International Journal of Analysis and Applications
ISSN 2291-8639

Volume 15, Number 2 (2017), 211-221

DOI: 10.28924/2291-8639-15-2017-211

NEW BOUNDS OF OSTROWSKI-GRUSS TYPE INEQUALITY FOR (k+1)
POINTS ON TIME SCALES

EZE R. NWAEZE"™, SETH KERMAUSUOR?

ABSTRACT. The aim of this paper is to present three new bounds of the Ostrowski—Griiss type
inequality for points zg,x1,x2, - -,z on time scales. Our results generalize result of Ngoé and
Liu, and extend results of Ujevié¢ to time scales with (k 4+ 1) points. We apply our results to the
continuous, discrete, and quantum calculus to obtain many new interesting inequalities. An example
is also considered. The estimates obtained in this paper will be very useful in numerical integration
especially for the continuous case.

1. INTRODUCTION

In 1997, Dragomir and Wang [6] proved that if f : [a,b] — R is a differentiable function such that
there exist constants v,I" € R with v < f'(z) <T for all = € [a, b], then we have

‘f(w)— L[ goyas - O ()

b—a b—a 5 (b—a)(l —7) (1.1)

for all € [a, b]. The above inequality is known in the literature as the Ostrowski—Griiss type inequality.
Under the same assumption, Cheng [5] obtained the following sharp version of (1.1).

for all = € [a, b].

In 2003, Ujevié [20] obtained another estimate of the left part of (1.2) as follows:

Theorem 1.1. Let f: I — R, where I C R is an interval, be a mapping differentiable in the interior
IntI of I, and let a,b € Intl, a < b. If there exist constants v,I' € R such that v < f'(¢t) < T for all
t € [a,b] and f' € Li(a,b), then, for all x € [a,b], we have

- B L o] <bis
and

0= (o= ) GO [y af <5t -s)
where S = W.

In 2012, Feng and Meng [7] generalized Inequality (1.1) to the case involving (k + 1) points
Zg, X1, - ,&k. Their result is contained in the following theorem.
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Theorem 1.2. Let I C R be an open interval, a,b € I, a < b, f: 1 — R a differentiable function
such that there exist constants v, I € R with v < f'(z) < T for all x € [a,b]. Furthermore, suppose

that z; € [a,b], 1 =10,1,2,--- |k, Iy :a=a0 <21 < -+ <z = b is a division of the interval [a,b] and
m; € [xi—1, ], 1=1,2,--- Jk, mg=a, mgy1 =b. Then we have the following inequality
k b )
| | 1) — £(a) [0 — @
’b—aiz_%(mi+1 _mz)f(xz) - mA f(t)dt— (b—a)2 ZmZJrl lerl _xz)
1
< Hb-a)r )

To unify the theory of continuous, discrete and quantum calculus, Stefan Hilger [8] in 1988 came up
with the theory of time scales (see Section 2 for a brief introduction). Ever since, many classical integral
inequalities have been extended to time scales; see, for example, the references [4,9-12,15-17, 19].
In [13], Liu and Ngo extended (1.1) to time scales. Following thereafter, the same authors in [14]
obtained the following theorem which sharpens their earlier result.

Theorem 1.3. Let a,b,s,t € ']T with a < b and f : [a,b] — R be differentiable. If f~ is rd-continuous
and v < fA(t) <T for all t € [a,b], then we have

I'—~ b
ﬁm/a

h2 (t7 CL) - h2 (t7 b)
where ha(t,s) is given in Definition 2.8 and

b—a
p(t7x)—{$_a’ x € [a,t), (1.4)

p(t, x) -

‘Am, (1.3)

r—0b, x €t

In this paper, we introduce a parameter A € [0, 1] and then achieve the following goals, viz.,

(1) firstly, we extend Theorem 1.3 to (k+ 1) points. Our first result provides another estimate for
the left hand side of the inequality in Theorem 1.2 for the case when A = 0 and the time scale
is the set of real numbers (see Remark 4.1).
(2) Next, we generalize and extend Theorem 1.1 to time scales (see Remark 3.2).
This paper is made up of five sections. In Section 2, we lay a quick foundation of the theory of
time scales. Our main results (Theorems 3.1 and 3.2) are then formulated and proved in Section 3.
Thereafter, we then give some applications of our results in Section 4 to obtain many new inequalities.
Finally, a brief conclusion follows in Section 5.

2. TIME SCALE ESSENTIALS

In this section, we collect basic time scale concepts that will aid in better understanding of this work.
For more on this subject, we refer the interested reader to Hilger’s Ph.D. thesis [8], the books [2, 3],
and the survey [1].

Definition 2.1. A time scale T is an arbitrary nonempty closed subset of the real numbers.

We assume throughout that T has the topology that is inherited from the standard topology on
R. Tt is also assumed throughout that in T the interval [a, b] means the set {t € T: a <t < b} for the
points a < b in T. Since a time scale may not be connected, we need the following concept of jump
operators.

Definition 2.2. For eacht € T, the forward jump operator o : T — T is definied by o(t) = inf {s € T: s >t}
and the backward jump operator p : T — T is defined by p(t) =sup{s € T : s < t}.

Definition 2.3. If o(t) > t, then we say that t is right-scattered, while if p(t) < t then we say that t
1s left-scattered. Points that are right-scattered and left-scattered at the same time are called isolated.
If o(t) = t, then t is called right-dense, and if p(t) =t then t is called left-dense. Points that are both
right-dense and left-dense are called dense.
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Definition 2.4. The mapping i : T — [0, 00) defined by u(t) = o(t)—t is called the graininess function.
The set TF is defined as follows: if T has a left-scattered mazimum m, then TF = T — {m} ; otherwise,
Tk =T.

If T =R, then u(t) = 0, and when T = Z, we have u(t) = 1.

Definition 2.5. Let f : T — R and t € T*. Then we define f2(t) to be the number (provided it exists)
with the property that for any given € > 0 there exists a neighborhood U of t such that

[f(0(t) = f(s) = fAW) [o(t) = s]| S elo(t) —s|, VseU.

We call f2(t) the delta derivative of f at t. Moreover, we say that f is delta differentiable (or in short:
differentiable) on T* provided f>(t) exists for all t € T*. The function & : T*¥ — R is then called the
delta derivative of f on TF.

In the case T = R, f2(t) = %(tt). In the case T = Z, f2(t) = Af(t) = f(t+ 1) — f(t), which is the
usual forward difference operator.

Theorem 2.1. If f,g : T — R are differentiable att € T*, then the product fg: T — R is differentiable
at t and

(£9)° (&) = fA(0)g(®) + Fo(£)g™ (¢).
Definition 2.6. The function f: T — R is said to be rd-continuous on T provided it is continuous at
all right-dense points t € T and its left-sided limits exist at all left-dense points t € T. The set of all

rd-continuous function f : T — R is denoted by C,q(T,R). Also, the set of functions f : T — R that
are differentiable and whose derivative is rd-continuous is denoted by C,(T,R).

It follows from [2, Theorem 1.74] that every rd-continuous function has an anti-derivative.

Definition 2.7. Let F : T — R be a function. Then F : T — R is called the anti-derivative of f on
T if it satisfies F2(t) = f(t) for any t € T*. In this case, the Cauchy integral

b
/f(t)AtzF(b)—F(a), a,beT.

Theorem 2.2. Let f,g € Crq(T,R), a,b,c € T and o, B € R. Then

) fb[af(t) + Bg(t)] At = Oéfbf(lf)At + 5fb9(t)At

fF)AL = —bff(t)At.

fF)AL = ff(t)AtJrff(t)At

a

b

g )AL = (fg) (b) = (fg) (a) — [ f2(t)g(o(t))At.
f1f(t)] < g(t) on [a,b], then

/b FOAL < /b g(t)At.

Definition 2.8. Let hy,gp : T2 — R , k € Ny be defined by ho(t,s) = go(t,s) =1, for all s,t € T

(4)
(5)

—~
w
S~—"
[ - W - S

~

and then recursively by g1 (t,8) fgk 8) AT, hit1 (L, 8) fhk 7,8) AT, for all s,t € T.

In view of the above definition, we make the following remarks that will come handy in the sequel.

~For T =R, hy(t,s) = L5,

— For T = Z, hQ(t, S) = “7‘9)(;77571)
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3. MAIN RESULTS

In order to prove our results, we will need the following lemmas. The first lemma is given in [18,21]
but with some typos. We present here the correct version.

Lemma 3.1 (Generalized Montgomery identity with a parameter). Suppose that

(1) a,beT, A€ [0,1], Iy:a=mzp <x1 < -+ <xp_1 < T = b is a partition of the interval [a,d]

fO’f'l'()7£L'1,"' s Tk ETa
(2) a; €T (i =0,1,--- ,k+1) is k+ 2 points so that g = a, «o; € [ri—1,2;] (i =1,---,k) and
ak+1=b,

(3) f:[a,b] = R is a differentiable function.

Then we have the following equation

b b
/K(t,]k)fA(t)At+/ fo(t)At

i (aerl ) (@) + A (ai+1 - ai) w7 (3.1)

i=0 i=0
where

t— (o —A%), t € la,ar),

t—(ar + 2252 ), ¢ € o, 1),

t— OZQ_A% s tE[JIl,OéQ),
Kt Iy)=<: (3.2)
t— (ap—1 -I-)\M), t € lo—1,TK-1),

)\ak Qp—1

t— (g — A=)t € [z, o),

t— (o + A=)t e oy, B,

provided for each i € {0,1,2,... k — 1}, ajp1 — A" and ;41 + A2 belong to T.

Lemma 3.2 ( [14]). Leta,b,x €T, f,g € Crq and f,g : [a,b] = R with v < g(x) < T for all z € [a, b
and for some v,I' € R. Then we have

’/f At——/f At/ (t)At‘

b
<=y Ml - H/ F(s)As|At

2

a

Moreover, the inequality in (3.3) is sharp.

We now state and justify our first result.
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Theorem 3.1. Suppose f satisfies the conditions of Lemma 3.1. If, in addition, f> € Crq with
v < fA@) <T for allt € [a,b] and some v,T € R, then we have the inequality

k k b
flai) + floy -
‘(1 - ) Z(aiJrl —a;) f(wi) + )‘Z(ai+l - ai)% — [ frt)At
i=0 i=0 a
f(b) — f(a) = o o o o
- i1~ i1 — QG
- T h—a Z% {hz (ai+1a Qi1 — )\%) — ha («%ﬁ Qi1 — A%)
+ ha ($i+1, Qi1+ )\w) — ha (Oli+17 Qi1+ )\w)
2 2
Al o a a a
i1 — QG i1 — QG
/ ‘K t Ik — 7@ ZU |:h2 (ai+1,ai+1 — )\+T) — ho (xi,ai_H — )\%)
+ ho (351'+1, Qi1+ A%) — hy (Oéi+1, Qiy1 + )\aiwgaiﬂ)} ‘At, (3.4)

provided for each i € {0,1,2,... .k — 1}, a1 — AT and o + A5 belong to T. The
inequality in (3.4) is sharp in the sense that the constant 1/2 cannot be replaced by a smaller one.

Proof. By applying Lemma 3.2 to the functions f(t) := K (t, I},) and g(t) = f2(t), we have

b b b
‘/ K(t,]k)fA(t)At—ﬁ/ K(t,]k)At/ fA(t)At‘
F—v
<!

1

b b
K(t,_[k) — 7/ K(S,Ik)AS

T At. (3.5)

a

Now, we observe that

b
/ FA)AL = F(b) — f(a), (3.6)

and (by applying the items of Theorem 2.2 and Definition 2.8)
b k—1 Tit1
/ K(t, Iy) At = Z/ K(t, I) At
i+1 . . .
fz [/ (t (am AWDN

1=0

Tit1 . .
Jr/ <t — (Ozi+1 + >\a1+22al+1)>At:|
Q41

i
1 i1

LT e
s ()

Q41— )\

Qi1 Qjyo—aiqy 0‘7,+1 ‘ o
+/ (t— (ai+1 4Gt . alﬂ))At
«@

i+1

Ti41 . — .
+ t— (Olz'+1 + AZit2 ikl azﬂ) At
PO 5 i 221 az+1 2
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k—1

Zq . _ .
—/ t— (am - )\M) At (3.7)
0 i — AT 2

Qi1

. = (o — ASHZN) ) o
Qiri—A 1,+1 a; 2
o t—(a 1+)\04i+2*04¢+1) At
TR Nt £ " 2

Tit+1 . —
+ t— (Ozi+1 + AM) At
1+1+>\ g2 =g ‘11+1 2

{h2 (Oéi+1, Qg1 — AW) — ho (-Tia Qiy1 — )\W)

1=

|

I
o

7

(673 — Q5 Q5 — Oy
+ hs ($i+1, oyl + )\%) — ha (ai—i-h oyl + )\+22+1>} . (3.8)

Now using Lemma 3.1, we get

/ K 1) A ()
‘ k k

= (0= D —a) @) +AY (i —a) LI Frgan gy

i=0 i=0 2
By substituting Equations (3.6), (3.7) and (3.9) into (3.5), we obtain

a a Jlai) + flaiga) dl
(I_A)Z(O‘Prl_al Ti +)‘;O‘z+l_az - 9 = f

i=0
k-1
- W ; {hz (041‘+1, Qip1 — AW) — ha (Jﬁi, Q41 — )\W)

(67 — Q4 Q5 — Oy
+ ho (l‘i+1, Qi1+ /\%) — ha (Oéi—l-h Qi1 + >\+22+1)} ‘

k—1
r—v [° 1 Qg1 — Qi1 — QG
< KT — 2 S e (s ain = ALY oy (g - 2SO
= . (t, Ir) ba;{2a+la+1 B) 2| Tiy Qg1 5
(67 — (677 — Oy
+ hg ($i+1; o1+ )\%) — ho (ai+17 o1+ )\Jr22+1):| ‘At (310)

Hence, the proof is complete. O

Remark 3.1. If we take A=0, k=2, and x1 =z, ap = a1 = a, as = az = x2 = b in Theorem 3.1,
then we recapture Theorem 1.3.

Next, we provide another bound for (3.4).
Theorem 3.2. Under the conditions of Theorem 3.1, we obtain the following inequalities
k k b
Jlaq) + fla o
‘(1 =) Z(ai+1 — i) f(z;) + )‘Z(ai-H - ai)% = | f7(HAt
i=0 i=0 a
J(b) ~ f(a) = Qi1 —a Qi1 —a
- i+l — Q4 i+1 — QG
TS s =AY (i - ATH)

1=

Qoo — i Qi — i
+ ho ($i+1, Qi1 + /\%) — hs (Oéi+1, Qip1 + )\z+221+1ﬂ ‘
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f(b) f(a)

where S = , and My = max ‘K(t,]k) - = f; k(s,]k)As’.

t€la,b]

Proof. We start by observing that

/ab [K(t,[k) - ﬁ /abk(s,lk)As] At =0.

Using (3.11), we get that for any C € R,

/bK(th)fA(t)At— b_la/bK(t,Ik)At/b o)At

_ /b (FA (1) - C) [K(t,[k) _ 1/bk(s,lk)As} At.

For C' = v, and taking absolute values of both sides of (3.12), we have by using (3.6)

‘/Kt[ka tf /KtIkAt/fA At‘

<[ yfA<t>—vy|K<uk>—M [ koas

At

b b
<tr€n[2?§] K(t,]’k)*bia/a k(s,]k)As /a |fA(t)*’)/|At
b
Mk/ (f2(t) —v)At
_Mk[f(bl)):i( )—"/](b—a)

Similarly, for C =T, we get

‘/ab K(t, I) f2 (t) At — ﬁ /abK(t,fk)At/ab fA(t)At‘

§Mk[F—W}(b—a).

The intended inequalities follow from Lemma 3.1 and Relations (3.13) and (3.14).

217

(3.11)

(3.12)

(3.13)

(3.14)

O

Remark 3.2. Ifwe take T=R, A=0, k=2, andx1 =z, ap = a1 =a, ag = az = T2 = b in

Theorem 3.2, then we get Theorem 1.1.

4. APPLICATIONS

In this section, we apply our theorems to the continuous, discrete, and quantum calculus to obtain

the following results.

Corollary 4.1 (Continuous case). Let T =R in Theorem 3.1. Then we have the inequality

‘(1 Y 3 (i1 — i) (@) + Ai(%l _ O‘”M _ /bf(t)dt
i=0 i=0 a
k=1 2 2
B f(;()b__];()a) i=0 {)\2 (ai—H a ai) B (2% — Aot (>\ B 2)012-_,_1)

2 2
+ <2$i+1 —Aaipo + (A — 2)ai+1) -2 <04i+2 - Oéi+1) }

7/;‘K(t,fk) b—a I:Z;)l{ (Oéi+1*04i>2* (2@*/\ai+(>\*2)ozi+1>

2 2
+ (2I’i+1 — )\C)éi+2 + (/\ - 2)0&1‘_._1) - )\2 <OL¢+2 - Oéi+1) :| dt.

2
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Applying Corollary 4.1 to different values of A and k, we obtain some novel inequalities. We present
here some of these new results.

Remark 4.1. If we take A = 0 in Corollary 4.1, we get

k 2 2 k—1
Z aip1 — o) fa;) / ft)dt — f(bl)) — i(a) {b L Z aiy1(Tip1 — »’Bz)] ‘
i=0

2 -
=0

F dt, (4.2)

1 [2-a2 2
. K(t,]k) - b—C{,|: D) _;aiJrl(xH»l _xz):|
where
t—ai, t€la,z1),
t—ag, tE [!L‘l,xg),
Kt 1) = (4.3)
t—ag_1, t € [Th_2,Tk_1),
t—ap, te [(Ek,hb].
The above inequality is new and sharp. This gives a new estimate for the left hand side of the inequality
in Theorem 1.2.

Furthermore, let k = 2 in Corollary 4.1. If in addition, one then sets xt1 =z, ap = a1 = a, ag =
ag = x9 = b in the resulting inequality, then one gets that for all x € [a,b] the following inequality
holds:

a b
‘(1—)\)(b—a)f(x)+)\(b—a)w—/ F(t)dt

et -]

T — b
<~ T [ \K(t,z) -

{(295 A+ (A — 2)a)2 - (295 —Xa+(A— 2)b)1 'dt. (4.4)

1
8(b—a)

a

Remark 4.2. For A =0 in Inequality (4.4), we have the inequality

0-a7w) - (100~ 1@) (+ - “52) - [ 1000
< M/b
L2

_Jt—a, tcla,x)
K(t’x)_{t—b, t € [z,b).

K(ta)— (v 2 b) ’du (4.5)

where

It is important to note here that Inequality (4.5) is sharper than (1.1) since

max
te(a,b]

a—2|—b> _b;a-

K(t,z) — (x—

Remark 4.3. Next, we consider the case when A =1 in Inequality (4.4). For this, we obtain

a b 7T
T (L = R BT

for all x € [a, b].

Applying the above inequality to the following example.
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Example 4.1. Consider the function f : [0,1] — Ry defined by f(z) = e**. We know that the integral
of f cannot be achieved via an analytic method; but we can approximate it using numerical methods.
For this function, we observe that 0 < f'(x) <6 for all z € [0,1]. Choose v =0 and T’ = 6. Now, using
(4.6), on gets

1 3

In particular, for x =0 or 1, we have

Using MATLAB, one can verify that fol et” dt ~ 1.46265. This shows that the range given above is
correct!

Corollary 4.2 (Discrete case). Let T = Z in Theorem 3.1. Suppose a = 0,b =n and

(1) It := {jo, d1, - ,Jk} C Z, where a = jo < j1 < --+ < jr = b, is a partition of the set [0,n]NZ
(2) {ao, 1, ,apr1} C Z is a set of k+2 points such that cy = 0, ; € [Ji—1,7:] fori=1,2,--- ,k
and a1 =n;

3) f(k) =z

We have the inequality,

k k +z n
Qg Q41
’ 0D (s — o, + A (e — ) ot o S
=0 =0 j=1
r k—1
D
=0
. Q42 — QG Q2 — Q441
+ hg (Ji-‘rl’ Q41 + A#) — h2 (Ozi_;,_l, Q41 + )\#

n—1

Z

=0

. Qiro — O Qira — Oy
+ hy (]1,+1’Oéi+1 + /\%) — hy <ai+17ai+1 + A%M)}

PD@HMMH_A%H—ag_hxﬂwﬂ_A%H;ag

2

k—1

1 Qi1 — Oy . Qg1 — O
0k = = 3 e (@ien, i = ATEZE) < i (G, g - AT
J k nzzo{2a+1a+1 B 2\ Ji> Qit1 B

: (4.7)

where hy(t,s) = (,°) = W for all t,s € Z.

Corollary 4.3 (Quantum case). Let T = ¢, q > 1,a = ¢™,b = ¢" with m,n € N and m < n.
Suppose that

(1) Tjy: ¢™ = ¢%° < ¢/t < --- < ¢oF = q", is a partition of the set [¢™, ¢*]Ng"° for jo, j1,- -+ ,jr € N;

(2) ¢ € qo(i=0,1,---,k+1) is a set of k+2 points such that ¢*° = q™,q% € [¢/1, ¢ |Ng (i =
1,2,--- k) and ¢¥++ = q";

(3) f:1¢"™, q"] — R is differentiable.
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Then we have the inequality,

k k n
o D o o + fgon a
\(1 N3 = i) A (e -y HEETEE) T
=0 i=0 qm
k 1
f( Qitl @it gt — g™ di it qritt —q™
- 2 ( —A 5 )—hz(q ' q —>\72 )

ha (qjm q* + )\w) — ha (qa”l qu i + AW)} ’
7 2 s

2
F _ b
<7 /
2 Ja
. ) Otz+2 _ thz+1 ] ) qai+2 _ qai+l
+ ha (q”“,(f““ + A72 ) — hy (q"”“ T A AT )

where hao(t, s) = % for allt,s € ¢™o.

2 2

qeitt — g™ N gt — g%
K(t Ik |:h2( Qitl @il _ )\7) _ hg(qj”,q““fl - )\7)
1 S

dyt,

We close this section by applying Theorem 3.2 to the continuous calculus.

Corollary 4.4 (Continuous case). Let T =R. Then we have the inequalities
k k

i Q41 b
D S L B N e L0

‘ 2
=0

(=)

=

_ f(gb()b__J;()a) ]:z:; {/\2 (ai-i-l _ Oéz‘>2 - (21‘1- —Ada; + (A — 2)Oéi+1>2

+ (2xi+1 — A2 + (A = 2)o¢i+1)2 —\? (Oli+2 - Oéi+1)1

C[me-as-
= Mt - a)(r - ),

f()—f(a)
b—a

where S = , and Mj, = max ‘K(t Ii) — f k(s Ik)ds‘

t€la,b]

Remark 4.4. By setting A = 0 in Corollary 4.4, we get a direct generalization of Theorem 1.1 to
(k+1) points To, 1, ,xk. In fact, we obtain

B 2 2 k—1
Z ait1 — o) fx;) / f®)dt — ) i(a) {b 5 @ Z i1 (Tipr — Iz):| ‘
-0 i=0

b—a)(S—")
{ (b—a)(T—29), (48)

where K (t,It) is given by (4.3).

5. CONCLUSION

We have established three new Ostrowski—Griiss type inequality with a parameter A € [0, 1]. Loads
of interesting results can be derived by choosing different values of k € N, and A\’s. As an application,
we considered the continuous, discrete, and quantum calculus from which many novel inequalities are
obtained.
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