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Abstract. The purpuse of this article is to show the matrix representations of Sturm-Liouville operators

with finitely many δ-interactions. We show that a Sturm-Liouville problem with finitely many δ-interactions

can be represented as a finite dimensional matrix eigenvalue problem which has the same eigenvalue with

the former Sturm-Liouville operator. Moreover an example is also presented.

1. Introduction

Acording to classical spectral theory, a Sturm–Liouville problem (SLP) consisting of the equation

−(py′)′ + qy = λwy, on J = (a, b)

and boundary conditions has infinite spectrum under some assumptions. Atkinson in his book [1] suggested

that if the coefficients of SLP satisfy some conditions, the problem may have finite eigenvalues. Then in [2],

Kong, Wu and Zettl obtained the following result: For every positive integer n, we can construct a class of

regular self-adjoint and nonself-adjoint SLP with exactly n eigenvalues by choosing p and w such that 1/p

and w are alternatively zero on consecutive subintervals.

Recently, there has been much attention paid to the SLPs with finite spectrum. For a comprehensive

treatment of the subject we refer the reader to the book by Zettl [3], and the papers by Kong, Wu and

Zettl [2], Ao, Sun, and Zhang [4], [5] and Ao, Bo and Sun [6], [7]. In 2009, the equivalence of SLP with
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a matrix eigenvalue problem was first constructed by Volkmer and Zettl in [8]. By equivalance of matrix

eigenvalue problems for the SLPs with finite spectrum we mean to construct a matrix eigenvalue problem

with exactly the same eigenvalues as the corresponding SLP. Then, the matrix representations of SLPs with

finite spectrum are extended to various problems. For the SLPs see [8]- [11] and for fourth order boundary

value problems see [12]- [16].

The goal of this paper is to find the matrix representation of the following Sturm-Liouville problem with

finitely many δ-interactions:

− (py′)′ +

∞∑
n=1

αnδ(x− xn)y + qy = λwy, on J = (a, b), (1.1)

where J = (a, x1) ∪ (x1, x2) ∪ ... ∪ (xn, b), x1, ..., xn ∈ (a, b) with −∞ < a < b < ∞, αj ’s are real numbers,

δ(x) is the Dirac delta function and λ ∈ C is a spectral parameter. Sturm-Liouville equations with Dirac

delta function potentials often appear in quantum mechanics. For example, such an equations had been

used for modelling of atomic and molecular systems including atomic lattices, quantum heterostructures,

semiconductors, organic fluorescent materials, solar cells etc. (see [17], [18], [19] and citations of them).

Recently, we generalize the finite spectrum result to the problem (1.1) in [20]. The equation (1.1) is equivalent

to the many-point boundary value problem, (see [19]). So we can understand problem (1.1) as studying the

equation

− (py′)′ + qy = λwy, on J, (1.2)

and n transmission conditions

CjY (xj−) = Y (xj+), Y =

 y

py′

 , j = 1, 2, ..., n (1.3)

where xj ’s are inner discontinuity points and

Cj =

 1 0

αj 1

 .
Additionally, let us consider the boundary conditions of the form

AY (a) +BY (b) = 0, A,B ∈M2(C) (1.4)

where A = (aij)2×2, B = (bij)2×2 are complex valued 2 × 2 matrices and M2(C) denotes the set of square

matrices of order 2 over C. Here, the coefficients fulfill the following minimal conditions:

r =
1

p
, q, w ∈ L(J, C), (1.5)

where L(J, C) denotes the complex valued functions which are Lebesgue integrable on J .
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The BC (1.3) is said to be self-adjoint if the following two conditions are satisfied:

rank(A,B) = 2, AEA∗ = BEB∗ with E =

0 −1

1 0

 . (1.6)

It is well known that under the condition (1.5), the BCs (1.3) fall into two disjoint classes: seperated and

coupled. The seperated boundary conditions have the canonical representation:

cosαy(a)− sinα(py′)(a) = 0, 0 ≤ α < π (1.7)

cosβy(b)− sinβ(py′)(b) = 0, 0 < β ≤ π.

The real coupled boundary conditions have the canonical representation:

Y (b) = KY (a) with K = (ks,t)2×2, ks,t ∈ R, det(K) = 1. (1.8)

Let u = y and v = (py′). Then we have the system representation of equation (1.2)

u′ = rv, v′ = (q − λw)u, on J. (1.9)

2. Matrix representations of SLPs with Finitely Many δ-Interactions

Definition 2.1. A Sturm-Liouville equation with finitely many δ-interactions (1.1) or equivalently the equa-

tion (1.2) with transmission condition (1.3) is said to be of Atkinson type if, for some integers mj ≥ 1, j =

0, 1, ..., n, there exists a partition of the interval J

a = x00 < x01 < x02 < ... < x0,2m0+1 = x1, (2.1)

x1 = x10 < x11 < x12 < ... < x1,2m1+1 = x2,

...

xn−1 = xn−1,0 < xn−1,1 < xn−1,2 < ... < xn−1,2mn−1+1 = xn,

xn = xn0 < xn1 < xn2 < ... < xn,2mn+1 = b

such that for each j ∈ {0, 1, ..., n}

r = 1
p = 0 on (xj,2k;xj,2k+1] , k = 0, 1, ...,mj − 1 and

[
xj,2mj ;xj,2mj+1

)
,

xj,2k+1∫
xj,2k

w 6= 0,

xj,2k+1∫
xj,2k

q 6= 0, k = 0, 1, ...,mj ,

(2.2)

and

q = w = 0 on [xj,2k+1;xj,2k+2] ,

xj,2k+2∫
xj,2k+1

r 6= 0, k = 0, 1, ...,mj − 1. (2.3)
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Our main aim in this section is to constract matrix eigenvalue problems in such a way that its eigenvalues

are exactly the same as those of the corresponding SLPs with finitely many δ-Interactions of Atkinson type.

Definition 2.2. A SLP with finitely many δ-Interactions of Atkinson type is said to be equivalent to a matrix

eigenvalue problem if the former has exactly the same eigenvalues as the latter.

We begin by stating some additional notation. For each j ∈ {0, 1, ..., n} given (2.1)-(2.3), let

pjk =

 xj,2k∫
xj,2k−1

r


−1

, k = 1, 2, ...,mj ;

qjk =

xj,2k+1∫
xj,2k

q, wjk =

xj,2k+1∫
xj,2k

w, k = 0, 1, ...,mj .

(2.4)

and let introduce the notation

m =

n∑
j=0

mj . (2.5)

We note from (2.2) and (2.3) that pjk, wjk ∈ R� {0} , and no sign restrictions are imposed on them.

From (2.2) and (2.3) we can make the following observation: For any solution u, v of (1.9), u is constant

on the intervals where r is identically zero and v is constant on the intervals where both q and w are both

identically zero. Let

u0k = u(x), x ∈ [x0,2k;x0,2k+1] , k = 0, 1, ...,m0 − 1, (2.6)

u0m0 = u(x), x ∈ [x0,2m0 ;x0,2m0+1),

uj0 = u(x), x ∈ (xj0;xj1] , j = 1, 2, ..., n

ujk = u(x), x ∈ [xj,2k;xj,2k+1] , k = 1, 2, ...,mj − 1, j = 1, 2, ..., n− 1

ujmj
= u(x), x ∈ [xj,2mj

;xj,2mj+1), j = 0, 1, ..., n− 1

unk = u(x), x ∈ [xn,2k;xn,2k+1], k = 1, 2, ...,mn

vjk = v(x), x ∈ [xj,2k−1;xj,2k), k = 1, 2, ...,mj , j = 0, 1, ..., n

and set

vj0 = v(xj0+), vj,mj+1 = v(xj,2mj+1−), j = 0, 1, ..., n. (2.7)

Lemma 2.1. Assume Eq. (1.2) is of Atkinson type. Then for each j = 0, 1, ..., n and for any solution

u, v of Eq. (1.9), we have

pjk(ujk − uj,k−1) = vjk, k = 1, 2, ...,mj , (2.8)

vj,k+1 − vjk = ujk(qjk − λwjk), k = 0, 1, ...,mj . (2.9)
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Conversely, for any solution ujk, k = 0, 1, ...,mj and vjk, k = 0, 1, ...,mj + 1 of system (2.8), (2.9), there

is a unique solution u(x) and v(x) of Eq. (1.9) satisfying (2.6) and (2.7).

Proof. Relying on the first equation of (1.9), for k = 1, 2, ...,mj , we have

ujk − uj,k−1 = u(xj,2k)− u(xj,2k−2) =

xj,2k∫
xj,2k−2

u′ =

xj,2k∫
xj,2k−2

rv

=

xj,2k∫
xj,2k−1

rv = vjk

xj,2k∫
xj,2k−1

r = vjk�pjk.

This establishes (2.8). Similarly, from second equation of (1.9), for k = 0, 1, ...,mj , we have

vj,k+1 − vjk = v(xj,2k+1)− v(xj,2k−1) =

xj,2k+1∫
xj,2k−1

v′ =

xj,2k+1∫
xj,2k−1

(q − λw)u

=

xj,2k+1∫
xj,2k

(q − λw)u = ujk

xj,2k+1∫
xj,2k

(q − λw) = ujk(qjk − λwjk),

which gives (2.9).

On the other hand, if ujk, vjk satisfy (2.8) and (2.9), then we define u(x) and v(x) according to (2.6) and

(2.7), and then extend them continuously to the whole interval J as a solution of (1.9) by integrating the

equations in (1.9) over subintervals. �

First, we consider SLP with transmission condition(1.2)-(1.4) with seperated BC (1.7).

Theorem 2.1. Assume α ∈ [0, π) , β ∈ (0, π]. Define an (m+ 1)× (m+ 1) tridiagonal block matrix

Pαβ =



M0

N1 M1

N2 M2

. . .
. . .

Nn Mn

Nn+1 Mn+1


and diagonal matrices

Qαβ = diag (q00 sinα, q01, ..., q0,m0−1, q0m0
+ q10, q11, ..., qn,mn−1, qnmn

sinβ) ,

Wαβ = diag (w00 sinα, w01, ..., w0,m0−1, w0m0
+ w10, w11, ..., wn,mn−1, wnmn

sinβ) .

Then SLP with transmission conditions (1.2), (1.3), (1.7) is equivalent to matrix eigenvalue problem

(Pαβ +Qαβ)U = λWαβU, (2.10)
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where m is as defined in (2.5),

U = [u00, u01, ..., u0m0 , u11, ..., u1m1 , ..., un1, ..., unmn ]
T

and the matrices Mj’s and Nj’s are defined as follows:

M0 =
[
p01 sinα+ cosα, −p01 sinα

]
, (2.11)

for each j = 0, 1, ..., n the mj × 2 matrices

Nj+1 =



−pj1 pj1 + pj2

0 −pj2

0 0

...
...

0 0


, (2.12)

for each j = 0, 1, ..., n− 1 the mj ×mj matrices

Mj+1 =



−pj2

pj2 + pj3 −pj3

−pj3 pj3 + pj4 −pj4
. . .

. . .
. . .

−pj,mj−1 pj,mj−1 + pj,mj −pj,mj

−pj,mj
pj,mj

+ pj+1,1 + αj+1 −pj+1,1


, (2.13)

and the mn × (mn − 1) matrix

Mn+1 =



−pn2

pn2 + pn3 −pn3

−pn3 pn3 + pn4 −pn4
. . .

. . .
. . .

−pn,mn−1 pn,mn−1 + pn,mn
−pn,mn

−pn,mn sinβ pn,mn sinβ − cosβ


. (2.14)

Proof. For each j = 0, 1, ..., n and k = 1, 2, ...,mj − 1, there is one-to-one correspondence between the

solutions of system (2.8), (2.9) and the solutions of the following system:

pj1(uj1 − uj0)− vj0 = uj0(qj0 − λwj0), (2.15)

pj,k+1(uj,k+1 − ujk)− pjk(ujk − uj,k−1) = ujk(qjk − λwjk), (2.16)

vj,mj+1 − pjmj
(ujmj

− ujmj−1
) = ujmj

(qjmj
− λwjmj

) (2.17)
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Therefore, by Lemma 2.1, any solution of equation (1.9), and hence of (1.2), is uniquely determined by a

solution of system (2.15)-(2.17). Note that from boundary condition (1.7), we have

u00 cosα = v00 sinα (2.18)

unmn cosβ = vn,mn+1 sinβ

and for each j = 0, 1, ..., n− 1 from the transmission condition (1.3), we have

uj+1,0 = ujmj
(2.19)

vj+1,0 = αj+1ujmj
+ vj,mj+1.

Additionally, for each j = 0, 1, ..., n− 1 from the equations (2.15)-(2.19), we have

pj+1,1

(
uj+1,1 − ujmj

)
− pjmj

(
ujmj − uj,mj−1

)
− ujmj

(
qjmj − λwjmj

)
(2.20)

= αj+1ujmj
+ ujmj

(qj+1,0 − λwj+1,0)

pj+1,2 (uj+1,2 − uj+1,1)− pj+1,1

(
uj+1,1 − ujmj

)
= uj+1,1 (qj+1,1 − λwj+1,1) . (2.21)

Then the equivalence follows from (2.15)-(2.18) and (2.20), (2.21). �

Corollary 2.1. Assume α, β ∈ (0, π) . Define the (m+ 1)× (m+ 1) tridiagonal block matrix

Pαβ =



M0

N1 M1

N2 M2

. . .
. . .

Nn Mn

Nn+1 Mn+1


and diagonal matrices

Qαβ = diag (q00, q01, ..., q0,m0−1, q0m0
+ q10, q11, ..., qn,mn−1, qnmn

)

Wαβ = diag (w00, w01, ..., w0,m0−1, w0m0 + w10, w11, ..., wn,mn−1, wnmn) .

Then SLP with transmission conditions (1.2), (1.3), (1.7) is equivalent to matrix eigenvalue problem

(Pαβ +Qαβ)U = λWαβU (2.22)

where

U = [u00, u01, ..., u0m0
, u11, ..., u1m1

, ..., un1, ..., unmn
]
T
,



Int. J. Anal. Appl. 16 (1) (2018) 32

and the matrices Mj’s and Nj’s are defined as in Theorem 2.1 except M0 and Mn+1. In this case, M0 is

1× 2 matrix

M0 =
[
p01 + cotα −p01

]
,

and Mn+1 is mn × (mn − 1) matrix

Mn+1 =



−pn2

pn2 + pn3 −pn3

−pn3 pn3 + pn4 −pn4
. . .

. . .
. . .

−pn,mn−1 pn,mn−1 + pn,mn
−pn,mn

−pn,mn pn,mn − cotβ


.

Proof. If we divide the first and the last rows of system (2.10) by sinα and sinβ respectively, then we obtain

(2.22). �

Theorem 2.1 and its Corollary show that the problem (1.2)-(1.4), (1.7) of Atkinson type have represen-

tations by tridiagonal matrix eigenvalue problems. Now, we will show that the problem (1.2)-(1.4), (1.8) of

Atkinson type also have representations.

Theorem 2.2. Consider the boundary condition (1.8) with k12 = 0. Define the m × m matrix which is

tridiagonal except for the (1,m) and (m, 1) entries

P1 =



M0 −k11pnmn

N1 M1

N2 M2

. . .
. . .

Nn Mn

−k11pnmn
Nn+1 Mn+1


and diagonal matrices

Q1 = diag
(
q00 + k211qnmn , q01, ..., q0,m0−1, q0m0 + q10, q11, ..., qnmn

)
,

W1 = diag
(
w00 + k211wnmn

, w01, ..., w0,m0−1, w0m0
+ w10, w11, ..., wnmn

)
.

Then SLP with transmission conditions (1.2), (1.3), (1.8) is equivalent to matrix eigenvalue problem

(P1 +Q1)U = λW1U (2.23)

where

U =
[
u00, u01, ..., u0m0 , u11, ..., u1m1 , ..., un1, ..., un,mn−1

]T
,
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and the elements of the matrix P1 are defined as follows: The 1× 2 matrix

M0 =
[
−k11k21 + p01 + k211pnmn

−p01
]
,

for each j = 0, 1, ..., n− 1 the mj × 2 and for j = n the (mn − 1)× 2 matrices

Nj+1 =



−pj1 pj1 + pj2

0 −pj2

0 0

...
...

0 0


,

for each j = 0, 1, ..., n− 1 the mj ×mj matrices

Mj+1 =



−pj2

pj2 + pj3 −pj3

−pj3 pj3 + pj4 −pj4
. . .

. . .
. . .

−pj,mj−1 pj,mj−1 + pj,mj −pj,mj

−pj,mj
pj,mj

+ pj+1,1 + αj+1 −pj+1,1


,

and the (mn − 1)× (mn − 2) matrix

Mn+1 =



−pn2

pn2 + pn3 −pn3

−pn3 pn3 + pn4 −pn4
. . .

. . .
. . .

−pn,mn−2 pn,mn−2 + pn,mn−1 −pn,mn−1

−pn,mn−1 pn,mn−1 + pnmn


.

Proof. As mentioned before, the transmission condition (1.3) is the same as (2.19). On the other hand, since

k12 = 0, the boundary condition (1.8) is represented as follows:

unmn
= k11u00 (2.24)

un,mn+1 = k21u00 + k22v00

where k11k22 = 1. We find out that for each j = 0, 1, ..., n − 1 and k = 0, 1, ...,mj − 1 there is one-to-one

correspondence between the solutions consisting of system (2.8), (2.9), (2.19), (2.24) and the solutions of the
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following system:

[
−k11k21 + k211

(
pj+1,mj+1

+ qj+1,mj+1
− λwj+1,mj+1

)]
uj0 (2.25)

= (λwj0 − pj1 − qj0)uj0 + pj1uj1 + k11pj+1,mj+1
uj+1,mj+1−1

pj,k+1 (uj,k+1 − ujk)− pjk (ujk − uj,k−1) = ujk (qjk − λwjk) (2.26)

pj+1,1 (uj+1,1 − uj+1,0)− vj+1,0 = uj+1,0(qj+1,0 − λwj+1,0) (2.27)

pj+1,mj+1

(
k11uj0 − uj+1,mj+1−1

)
− pj+1,mj+1−1uj+1,mj+1−1 (2.28)

= pj+1,mj+1−1uj+1,mj+1−2 + uj+1,mj+1−1(qj+1,mj+1−1 − λwj+1,mj+1−1)

Then, by Lemma 2.1, any solution of system (1.9), hence of (1.2), is uniquely determined by a solution of

system (2.25)-(2.28). �

Theorem 2.3. Consider the boundary condition (1.8) with k12 6= 0. Define the (m+ 1) × (m+ 1) matrix

which is tridiagonal except for the (1,m+ 1) and (m+ 1, 1) entries

P2 =



M0
1
k12

N1 M1

N2 M2

. . .
. . .

Nn Mn

1
k12

Nn+1 Mn+1


and diagonal matrices

Q2 = diag (q00, q01, ..., q0,m0−1, q0m0
+ q10, q11, ..., qn,mn−1, qnmn

)

W2 = diag (w00, w01, ..., w0,m0−1, w0m0 + w10, w11, ..., wn,mn−1, wnmn)

Then SLP with transmission conditions (1.2), (1.3), (1.8) is equivalent to matrix eigenvalue problem

(P2 +Q2)U = λW2U (2.29)

where

U = [u00, u01, ..., u0m0
, u11, ..., u1m1

, ..., un1, ..., unmn
]
T
,

and the elements of the matrix P3 are defined as follows: For each j = 0, 1, ..., n the matrices Nj+1 ’s and

for each j = 0, 1, ..., n− 1 the matrices Mj+1 ’s are defined as in Theorem 2.2. On the other hand, the 1× 2

matrix

M0 =
[
p01 − k11

k12
−p01

]
,
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and the mn × (mn − 1) matrix

Mn+1 =



−pn2

pn2 + pn3 −pn3

−pn3 pn3 + pn4 −pn4
. . .

. . .
. . .

−pn,mn−1 pn,mn−1 + pnmn
−pnmn

−pnmn pnmn − k22
k12


.

Proof. The boundary condition (1.8) can be represented as follows:

unmn
= k11u00 + k12v00,

vn,mn+1 = k21u00 + k22v00.

Since k11k22 − k12k21 = 1, we have from the this condition that

v00 = −k11
k12

u00 +
1

k12
unmn

,

vn,mn+1 = − 1

k12
u00 +

k22
k12

unmn
.

On the other hand, if we consider the transmission condition (2.19), the proof is similar with Theorem

2.2. �

3. Example

In this section, we give an example to illustrate that a SLP with finitely many δ-interactions and it’s

equivalent matrix eigenvalue problem, we will construct it, have same eigenvalues.

Consider the SLP with δ-interactions on J = (−3, 0) ∪ (0, 6),

− (py′)′ + δ(x− 0)y + qy = λwy. (3.1)

This equation is equivalent to the following SLP

− (py′)′ + qy = λwy (3.2)

with transmission condition  y(0−)− y(0+) = 0

y(0−) + py′(0−)− py′(0+) = 0.
(3.3)

By choosing α = 0 and β = π, we consider the following boundary conditions y(−3) = 0

y(6) = 0.
(3.4)
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In this case, the matrices in (1.3) and (1.4) become

C1 =

 1 0

1 1

 , A =

 1 0

0 0

 , B =

 0 0

1 0


respectively. Now, let’s take a partition of the interval J as follows:

a = −3 < −2 < −1 < 0 = x1 (3.5)

x1 = 0 < 2 < 3 < 4 < 5 < 6 = x2 = b.

This yields that m0 = 1, m1 = 2 and define the piecewise constant functions p, q, w are as follows:

p(x) =



∞, (−3,−2)

1, (−2,−1)

∞, (−1, 0)

∞, (0, 2)

1
2 , (2, 3)

∞, (3, 4)

1
4 , (4, 5)

∞, (5, 6)

q(x) =



0, (−3,−2)

0, (−2,−1)

1, (−1, 0)

2, (0, 2)

0, (2, 3)

3, (3, 4)

0, (4, 5)

4, (5, 6)

w(x) =



1, (−3,−2)

0, (−2,−1)

3, (−1, 0)

4, (0, 2)

0, (2, 3)

1, (3, 4)

0, (4, 5)

2, (5, 6)

(3.6)

By using the similar method as given in [4], [5] or [20] we have the following two eigenvalues

λ1 = 0.67442, λ2 = 3.75739. (3.7)

On the other hand, if we find the values pjk, qjk, wjk from (2.4), and use Theorem 2.1 we get the matrices

P0π =


1 0 0 0

−1 5
2 − 1

2 0

0 − 1
2

3
4 − 1

4

0 0 0 −1

 , Q0π =


0 0 0 0

0 5 0 0

0 0 3 0

0 0 0 0

 , W0π =


0 0 0 0

0 11 0 0

0 0 1 0

0 0 0 0

 , (3.8)

and so the matrix eigenvalue problem

(P0π +Q0π)U = λW0πU, (3.9)

which is equivalance of SLP with finitely many δ-interactions in (3.1). Indeed, if we find the eigenvalues of

the matrix eigenvalue problem (3.9) we obtain the eigenvalues in (3.7).
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