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ABSTRACT. The purpuse of this article is to show the matrix representations of Sturm-Liouville operators
with finitely many J-interactions. We show that a Sturm-Liouville problem with finitely many J-interactions
can be represented as a finite dimensional matrix eigenvalue problem which has the same eigenvalue with

the former Sturm-Liouville operator. Moreover an example is also presented.

1. INTRODUCTION

Acording to classical spectral theory, a Sturm—Liouville problem (SLP) consisting of the equation
—(py") + qy = My, on J = (a,b)

and boundary conditions has infinite spectrum under some assumptions. Atkinson in his book [1] suggested
that if the coefficients of SLP satisfy some conditions, the problem may have finite eigenvalues. Then in [2],
Kong, Wu and Zettl obtained the following result: For every positive integer n, we can construct a class of
regular self-adjoint and nonself-adjoint SLP with exactly n eigenvalues by choosing p and w such that 1/p
and w are alternatively zero on consecutive subintervals.

Recently, there has been much attention paid to the SLPs with finite spectrum. For a comprehensive
treatment of the subject we refer the reader to the book by Zettl [3], and the papers by Kong, Wu and
Zettl [2], Ao, Sun, and Zhang [4], [5] and Ao, Bo and Sun [6], [7]. In 2009, the equivalence of SLP with
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a matrix eigenvalue problem was first constructed by Volkmer and Zettl in [8]. By equivalance of matrix
eigenvalue problems for the SLPs with finite spectrum we mean to construct a matrix eigenvalue problem
with exactly the same eigenvalues as the corresponding SLP. Then, the matrix representations of SLPs with
finite spectrum are extended to various problems. For the SLPs see [8]- [11] and for fourth order boundary
value problems see [12]- [16].

The goal of this paper is to find the matrix representation of the following Sturm-Liouville problem with

finitely many d-interactions:

— () + Y _and(@ — z)y + qy = Mwy, on J = (a,b), (1.1)

n=1
where J = (a,21) U (z1,22) U ... U (zp,b), T1,..., 2, € (a,b) with —00 < a < b < 00, @;’s are real numbers,
d(zx) is the Dirac delta function and A € C is a spectral parameter. Sturm-Liouville equations with Dirac
delta function potentials often appear in quantum mechanics. For example, such an equations had been
used for modelling of atomic and molecular systems including atomic lattices, quantum heterostructures,
semiconductors, organic fluorescent materials, solar cells etc. (see [17], [18], [19] and citations of them).
Recently, we generalize the finite spectrum result to the problem (1.1) in [20]. The equation (1.1) is equivalent

to the many-point boundary value problem, (see [19]). So we can understand problem (1.1) as studying the

equation
—(py') +qy = Awy, on J, (1.2)
and n transmission conditions
CY (¢;—) = Y(a;4), Y = y/ L j=1,2..n (1.3)
by

where x;’s are inner discontinuity points and

Additionally, let us consider the boundary conditions of the form
AY (a)+ BY (b)) =0, A,B € M(C) (1.4)

where A = (a;j)2x2, B = (bij)2x2 are complex valued 2 x 2 matrices and M,(C) denotes the set of square

matrices of order 2 over C. Here, the coefficients fulfill the following minimal conditions:
1
7’:57 q; ’LUGL(J, (C)ﬂ (15)

where L(J, C) denotes the complex valued functions which are Lebesgue integrable on J.
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The BC (1.3) is said to be self-adjoint if the following two conditions are satisfied:

0 -1
rank(A,B) =2, AEA* = BEB* with E = . (1.6)
1 0

It is well known that under the condition (1.5), the BCs (1.3) fall into two disjoint classes: seperated and

coupled. The seperated boundary conditions have the canonical representation:
cosay(a) —sina(py’)(a) = 0, 0<a<m (1.7)
cos By(b) —sin B(py’)(b) = 0, 0< B <7
The real coupled boundary conditions have the canonical representation:
Y (b) = KY (a) with K = (ks t)2x2, kst € R, det(K) = 1. (1.8)

Let u =y and v = (py’). Then we have the system representation of equation (1.2)

/

u =rv, v = (¢ — Mw)u, on J. (1.9)

2. MATRIX REPRESENTATIONS OF SLPSs wiTH FINITELY MANY §-INTERACTIONS

Definition 2.1. A Sturm-Liouville equation with finitely many 0-interactions (1.1) or equivalently the equa-
tion (1.2) with transmission condition (1.3) is said to be of Atkinson type if, for some integers m; > 1, j =

0,1,...,n, there exists a partition of the interval J

a = Too < Tor <xo2 < ... < T02me+1 = T1, (21)

T o <211 <T12 < ... < T12mqi+1 = T2,

Tp—1 = Tp-1,0<Tn-1,1 <Tp-12 < ... <Tpn—12m,_1+1 = Tn,

Tn = Tpo < Tpl <Tp2 < ... <ZTp2m,+1 = b

such that for each j € {0,1,...,n}

1 ) _ )
r=-=0on (zj2;j2k41], k=0,1,....m; —1 and [@.2m, 3 Tj,2m;+1) »

Tj,2k41 T 2041 (2.2)
w # 0, / q#0, k=0,1,...,mj,
T2k ;2K
and
Tj,2k+2
g=w=0 on [T;o%+1;T)2k+2), r#0, k=0,1,...,m; — 1. (2.3)

Tj,2k+1
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Our main aim in this section is to constract matrix eigenvalue problems in such a way that its eigenvalues

are exactly the same as those of the corresponding SLPs with finitely many d-Interactions of Atkinson type.

Definition 2.2. A SLP with finitely many 6-Interactions of Atkinson type is said to be equivalent to a matrixz

eigenvalue problem if the former has exactly the same eigenvalues as the latter.

We begin by stating some additional notation. For each j € {0,1,...,n} given (2.1)-(2.3), let

-1

Tj,2k
Djk = / r , k=1,2,...,my;
Lj,2k—1 (24)
Tj2k+1 Tj,2k+1
qjk = q, Wik = w, k=0,1,...,m;.
Zj,2k Zj 2k

and let introduce the notation
n
m = ij. (2.5)
=0

We note from (2.2) and (2.3) that pji, w;r € R\ {0}, and no sign restrictions are imposed on them.
From (2.2) and (2.3) we can make the following observation: For any solution u, v of (1.9), u is constant
on the intervals where r is identically zero and v is constant on the intervals where both ¢ and w are both

identically zero. Let

uor = u(x), € [xo2k;T0,26+1], K =0,1,...;mp — 1, (2.6)
Uomy = u(T), T € [T0,2mo5T0,2mo+1),
ujo = u(@), z € (zjoznl, 7=1,2,...,n
ujr = u(z), x € [xjon;Tjokt1), K=1,2,...,m; —1, j=1,2,..,n—1
Ujm,; = w(T), T € [Tj2m,;Tj2m;+1), J=0,1,...,n—1
Unke = w(x), T € [Tp 2k Tnaktl], K =1,2,...,my
vik = v(x), € [Tm-1;%j2k), k=1,2,...,m;, 7=0,1,...,n
and set
vjo = v(zjo+)s Vim;+1 = v(Tj2m,41—), J=0,1,...,n. (2.7)

Lemma 2.1. Assume Eq. (1.2) is of Atkinson type. Then for each j = 0,1,....n and for any solution
u, v of Eq. (1.9), we have

pjk(’Lij — Uj,k—l) = ’Ujk, k = 1, 2, ...,mj, (28)

Vj k41 — Ujk = ujk(qjk — )\wjk), k=0,1,...,m;. (2.9)
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Conversely, for any solution w;i, k=0,1,....m; and vjr, k=0,1,...,m; +1 of system (2.8), (2.9), there
is a unique solution u(x) and v(z) of Eq. (1.9) satisfying (2.6) and (2.7).

Proof. Relying on the first equation of (1.9), for k = 1,2,...,m;, we have

Tj,2k Tj,2k
_ _ ’_
ik — Ujp—1 = u(xjok) — u(Tj2k—2) = u' = TV
Tj,2k—2 Tj,2k—2
Tj 2k Tj 2k
= TV = Vjj T = VL, Pjk-
Tj2k—1 Tj 2k—1

This establishes (2.8). Similarly, from second equation of (1.9), for k =0, 1,...,m;, we have

Tj,2k+1 Tj,2k+1
Vjk+1 — Ok = U(@jk41) — 0(T26-1) = v = (¢ = w)u
Tj2k—1 Tj2k—1
Tj,2k+1 Tj,2k+1
= [ = [ @) = - ),
Tj 2k Tj 2k

which gives (2.9).
On the other hand, if w;z, vj; satisfy (2.8) and (2.9), then we define u(x) and v(x) according to (2.6) and
(2.7), and then extend them continuously to the whole interval J as a solution of (1.9) by integrating the

equations in (1.9) over subintervals. O
First, we consider SLP with transmission condition(1.2)-(1.4) with seperated BC (1.7).

Theorem 2.1. Assume o € [0,7), 8 € (0,7]. Define an (m+ 1) X (m + 1) tridiagonal block matriz

My
Ny M,
Ny My

and diagonal matrices
Qap = diag (qoo Sin @, qo1, .-y 40,mo—15 Qome + 4105 Q1155 Gnmp—15 Gnm, S0 B)

Wap = diag (woo Sina, wo1, .., Wo,me—1, Womg + W10, Wity -+, Wnym, —15 Wnm,, SinB) .

Then SLP with transmission conditions (1.2), (1.3), (1.7) is equivalent to matriz eigenvalue problem

(Paﬂ + Qaﬁ) U= AWaﬂUv (210)
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where m is as defined in (2.5),

T
U = [UOO, UQLy -eey u0m07 ULy eeey u1m17 ey Updy eeey unmn]
and the matrices M;’s and N;’s are defined as follows:
My = poisina+cosa, —poisine | (2.11)
for each j =0,1,...,n the m; x 2 matrices
—Dj1  Pj1 + Pj2
0 —Pj2
Nji1 = 0 0 , (2.12)
0 0
for each j =0,1,...,n —1 the m; X m; matrices
—Pj2
Dj2 + Pjs3 —Dj3
—Pj3 Pj3 + Pja —Dj4
Mjy1 = | , | N CRE)
—Djm;—1  Djm;—1 1 Djm, —Pj,m,
L —Pj,m; Pjom; FPj+1,1 + iy —Pj411 |
and the my, x (my, — 1) matriz
—Pn2
Pn2 + Pn3 —Pn3
—DPn3 Pn3 + Pna —Pn4a
_pn,mnfl pn,mnfl +pn,mn _pn,mn
—Pn.,m,, Sin Dr,m, Sin B — cos 8
Proof. For each j = 0,1,...,n and k = 1,2,...,m; — 1, there is one-to-one correspondence between the

solutions of system (2.8), (2.9) and the solutions of the following system:
pj1(uj1 — wjo) — vjo = ujo(gjo — Awjo), (2.15)
Pik+1(Uj k1 — Wik) — ik (uje — Ujr—1) = Uik (gk — AMwjk), (2.16)

Vjm;+1 — Pjim; (Ujm]. - ujmj—l) = Ujm; (qjmj - )\wjmj) (2'17)
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Therefore, by Lemma 2.1, any solution of equation (1.9), and hence of (1.2), is uniquely determined by a

solution of system (2.15)-(2.17). Note that from boundary condition (1.7), we have

Ugp COSQ = Vo Sin (2.18)

Unm,, COSB = Upm, 41503
and for each 7 =0,1,...,n — 1 from the transmission condition (1.3), we have
Ujt1,0 = Ujm, (2.19)
Vj+1,0 =  Qj41Ujm; + Vjm +1-
Additionally, for each j =0,1,...,n — 1 from the equations (2.15)-(2.19), we have

Pi+11 (W11 — Um, ) = Pjmy (Wjm; — Wim;—1) — Ujm, (Gim, — AMWjm, ) (2.20)

= Qr1Ujm; F Ujm, (41,0 — AWj+1,0)

pit12 (Wir1,2 = wis11) = Pit11 (Wis11 — Wjm,) = wjr1,1 (G410 — Awjg11) - (2.21)

Then the equivalence follows from (2.15)-(2.18) and (2.20), (2.21). O

Corollary 2.1. Assume «, 8 € (0,7). Define the (m + 1) x (m + 1) tridiagonal block matriz

My
Ny M
No M,

and diagonal matrices
Qap = diag (9005 G015 -+ q0,mo—1590mo T 1054115 -5 Gn,m, —1, Tnm., )

Wap = diag (Woo, Wo1, - s Wo,me—1, Womg + W105 W11 -, Wnm,—1, Wnm, ) -

Then SLP with transmission conditions (1.2), (1.3), (1.7) is equivalent to matrix eigenvalue problem
(Pap + Qap) U = A\WopU (2.22)

where

U= T
- [u007u017 -"7u0’m,07u11a ---7u1m1>--~7unla ---aunm"]

)
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and the matrices M;’s and N;’s are defined as in Theorem 2.1 except My and M,41. In this case, My is
1 X 2 matrix
My = [ po1 +cota  —por } ,

and M1 is my X (my, — 1) matriz

—Pn2
DPn2 + Pn3 —Pn3
—Pn3 Dn3 + Pn4 —Pn4
M1 =
—Pnm,-1 Pnm,—1 T Pnm, —Pnm,
—Pn,m., Pn,m, — ot |

Proof. If we divide the first and the last rows of system (2.10) by sin « and sin 8 respectively, then we obtain
(2.22). O

Theorem 2.1 and its Corollary show that the problem (1.2)-(1.4), (1.7) of Atkinson type have represen-
tations by tridiagonal matrix eigenvalue problems. Now, we will show that the problem (1.2)-(1.4), (1.8) of

Atkinson type also have representations.

Theorem 2.2. Consider the boundary condition (1.8) with k12 = 0. Define the m x m matriz which is

tridiagonal except for the (1,m) and (m,1) entries

[ M, —k11Pnm,, ]
Ny M,
Ny Mo
P =
N, M,
| —Fk11Pnm,, Nyt M1

and diagonal matrices
Q1 = diag (qoo + k31 Gnmn 4015 s 40,mo—1 Gomo + Q105 q115 s Grim., ) -
W1 = diag (woo + k31 Wnm,, , W01, - W0,mo—1, Womy + W10, W1Ls -y Wiim,, ) -
Then SLP with transmission conditions (1.2), (1.3), (1.8) is equivalent to matriz eigenvalue problem
(Pr+ Q1)U = WU (2.23)
where
}T

U = I:u()OauOla ---au0m0;u117 ~--7u1m1; sy Und, ~~~7un,mn,1

)
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and the elements of the matriz Py are defined as follows: The 1 x 2 matriz

My = [ —ki1ka1 + por + k31 Prm,  —Po1 ] .

for each j =0,1,...,n —1 the m; x 2 and for j = n the (my — 1) x 2 matrices

—Pj1  Pj1 + Dj2
0 —Pj2
Njj1 = 0 0 ,
0 0
for each j =0,1,...,n — 1 the m; X m; matrices
—Dj2
Pj2 + Pj3 —Pj3
—Dj3 Pj3 + Pja —Dj4
Mji, = _ ' _ ;
—Djm;—1 Djm;—1 T Djm, —Pj,m,
L —Djm; Pjm; T Pj+11+ Q41 —Pjt11 |
and the (m, — 1) x (m, — 2) matriz
—Pn2
Pn2 + Pn3 —Pn3
—Pn3 Pn3 + Pna —Pn4
Mn+1 -
_pn,m”72 pn,mn72 +pn,mn71 _pn,mnfl
L _pn,mn—l pn,mn—l +pnmn |

Proof. As mentioned before, the transmission condition (1.3) is the same as (2.19). On the other hand, since

k12 = 0, the boundary condition (1.8) is represented as follows:

Unm, = klluOO (224)

Un,m,+1 = Kk21Uoo + ka2voo

where k11koo = 1. We find out that for each j = 0,1,...,n —1 and £ = 0,1, ...,m; — 1 there is one-to-one

correspondence between the solutions consisting of system (2.8), (2.9), (2.19), (2.24) and the solutions of the
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following system:

[—k1ikar + k31 (Pistmy o+ Gatms o — M05m4 ] wio (2.25)

= (Awjo — pj1 — @jo)ujo + Pj1tjt + K11Pj+1,m; 40 Wit 1,my 40 —1

Pjk+1 (Wi ka1 — Wjk) — Djk (Ujk — Ujp—1) = Uik (¢jk — Awjk) (2.26)
Pi+1,1 (Uj1,1 — Uj41,0) = Vj+1,0 = Uj+1,0(¢j+1,0 — AWj41,0) (2.27)
Pj+1,mj4 (kllujo - uj+1’mj+1*1) T Dj+1myp 1%+ 1m0 -1 (2'28)

= Djttmyr 1%t 1mypn—2 F Ui tmy—1(G 1m0 —1 = AW 1m;,—1)

Then, by Lemma 2.1, any solution of system (1.9), hence of (1.2), is uniquely determined by a solution of

system (2.25)-(2.28). O

Theorem 2.3. Consider the boundary condition (1.8) with ki2 # 0. Define the (m 4+ 1) x (m + 1) matriz

which is tridiagonal except for the (1,m + 1) and (m + 1,1) entries

1
MO ?12
N1 M
Ny Mo
P, =
Nn Mn
L é Nn+1 Mn+1 1

and diagonal matrices
Q2 = diag (QOOaQOl; -+, 40,mo—1>90mo + q10, 911, --'7Qn,mn—17qnmn)

Wo = diag (Woo, Wo1, -, Wo,me—15 Womg + W10, W1l, -y Wrimy, —1> Wnm,, )

Then SLP with transmission conditions (1.2), (1.3), (1.8) is equivalent to matriz eigenvalue problem

where
]T

U - [U007U01, "'7“0M07u11a -~-au1m17~-~7un17 -~-aunmn )

and the elements of the matriz P3 are defined as follows: For each j = 0,1,...,n the matrices Nj11 ’s and
for each j =0,1,...,n — 1 the matrices M1 ’s are defined as in Theorem 2.2. On the other hand, the 1 x 2

matric

_ k
My = Po1 — j;r  —DPoi |-
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and the m, x (m, — 1) matriz

—Pn2
DPn2 + Pn3 —Pn3
—Pn3 Dn3 + Pna —Pn4
My =
—Pn,mp—1  Pnm,—1 T DPnm, —Pnm,
I “Pm,  Pom

Proof. The boundary condition (1.8) can be represented as follows:

Unm, = ki11%oo + k12000,

Unm,+1 = K21Uoo + ka2voo.

Since ki1koo — k12kor = 1, we have from the this condition that

Voo = T Ugo + T Unm,, »
12 12
_ 1 koo

Unm,+1 = — L Ugo + A Unmy, -
12 12

On the other hand, if we consider the transmission condition (2.19), the proof is similar with Theorem

2.2, ]

3. EXAMPLE

In this section, we give an example to illustrate that a SLP with finitely many J-interactions and it’s
equivalent matrix eigenvalue problem, we will construct it, have same eigenvalues.

Consider the SLP with é-interactions on J = (—3,0) U (0, 6),
= (py") +0(z = 0)y + qy = Awy. (3.1)
This equation is equivalent to the following SLP
= y) +ay = My (3.2)

with transmission condition

y(0—) —y(0+) =0

(3.3)
y(0—) +py'(0—) — py'(0+) = 0.
By choosing a = 0 and 8 = 7, we consider the following boundary conditions
-3)=0
y(=3) (3.4)
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In this case, the matrices in (1.3) and (1.4) become

Cy = ’ A= ) B =

respectively. Now, let’s take a partition of the interval J as follows:

S
Il

-3<-2<-1<0=1 (3.5)

r1 = 0<2<3<4<b5<6=a9=0.

This yields that myg = 1, m; =2 and define the piecewise constant functions p, g, w are as follows:

00, (_37 _2) 07 (_3a _2) 13 (_37 _2)
1, (-2,-1) (=2,-1) 0, (-2,-1)
0, (—1,0) 1, (-1,0) 3, (=1,0)
oo, (0,2) 2, (0,2) 4, (0,2)
o) ={ ° dfa) = () = (3.6
29 (273) 07 (233) Oa (273)
0o, (3,4) 3, (3,4) 1, (3,4
1 (4,5) 0, (4,5 0, (4,5)
00,  (5,6) 4, (5,6) 2, (56
By using the similar method as given in [4], [5] or [20] we have the following two eigenvalues
AL =0.67442, Ay = 3.75739. (3.7)

On the other hand, if we find the values pj, gjx, wji from (2.4), and use Theorem 2.1 we get the matrices

1 0 0 0 0 0 0O 0 0 0 O
-1 3 -1 0500 0 11 0 0
PO7I' = 1 3 ’ QOﬂ' = bl WO’IT = bl (38)
0 -5 5 -3 00 3 0 0 0 10
0 0 0 -1 0 0 00 0 0 0 O
and so the matrix eigenvalue problem
(Por + Qor) U = AW, U, (3.9)

which is equivalance of SLP with finitely many J-interactions in (3.1). Indeed, if we find the eigenvalues of

the matrix eigenvalue problem (3.9) we obtain the eigenvalues in (3.7).
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