a = (a ◦ e) ◦ e, then there exist u ∈ a ◦ e such that a ∈ u ◦ e. Then (u, e) ∈ Aa, where e is the
pure left identity in S,

(h ∗ S) (a) =
∨

(x,y)∈Aa

{h (x) ∧ S (y)}

≥ {h (u) ∧ S (e)} .

Since h is a fuzzy right hyperideal of S. Then
∧

u∈a◦e
h (u) ≥ h (a) . Hence h (u) ≥ h (a) . Thus

(h ∗ S) (a) ≥ {h (u) ∧ S (e)}
≥ h (a) ∧ 1

= h (a) .

Hence h ∗ S = h. �

Proposition 3.9. Let S be an LA-semihypergroup with pure left identity, f be a fuzzy subset and k be
a fuzzy left hyperideal of S. Then for any fuzzy subset h and fuzzy left hyperideal g of S, f ∗ g = h ∗ k
implies that g ∗ f = k ∗ h.

Proof. Since g and k are fuzzy left hyperideals of S, by Proposition 3.7, S∗g = g and S∗k = k. Then,

g ∗ f = (S∗g) ∗ f = (f ∗ g) ∗ S = (h ∗ k) ∗ S = (S∗k) ∗ h = k ∗ h.
�
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Proposition 3.10. Every idempotent fuzzy left hyperideal of an LA-semihypergroup S is a fuzzy
hyperideal of S.

Proof. Let f be a fuzzy left hyperideal of S which is idempotent. Then

f ∗ S = (f ∗ f) ∗ S = (S∗f) ∗ f⊆f ∗ f = f.

Hence f is a fuzzy right hyperideal of S and so f is a fuzzy hyperideal of S. �

Proposition 3.11. If f is an idempotent element in an LA-semihypergroup S with pure left identity.
Then S∗f is an idempotent element.

Proof. Let f be an idempotent element in an LA-semihypergroup S with pure left identity. Then by
using medial law,

(S∗f) ∗ (S∗f) = (S ∗ S) ∗ (f ∗ f) = S∗f.
�

Proposition 3.12. If f is an idempotent element in an LA-semihypergroup S with pure left identity.
Then every fuzzy left hyperideal g of S commutes with f.

Proof. Let f be an idempotent element in an LA-semihypergroup S with pure left identity. Then

f ∗ g = (f ∗ f) ∗ g = (g ∗ f) ∗ f ⊆ (g ∗ S) ∗ f ⊆ g ∗ f.

Also,

g ∗ f = g ∗ (f ∗ f) = f ∗ (g ∗ f) ⊆ f ∗ (g ∗ S)⊆f ∗ g.
�

Proposition 3.13. If f is a fuzzy left hyperideal of an LA-semihypergroup S with pure left identity,
then

f ∪ (f ∗ S)

is a fuzzy hyperideal of S.

Proof. Assume that f is a fuzzy left hyperideal of S. Then

(f ∪ (f ∗ S)) ∗ S= (f ∗ S) ∪ ((f ∗ S) ∗ S)

= (f ∗ S) ∪ ((S ∗ S) ∗ f)

= (f ∗ S) ∪ (S∗f)

= (f ∗ S) ∪ f = f ∪ (f ∗ S) .

Hence f ∪ (f ∗ S) is a fuzzy right hyperideal of S. and by Theorem 3.8, it is a fuzzy hyperideal of
S. �

Proposition 3.14. If f is a fuzzy right hyperideal of an LA-semihypergroup S with pure left identity,
then

f ∪ (S∗f) .

is a fuzzy hyperideal of S.

Proof. Assume that f is a fuzzy right hyperideal of S. Then

(f ∪ (S∗f)) ∗ S= ((f ∗ S) ∪ (S∗f) ∗ S)

⊆f ∪ (S∗f) ∗ (S ∗ S)

= f ∪ (S ∗ S) ∗ (f ∗ S)

= f ∪ (S∗ (f ∗ S))

= f ∪ (f ∗ (S ∗ S))

= f ∪ (f ∗ S)

= f ⊆ f ∪ (S∗f) .
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Also,

S∗ (f ∪ (S∗f)) = (S∗f) ∪ (S∗ (S∗f))

= (S∗f) ∪ ((S ∗ S) ∗ (S∗f))

= (S∗f) ∪ ((f ∗ S) ∗ (S ∗ S))

⊆ (S∗f) ∪ (f ∗ (S ∗ S))

= (S∗f) ∪ (f∗S)

⊆ (S∗f) ∪ f
= f ∪ (S∗f)

Hence f ∪ (S∗f) is a fuzzy hyperideal of S. �

4. Characterizations of regular and intra-regular LA-semihypergroups in terms of
fuzzy hyperideals

In this section, we characterize regular as well as intra-regular LA-semihypergroups in terms of
fuzzy hyperideals.

Theorem 4.1. Let S be a regular LA-semihypergroup. Then for every fuzzy right hyperideal f and
every fuzzy left hyperideal g of S, we have

f ∗ g = f ∩ g.

Proof. Let S be a regular LA-semihypergroup and f is a fuzzy right hyperideal and g a fuzzy left
hyperideal of S. Then f ∗ g ⊆ f ∗ S ⊆f and f ∗ g ⊆ S∗g ⊆ g. This implies that f ∗ g ⊆ f ∩ g. Now let
a be any element of S, then, since S is a regular LA-semihypergroup, so there exist an element x ∈ S
such that a ∈ (a ◦ x) ◦ a. Then there exist u ∈ a ◦ x such that a ∈ u ◦ a. Then (u, a) ∈ Aa. Thus we
have

(f ∗ g) (a) =
∨

(y,z)∈Ax

{f (y) ∧ g (z)}

≥ {f (u) ∧ g (a)} .

Since f is fuzzy right hyperideal of S,
∧

u∈a◦x
f (u) ≥ f (a) . Hence f (u) ≥ f (a) . Thus

(f ∗ g) (a) ≥ {f (u) ∧ g (a)}
≥ {f (a) ∧ g (a)}
= (f ∩ g) (a) .

Thus f ∗ g ⊇ f ∩ g. Therefore f ∗ g = f ∩ g. �

Corollary 4.1. Let S be a regular LA-semihypergroup. Then for every fuzzy hyperideal f and every
fuzzy hyperideal g of S, we have

f ∗ g = f ∩ g.

Proposition 4.1. Let S be a regular LA-semihypergroup. Then for every fuzzy right hyperideal f of
S is idempotent.

Proof. Let S be a regular LA-semihypergroup and f is a fuzzy right hyperideal of S. Then f ∗ f ⊆
f ∗S ⊆f. Next since S is regular so for any a ∈ S, there exist an element x ∈ S such that a ∈ (a ◦ x)◦a.
Then there exist α ∈ a ◦ x such that a ∈ α ◦ a. Then (α, a) ∈ Aa. Thus we have

(f ∗ f) (a) =
∨

(y,z)∈Ax

{f (y) ∧ f (z)}

≥ {f (α) ∧ f (a)} .
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Since f is fuzzy right hyperideal of S,
∧

α∈a◦x
f (α) ≥ f (a) . Hence f (α) ≥ f (a) . Thus

(f ∗ f) (a) ≥ {f (α) ∧ f (a)}
≥ f (a) ∧ f (a)

= f (a) .

Hence f ⊆ f ∗ f. Therefore f ∗ f = f. �

Corollary 4.2. Let S be a regular LA-semihypergroup. Then for every fuzzy hyperideal f of S is
idempotent.

Proposition 4.2. If S is a regular LA-semihypergroup. Then every fuzzy right hyperideal is a fuzzy
left hyperideal of S.

Proof. Let S be a regular LA-semihypergroup and f be a fuzzy right hyperideal of S. Let x, y ∈ S.
Since S is regular and x ∈ S, so there exist an element a ∈ S such that x ∈ (x ◦ a) ◦ x. Thus we

have
∧

α∈x◦y
f (α) =

∧
α∈(((x◦a)◦x)◦y)

f (α) =
∧

α∈((y◦x)◦(x◦a))

f (α) =
∧

α∈u◦v
u∈y◦x,v∈x◦a

f (α) ≥ f (u) ≥
∧

u∈y◦x
f (u) ≥

f (y) . Hence
∧

α∈x◦y
f (α) ≥ f (y) . Therefore f is a fuzzy left hyperideal of S. �

Proposition 4.3. A fuzzy set of an intra-regular LA-semihypergroup S is a fuzzy right hyperideal if
and only if it is a fuzzy left hyperideal of S.

Proof. Let f be a fuzzy right hyperideal of S. Let a, b ∈ S. Since a ∈ S and S is intra-regular LA-
semihypergroup, so there exist x, y ∈ S such that a ∈

(
x ◦ a2

)
◦ y. Thus for any α ∈ a ◦ b, we have,∧

α∈a◦b

f (α) =
∧

α∈(((x◦a2)◦y)◦b)

f (α) =
∧

α∈((b◦y)◦(x◦a2))

f (α) =
∧

α∈u◦v
u∈b◦y,v∈x◦a2

f (α) ≥ f (u) ≥
∧

u∈b◦y

f (u) ≥

f (b) . Thus f is a fuzzy left hyperideal of S.
Conversely, assume that f is a fuzzy left hyperideal of S. Now for any α ∈ a ◦ b, we have,∧

α∈a◦b

f (α) =
∧

α∈(((x◦a2)◦y)◦b)

f (α) =
∧

α∈((b◦y)◦(x◦a2))

f (α) =
∧

α∈u◦v
u∈b◦y,v∈x◦a2

f (α) ≥ f (v) ≥
∧

v∈x◦a2
f (v) ≥

f
(
a2
)
≥

∧
β∈a◦a

f (β) ≥ f (a) . Thus
∧

α∈a◦b

f (α) ≥ f (a) . Hence f is a fuzzy right hyperideal of S. �

Proposition 4.4. Every fuzzy two-sided hyperideal of an intra-regular LA-semihypergroup S with pure
left identity is idempotent.

Proof. Assume that f is a fuzzy two-sided hyperideal of S. Then clearly f ∗ f ⊆ f ∗ S ⊆f. Since S is
intra-regular, so for each a ∈ S, there exist x, y ∈ S such that a ∈

(
x ◦ a2

)
◦ y. So by using (1) and left

invertive law, we have

a ∈
(
x ◦ a2

)
◦ y = (x ◦ (a ◦ a)) ◦ y = (a ◦ (x ◦ a)) ◦ y = (y ◦ (x ◦ a)) ◦ a.

Then there exist u ∈ (y ◦ (x ◦ a)) such that a ∈ u ◦ a. Then (u, a) ∈ Aa. Thus we have,

(f ∗ f) (a) =
∨

(p,q)∈Aa

{f (p) ∧ f (q)}

≥ {f (u) ∧ f (a)} .
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Since f is a fuzzy two-sided hyperideal of S, so we have
∧

u∈(y◦(x◦a))

f (u) =
∧

u∈y◦v
v∈x◦a

f (u) ≥ f (v) ≥

∧
v∈x◦a

f (v) ≥ f (a) . Hence f (u) ≥ f (a) . Thus

(f ∗ f) (a) ≥ {f (u) ∧ f (a)}
≥ f (a) ∧ f (a)

= f (a) .

Hence f ∗ f = f. �

Proposition 4.5. If S is an intra-regular LA-semihypergroup with pure left identity. Then

f = (S∗f)
2

for all fuzzy left hyperideal f of S.

Proof. Let S be an intra-regular LA-semihypergroup with pure left identity and f be a fuzzy left
hyperideal of S. Then S∗f ⊆ f. Since S∗f is a fuzzy left hyperideal of S, so it is idempotent. Thus

(S∗f)
2

= (S∗f) ⊆ f.

Moreover,

f = f ∗ f ⊆ S∗f = (S∗f)
2
.

Thus f = (S∗f)
2
. �

5. Conclusion

In this paper, we have introduced and studied the notions of fuzzy LA-subsemihypergroups and
fuzzy left (resp. right) hyperideals of LA-semihypergroups and their interrelations. We characterized
regular and intra-regular LA-semihypergroups in terms of these notions. Some important directions
for future work are

(1) To develop strategies for obtaining more valuable results.
(2) To define other fuzzy hyperideals in LA-semihypergroups.
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