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ABSTRACT. In this article we study the idea of complex neutrosophic subsemigroups. We define the Cartesian
product of complex neutrosophic subsemigroups, give some examples and study some of its related results.
We also define complex neutrosophic (left, right, interior) ideal in semigroup. Furthermore, we introduce
the concept of characteristic function of complex neutrosophic sets, direct product of complex neutrosophic

sets and study some results prove on its.

1. INTRODUCTION

In 1965, Zadeh, ( [1]) presented the idea of a fuzzy set. Atanassov in 1986, ( [2]) initiated the notion of
intuitionistic fuzzy set, which is the generalization of a fuzzy set. Neutrosophic set was first proposed by
Smarandache in 1999 ( [5]), which is the generalization of a fuzzy set and intuitionistic fuzzy set. Neutrosophic
set is characterized by a truth membership function, an indeterminacy membership function and a falsity
membership function. It must be noted that there are lots of researchers that worked at complex number and

fuzzy sets, for instance Buckly ( [6]), Nguyen et al. ( [7]) and Zhang et al. ( [10]). On the other hand Ramot
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et al. ( [8]) presented a innovative come close to that is entirely unlike from other researchers, wherever
they extensive the variety of membership function to unit circle in the complex plane, unlike the others who
limited to. Further to solve enigma they added an extra terms which is called phase term in translating
human language to complex valued functions on physical terms and vice versa (for more information, see
( [8]). Abd Uazeez et al. in 2012 ( [12]), added the non-membership term to the idea of complex fuzzy
set which is known as complex intuitionistic fuzzy sets, the range of values are extended to the unit circle
in complex plan for both membership and non-membership functions instead of [0, 1]. In 2016, Mumtaz
Ali et al. ( [14]), more extended the concept of complex fuzzy set, complex intuitionistic fuzzy set, and
introduced the concept of complex neutrosophic sets, which is a collection of a complex truth membership
function, a complex indeterminacy membership function and a complex falsity membership function. The
idea of a fuzzy set in the model of semigroups was first initiated by Kuroki in 1979 ( [3]), and defined fuzzy
subsemigroups. Vildan and Halis in 2017 ( [15]), extended the concept of fuzzy subgroups on the base of
neutrosophic sets, which is known as neutrosophic subgroups .

Due to the motivation and inspiration of the above discussion. In this paper we are initiating the study
of complex neutrosophic semigroups. This paper introduce the notion of complex neutrosophic subsemi-
groups and Cartesian product of complex neutrosophic subsemigroups with the help of example. We define
characteristic function of complex neutrosophic set, direct product of complex neutrosophic sets, complex

neutrosophic ideals (left, right, interior) and proved some results.
2. PRELIMINARIES
Here in this part we gathered some basic helping materials.
Definition 2.1. ( [1]) A function f is defined from a universe X to a closed interval [0,1] is called a fuzzy

set, 1.e., a mapping:

f: X —[0,1].

Definition 2.2. ( [8]) A complex fuzzy set (CEFS) C over the universe X, is defined an object having of the

form:
C = {(z.pc(x)) : w € X}
where pe(x) = re(z)- e here the amplitude term re(z) and phase term we(x), are real valued functions,

for every x € X, the amplitude term pc(x) : X — [0,1] and phase term we(x) lying in the interval [0, 27].

Definition 2.3. ( [13]) Let C1 and Ca be any two complex Atanassov’s intuitionistic fuzzy sets (CAIFSs)

over the universe X, where

C = {<x,rc1 (z) - e (I), ke, (x) - e (I)> tx € X}
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and
Cy = {<x, re, () - e (m), ke, (z) - e (I)> S X} .

Then

1. Containment:
C1 CCy & re, () <rey(x), ke, () > ke, (z) and
Ve, (%) S v, (2),w, () = we, ().
2. Equal:

C1=Co & re, () =rey, (), ke, (x) = ke, (z) and
Ve, (:U) = Ve, (ZL’), We, (l’) = We, (:E)

Definition 2.4. ( [14]) Let X be a universe of discourse, and x € X. A complex neutrosophic set (CNS) C in
X is characterized by a complex truth membership function Cr(x) = pe(x) - ethe ) 4 complex indeterminacy
membership function C(z) = qe(z)-e¢®) and a complex falsity membership function Cp(x) = re(x)-e'we®),
The values Cr(x),Cr(x),Cr(x) may lies all within the unit circle in the complex plane, where pe(x), qc(z),
re(x) and pe(x), ve(x) we(x) are amplitude terms and phase terms, respectively, and where pe(x), qc(x),

re(z) € [0,1], such that, 0 < pe(x) + qe(x) + re(x) < 3 and pc(x), ve(x) we(x) € [0, 2.

The complex neutrosophic set can be represented in the form as:

x7CT(x) =pc (.’L‘) . eiNC(I)’ CI(Q:) =qc (.’L‘) . eiVC('T)7

C= , rreX
Cr(z) = re(x) - ewe(@)

Example 2.1. Let X = {x1,22,23} be the universe set and C be a complex neutrosophic set which is given

by:

(1,0.2¢%57,0.3e067 0.4e2871) | (25,0.4e%67, 0.5¢1-371,0.1€0-67) |

C =
(x3,0.1€%67 0.3¢0-97 0.9€0-7m)

Definition 2.5. ( [3]) A fuzzy subset A of a semigroup S is said to be a fuzzy subsemigroup of S if its

satisfy the following condition:

A(z-y) > Alz) NA(y) V z,y € S.

Definition 2.6. ( [15]) Let G be any group with multiplication and N be a neutrosophic set on G. Then N

is said to be a neutrosophic subgroup (NSG) of G, if its satisfy the following conditions:

(NSG1): N(z-y) > N(z) AN (y), ie.,
In(z-y) = Tn(z) NN (y), Inv(z - y) > Inv(z) A Ly (y) and Fa(z - y) < Fx(z) V Fy(y)-
(NSG2): N(z71) > N(x), i.e.,

Ty (271 > Ta(x), In(271) > In(2) and Far(x™1) < Fpr(x), for all z and y in G.
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Lemma 2.1. ( [16]) For a semigroup S, the following conditions are equivalent.

(1) S is regular.
(2) RN L =TRL for every right ideal R of § and every left ideal £ of S.

3. COMPLEX NEUTROSOPHIC SUBSEMIGROUP

Note: It should be noted that through out in this part we use a capital letter C to denote a complex

neutrosophic set;

C={(Tc=pc-e" Ic=qc- e Fe=rc-e“)}.

Definition 3.1. A complex neutrosophic set C = {<Tc =pc-etc Jo=qe e, Fo=rc- eiwc>} on a semi-

group S is known as a complex neutrosophc subsemigroup (CNSG), if its satisfy the following condition:

C(zy) > min {C(x),C(y)} i.e.,
(1) pe(zy) - e*e@¥) > min{pe(x) - €@ pe(y) - ette®)}
(ii) ge(xy) - €@ > min{ge () - €< ™), ge(y) - e @)}
(

iii) re(zy) - €e @) < max{re(z) - ¢ re(y) - eeW} Vi, y € S.

Example 3.1. Let S = {1,2,3} be a semigroup with the following multiplication table:

11213
1111213
212113
313133

Consider a complex neutrosophic set C on S as:
<1a 0.9€0%-77% 0.7¢0-67% 0.560'4m> )
C=1q (2,0.8¢°0m 0.6e*57,0.4e0-371)
<3,0.560'4“i,0.460'2“,0.360'2“>

Then clearly C is a complex neutrosophic subsemigroup of S.

3.1. Cartesian Product of Complex Neutrosophic Subsemigroups.

Definition 3.2. Let
C1 = {{Cir = pc,e"1,Ci1 = qc, €1, Cip = rc, €1 ) }
and

Cy = {(Cor = pc, €2, Car = qc, €2, Cop = 1¢,€'“%2 ) }
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be any two complex neutrosophic subsemigroups of the semigroups Sy and Sy respectively. Then the Cartesian

product of C1 and Co denoted by C1 X Co is defined as:

Cl % CQ _ < (x,y)7 (Cl X C2)T($,y), (C1 X CQ)I($7y),

>/Vx€81,y682
(C1 x C2)r(z,y)

where
(C1 x C2)r(z,y) = min{Ci7(z),Car(y) }
(C1 x C2)1(w,y) = min {C17(z),Ca1(y)},
(C1 x C2)r(2,y) = max {C1r (), Cor(y)},

for all x in & and y in Ss.

Example 3.2. Let S; = {1,2,3} and So = {a, b, c} are any two semigroups with the following multiplication

tables:
11213 alble
1111213 aleldbla
2l2/1)3] |bo|b|b]|e
313|133 |clcleclec
Consider
<17 0.9€0:77¢ (. 7¢0-67 0.560'4”> , <2’ 0.8¢0:67 (.60, 0.460‘37”> 7
- (3,0.5¢0471,0.4€0-27 0.3¢027¢)
and

c (a,0.8¢0-71 0.5e0371 0.4¢047) (1, 0.6¢0-57,0.5¢0-477 ().3¢0-271)
2 = . | |
(c,0.8¢%7m 0.7¢0-5™7, 0.3€0-2m0)

be any two complex neutrosophic subsemigroups of &1 and Ss, respectively. Now let £ = 1 and y = a, then
Ci1 xCy = {{((C1 xCa)r(1,a),(C1 xC2)1(1,a),(C1 X Co)r(1,a)),...}
= {(min{Ci7(1),Cor(a)} ,min {C1;(1),Car(a)} , max{Cip(1),
Cor(a)}),...}
= {(min{0.9¢"",0.8¢" 7™}, min{0.7¢%°,0.5¢**""} | max{0.5¢*™,
0.4e°4m}) .}

= {{0.8¢%7,0.5¢"°™, 0.5¢"1) .}

4. COMPLEX NEUTROSOPHIC IDEALS

In this section, we define some ideals namely complex neutrosophic (left, right, interior) ideal in semigroup,

with the help of examples and study some of its related results.
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4.1. Complex Neutrosophic Left Ideal.

Definition 4.1. A complex neutrosophic set C = {<Tc =pc-ete Io=qc-e"e Fp=rc- eiwc>} on a semi-

group S is known as a complex neutrosophic left ideal of S, if

C(zy) > C(y) ie.,
(i) pe(zy) - eite(zy) > pe(y) . itic ()
(i1) qe(zy) - €7@ > go(y) - eve®)
(iti) re(wy) - e <re(y) - e™eW, ¥V, y € S.

Example 4.1. Let S = {a,b,c,d} be a semigroup with the following multiplication table:

dlala|b|b

Consider a complex neutrosophic set C on S as:

<a, 0.960'6ﬂi7 0.860'57Ti, 0.460.37Ti> , <b, 0'760.57%’ 0'660.471'1" 0'560.47ri> ,
(€,0.6€%47,0.4€037 0.7e2571) | (d,0.5¢%57, 0.4€0-37¢ 0. 7e5-571)

Then C is a complex neutrosophic left ideal of S.

4.2. Complex Neutrosophic Right Ideal.

Definition 4.2. A complex neutrosophic set C = {<Tc =pe-ete Io=qc-e"e Fp=rc- eiwc>} on a semi-

group S is known as a complex neutrosophic right ideal of S, if

C(zy) > C(x) ie.,

(1) pe(zy) - ere@) > po(z) - eite(@)

(i) gc(xy) - €@ > ge(a) - el

(iii) re(zy) - ec V) <re(x) - @)V, y € S,

4.3. Complex Neutrosophic Ideal.

Definition 4.3. A complex neutrosophic set C = {<Tc =pc et Jo=qe e, Fo=rc - e“"c>} on a semi-
group S is known as a complex neutrosophic ideal of S, if it is both a complex neutrosophic left ideal and a

complex neutrosophic right ideal of S.
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Example 4.2. Let S = {a,b,c} be a semigroup with the following Cayley table:

alblc

a|lalala

blalala

cla|lajc

If we define a complex neutrosophic set C on S as:

(a,0.8¢%5™ 0.6e°->™ 0.5e247%) | (b,0.7¢%67¢ 0.5¢0-47 0.6e0-477) |
(c,0.7¢%570.4¢0-37 0. 7¢0-5m)

Then obviously C is a complex neutrosophic ideal of S.

Remark 4.1. Every complex neutrosophic left (resp., right) ideal is a complex neutrosophic subsemigroup.

But the converse may not be true as seen in the following example.

Example 4.3. Let S = {a,b,c,d} be a semigroup with the following Cayley table:

alblc|d

Take a complex neutrosophic set C on S as:

(a,0.8¢%6™ 0.6e2-57, 0.5¢%47) | (b,0.6e6™, 0.5¢04™,0.6e0477) |

(¢,0.8¢257 0.4¢0-3™ 0.7¢0-57) (d,0.4€2470.3¢0-370.7¢0-577)
Then clearly C is a complex neutrosophic subsemigroup of S. However it is not a complex neutrosophic right
ideal of S, because

Te (cd) = Te (b) = 0.6e” ™ # 0.8¢"°™ = T¢ (c).
4.4. Complex Neutrosophic Interior Ideal.

Definition 4.4. A complex neutrosophic set C = {<TC =pc-etc Jo=qe e, Fo=rc - e“"c>} on a semi-

group S is known as a complex neutrosophic interior ideal of S, if

C(zry) > C(k) ie.,
(1) pe(zry) - €He@5Y) > po(k) - ettelr)
(Z’L) qc (g/gy) . eiuc(a:ny) > QC(H) . eiuc(n)
(

iii) re(zry) - €@ ) < po(k) - e YV a Ky € S.
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Example 4.4. Let S = {a,b,c,d} be a semigroup with the following multiplication table:

alblc|d

clalalbla

dlalal|bl|b

Consider a complex neutrosophic set C on S as:

o (a,0.7€%67 0.6e°47,0.3¢%-57) | (b,0,0.5¢%47,0.5e0-67) |
B <C, 0_560.471'2') 0_460.371'2') 0_760.77ri> ) <d7 07 0.360'2ﬂi, 0.760.77ri>

Then C is a complex neutrosophic interior ideal of S.

Remark 4.2. Fvery complex neutrosophic ideal is a complex neutrosophic interior ideal. But the converse
may not be true as seen in the Example 4.4. For
left
Te (de) = Te (b) = 0 # 0.5e° ™ = T¢ (c)

right
Te(de) =T (b)=0>0="T¢(d).

So it is a complex neutrosophic right ideal but not a left ideal. Hence C is not a complex neutrosophic ideal.
5. CHARACTERISTIC FUNCTION OF COMPLEX NEUTROSOPHIC SET

Definition 5.1. Let H be a non-empty subset over the universe X. Then the characteristic complex neu-

trosophic function of H in X, defined to be a structure:

Cu= {<x7TCH (x)’ICH('r)7FCH ($)> HEAS H}

where

1-e2" ifrecH

TCH (.Z’) =
0 otherwise
1-e?" ifreH

ICH (x) =
0 otherwise
0 ife e H

FCH (1‘) =

1-€2™  otherwise

Definition 5.2. The characteristic function of whole complex neutrosophic set S in semigroup S is defined
as;

Cs = {<(1TCS,1 . ei27r), (iICS,l . ei27r), (OFCS,O)> tx € S} .
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5.1. Direct Product of Two Complex Neutrosophic Sets.

Definition 5.3. Let

C1 = (Cir = pe, ™1, Cap = ge, e, Cop = 1¢, ')
and

Co = (Cor = pe,e™'2,Cor = qe,2, Cop = 1c,e™2)
be any two complex neutrosophic sets on S, then the product is define as;

<£C, (pC1 © pCz)(x) ! ei(uclouc2)(w)7 (qC1 © QC2)(x) ' 6i(ucloch)(z)»

(re, ore,)(x) - elwerowea) @) s e S

Ci®C =

where

sup [min{pe, (y)e' 1), pe, (r)eite2(7)}]
"I/’:yﬁ
(pe, ©pe,)(z) - gtlueroney)@) = if £ = yk for somey,k €S

0 otherwise

sup [min{ge, (y)ee1 @), e, ()eve2(9)}]

T=YK

(gc, ©gc,)(z) - ellveseve, (@) — if v = yk for somey,k €S

0 otherwise

inf [HlaX{’I”C1 (y)eiwﬁ (y), re, (H)eiwCQ (%) }}
T=yk

(re, ore,)(@) - gl(werowes)(n) — if x = yk for some y,k € S

-e otherwise

forall z in S.

Proposition 5.1. A complex neutrosophic sets C1,Co and Cs of a semigroup S, if C1 C Ca, then C; ® C3 C
Co®C3 and C3 ® C1 C C3 ® Cs.

Proof: We are proving C; ® C3 C C2 ® Cs.

Since C1,Cs and C3 are complex neutrosophic sets of S. Let = € S.
Case 1: If x is not expressed as © = yk, then

(C1®Cs)(z) = <f),f), 1) and (C2 ® C3)(z) = <f),0, i).

Clearly, C; ® C3 C Co ® C3.

Case 2: Assume that there exist y, k € S, such that z = yx. Then

(be, o pe,)(x) - e Weres)@ = sup [min{pe, (y)e™r ¥, pe, ()e™es 9}

T=YK

IN

sup {min{pc2 (y)ewc2 (v) ey (/{)ei“cs (k) }}

T=YK

(pe. Opcg)(x) . ¢t(negones) (@)
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Similarly,
(e, © gey) (@) - €'eres) @) < (g, o ge, ) (x) - e*Ve2ores) @),
And
(re, orey)(x) cetlwerowes)(®) = pf [max{rc1 (y)eiwcl(y),rcs(/f)ei“’%(”)}}
> inf [max{rc2 (y)e'ca (y),rCS(,%)eiwc3 (”)}}
= (re, ore,)(x) - elweaowes) @)
Therefore, C1 ® C3 C Cy ® C3. Similarly we can proved C3 ® C; CC3 ® Co. [

Proposition 5.2. Let H and K be any subsets of a semigroup S, we have

(1) Cu®Ckrk =Curx = To, oTow, Ioy o Iok, Foy © For ) = (Touws Lo, Fouw) -

(2) Crr UCk = Crok = (Tey UTey, Ioy Uley . Fop 0 For ) = (Tey s Ionows Fon i) -

(3) CuNCk = Cunk = (Tey, NTow. Iey Nlok, Fou U Foy) = Toyak Iopni: Fouok) -
Proof: (1) Let a« € S. If a« € HK, then

Toyw (@) = 1.2 I, (o) = 1. and Fg,,, (o) = 0 and o = mn for some m € H and n € K.

Thus,

(Toy 0 Tok) (@) = sup {min{To, (2), T (y)}

a=zxy

min {T¢,, (m), Tc, (n)} = 1.e7

v

(Iey o Iey) (@) = sup {min{lc, (2), ok (y)}}

a=zy

> min{lg,(m),Ic,(n)} = 1.6
and

(Foy o Foi)(a) = inf {max{Fo, (), Fo, (y)}}

a=zxy

max {Fe,, (m), Fo,.(n)} = 0.

IN

It follows that,
(Tey o Tey ) (@) = 1.e®™, (Igy, o Io, ) (o) = 1. and (Foy, o Foy ) (o) = 0.
Therefore,
(Te, 0 Tey, Iey 0 Ioy, Foyy 0 For) = (Toy s Iows s Fou) = Cn @ Ok = Cr.
Assume that o ¢ HK, then
Toy (@) =0, Ioy,, (o) =0 and Fo,,, (o) = 1.7,
Let y,x € S be such that a = yk, then we know that y ¢ H or k ¢ K.
Assume that y ¢ H, then
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(TCH o TCK) (Oé) = Sup {min {TCH (y)v Tey (5)}}

a=yK

= sup {min{0,Tc, (x)}}

a=ykK

= 0= TCHK (a)

(Iey o Iey) (@) = sup {min{lc, (y), ok (k)}}

a=ykK

= sup {min{0, o, (x)}}

a=ykK

= 0= ICHK (a)
and

(Foy o Fo ) (@) = inf {max{Fo,(y), Fo.(x)}}

a=ykK

= inf {max{l.ei%,FCK(“)}}

a=ykK

= 1" =Fg, . ().

Similarly, if x ¢ K, then

(Te, oTog) () = 0 = Tey, (@), (Ic, olo,) (@) = 0 = Io, . (a) and (Fg, o Foyp) (o) = 1.e%27 =
Foux(a).

Therefore Cy ® Cx = Crk.

Proof of (2) and (3) are straightforward. O

Theorem 5.1. A complex neutrosophic set C on a semigroup S is a complex neutrosophic subsemigroup of

S if and only if C® C C C.

Proof: Let C be a complex neutrosophic subsemigroup of S, and z € S.
Case 1: If x # yk, for any y,k € S, then obviously C ® C C C.
Case 2: If x = yk, for any y, k € S, then

(be o pe)(a) - €)@ = sup [min{pe(y)ee®), pe(r)e™e )]

T=YK

IN

sup {pc <y,€)eiuc(yﬂ)]

T=YK

= pe(x)-ete®)

Similarly,

(gc © ge) (@) - e'eore)®) < go(a) - e @),
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And

(TC o rc)(x) . ei(wCOwC)(I) — lnf max{/rc (y) . ei"-’c (y)7 TC(KJ) . eiWC("i) }:|
T=yYK

inf [re(yk) - ei“’C(y“)]
T=YK

= re(z)- eiwe (@),

v

Therefore, C ® C C C.
Conversely, Suppose C ® C C C, and assume x = yk, then
pe(yr) - €W > (pc o pe)(yk) - e'lheone)ws)
= sup [min{pc(y)ei“C(y),pc(/ﬁ)ei“C(“)}

YR=YK
= min{pe(y)e™ W), pe(r)e're ™}

Similarly,
qc(yk) - etve(yr) > min{qc(y)eiuc(y)’ qc(ﬁ)ewc(ﬁ,)}_
And
re(yr) - €9eW®) < (rp ore)(yr) - elweowe) wn))
= Inf [maX{TC(y)emc(y), re(r)etwe(®)}

YK=Yk

= max{re(y)e™cW), re(r)e e},
Hence C is a complex neutrosophic subsemigroup of S. [

Proposition 5.3. A complex neutrosophic set C on a semigroup S, the following are equivalent:

(1) C is a complex neutrosophic left ideal of S.

(@) seccc.

Proof: (1) = (2) : Assume that C is a complex neutrosophic left ideal of S. Let z € S, such that
(S®C)(x) = (0,0,1), then it is clear S®C C C.

Whenever there exist any two elements y, x € S, such that x = yk.

Then
(ls; ope - e*e)(x) = wS;lg)ﬁ[min{iST (y), pe(k) - €M™
< sup [min{1 - e pe(yr) - eiuc(yw)}]
z=yr
= pe(x)- eibe (@)
Similarly,

(1s; 0 e - €")(@) < ge(x) - ().
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And

(Os, orc-e“)(x) = inf [max{0s, (y),rc(k) - <™}

T=YK

> inf [max{0,r¢(yk) - €5}

T=YK

= rc<l~) . 6iw(:1:).

Therefore, S® C C C.

Conversely, (2) = (1) : Suppose that S ® C C C. For any elements y, k of S, let = yx. Then

pe(yr) - €W = pe(x) - ete®

(1s; ope - €¢) ()

v

sup [min{1s, (y), pe(x) - )]

T=YK

= pC(/‘G) . eiNC(")'

Similarly,

qc(y/{) . eiuc(yka) > QC(H) . eiuc(n).
And

Tc(y,{/) . eiWC(yH) — Tc(a’:) . eiWC("I")

(0s, o re - €™¢)(x)

IN

= inf [max{()sF (y),rc(k) - eiwc(m)}]

T=YK

= re(k) - eels),

Hence C is a complex neutrosophic left ideal of S. O
Proposition 5.4. A complex neutrosophic set C on a semigroup S, the following are equivalent:

(1) C is a complex neutrosophic right ideal of S.
(2)cescc.

Proof: Proof is similar to the Proposition 5.3. O

Theorem 5.2. If C is a complex neutrosophic set of a semigroup S, then S® C (resp., C® S) is a complex

neutrosophic left (resp. right) ideal of S.

Proof: Since S® (S®C) =(S®S)®C C S®C, it follows from Proposition 5.3, that S ® C is a complex

neutrosophic left ideal of S. Similarly C ® § is a complex neutrosophic right ideal of S. O

Theorem 5.3. Let S be a left zero subsemigroup of a semigroup S. If C is a complex neutrosophic left ideal

of S, then C(x) = C(y) for all z,y € S.
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Proof: Let z,y € S. Then zy = x and yzr = y. Thus
pe(z) - €@ = po(zy) - @) > po(y) . eire®)
= pc(yx)- gtre (yx) > pe(z) - ke (@)
Similarly,
ge(x) - €@ = go(y) - eve®,
And
re(w) - eiwe@) = re(zy) etwel@y) < re(y) - eiwe(y)
= re(yz) - e < po(z) - @),

Therefore, C(z) =C(y) for all z,y € S. O

Theorem 5.4. Let S be a right zero subsemigroup of a semigroup S. If C is a complex neutrosophic right

ideal of S, then C(x) = C(y) for all x,y € S.
Proof: Proof is similar to the Theorem 5.3. O

Theorem 5.5. Let C is a complex neutrosophic left ideal of a semigroup S. If the set of all idempotent
elements of S form a left zero subsemigroup of S, then C(x) = C(y) for all idempotent elements x and y of
S.

Proof: Let Idm(S) be the set of all idempotent elements of S and assume that Idm(S) is a left zero

subsemigroup of S. For any z,y €ldm(S), we have zy = = and yz = y. Thus
pee) €1 = pefay) - WD) > pefy) - (He®
= pc(yl') . eil"c(yw) Z pc(x) . eiNC(CU)
= pely)- eite(y)

Similarly,
qc(x) . eil/c(;v) — qc(y) . eil/c(y).

And

re (l') . eiwc (:D) = 71 (xy) . ei"’JC (a:y) S re (y) . eiwC ("/)

re(yz) - elwe(yr) < re(x) . giwe(@)

= rcly) - e

Therefore, C(z) = C(y) for all z,y €ldm(S). O
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Theorem 5.6. Let C is a complex neutrosophic right ideal of a semigroup S. If the set of all idempotent
elements of S form a right zero subsemigroup of S, then C(x) = C(y) for all idempotent elements x and y of
S.

Proof: Proof is similar to the Theorem 5.5. [
Proposition 5.5. If S be a semigroup. Then the following properties are hold.

(1) The intersection of two complex neutrosophic subsemigroups of S is a complex neutrosophic subsemi-
group of S.

(2) The intersection of two complex neutrosophic left (resp., right) ideals of S is a complex neutrosophic
left (resp., right) ideal of S.

Proof: Let

Cr = (Cir = pe, - €M1 ,Cip = qe, - €71, Crp = T¢, - €4°1)
and
Co = <C2T =pc, - €2, Car = qc, - €72, Car =1, GMCQ>

be any two complex neutrosophic subsemigroups of S. Let z,y € S. Then

min{pc, (zy) - €11 @) pe, (zy) - etz (@v)}

(pC1 ' eiucl N bes - eiuc2)(xy)

v

min{min{pe, () - €41 @), pe, (y) - s @)},

min{pCz ((E) : eiucz @ y PCy (y) : eiMCQ ) }}

= min{min{pc, (z) - %@, pe, (2) - P2},

min{pe, (y) - @) pe, (y) - =) }}
= min{(pc, - €1 Npe, - €'2)(x),

(pC1 : ei#cl mpCz . elﬂcz )(y)}

Similarly,

(gc, - €™ Nge, - €™2)(xy) > min{(ge, - € Nge, - €™°2)(x),

(QC1 : eiycl N qc, - eil/c2 )(y)}
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And

(re, - €61 Ure, - #62)(ay) = max{re, (zy) - 1), g, (ay) - 220}
< max{mas{re,(x) - €1 ), () 461 ),
max{re, () - €@ 1o (y) - e}
= max{max{re, (z) - %) re, () - ™2},
max{re, (y) - ™ W), re, (y) - eie (y)}}
= max{(re, € Urg, - eer)(a),

(Tcl ceer U ey s eiw%)(y)}'
Therefore, C; N Cs is a complex neutrosophic subsemigroup of S.
(2) Let C; and Cy be any two complex neutrosophic left ideals of semigroup S, and z,y € S. Then
(pe, - €1 Npe, - €e2)(zy) = min{pe, (zy) - €Y, pe, (zy) - eMe=l9)}
> min{pC1 (y) : eiucl (y)7pC2 (y) : eiuc2 (y)}
= (pcl st Npe, - ew%)(y)-
Similarly,
(qC1 : eiucl Nge, - echz)(xy) > (qC1 : eiycl Ngc, eiucz)(y)'
And
(re, - €1 Ure, - €*2)(xy) = max{re, (zy) - € V) re, (ay) - ee2 (W)}
< max{re, (1) € W1, (p) - €40}
= (re, €™ Ure, - €%2)(y).

Thus C; N Cy is a complex neutrosophic left ideal of semigroup S.

The intersection of complex neutrosophic right ideal can be proved in a similar manner. [
Proposition 5.6. If S be a semigroup. Then the following properties are hold.

(1) The union of two complex neutrosophic subsemigroups of S is a complex neutrosophic subsemigroup
of S.

(2) The union of two complex neutrosophic left (resp., right) ideals of S is a complex neutrosophic left
(resp., right) ideal of S.

Proof: Let

i iv, i
C1 = (Cir =pe, - €1 ,Cir = qe, - €71, C1p = 1¢, - €9°1)
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and
Co = (Cor = pe, - €12, Car = qc, - €7°2,Cop =T, - €/9°2)

be any two complex neutrosophic subsemigroups of S. Let z,y € S. Then

max{pcl (wy) : eiucl (=) y PCs (zy) . eiuc2 (a:y)}

(pe, - €™ Upe, - €2 (zy)

%

max{min{pe, (x) - 1), pe, (y) - e'er )},
min{pc, (z) - €@, pe, (y) - 2@}
= pe, (:c) . gitey () A pe, (y) . glke; (y) v
pe, () - 2@ A pe (y) - ette2 ()
= pe, (@) " @V pe, () - el A
pe, (y) - e W) v pe, (y) - eites (U)
= minf(e, e Upe, - ¢e)(2),

(pcl ce'tery bc, - eiu%)(y)}‘
Similarly,

(e, - €™ Uge, - €™2)(zy) > min{(ge, - € Uqe, - €™2)(x),

(gc, - €1 Uqe, - €72 (y)}.
And

(re, - € e, - €2)(zy) = min{re, (zy) .eiwcl(xy)7rcz (zy) - ecs (Iy)}

< minfmax{re, (2) - €% %), e, (y) - o 0},
max{re, (z) - €2 (%) e, (y) - e W}

= re(x)- etwey () re, (y) - eiwe, (W) A
re, (x) - €2 (@) v o (y) - e W)

= re(x)- efwer (2) A re, () - eiwes (7) \/
re, (y) - etwer (W) A re, (y) . eiwey ()

= max{(re, - Nrc, - €6) (x),

(rcl celver Nre, - ees )(y)}

Therefore, C; U Cs is a complex neutrosophic subsemigroup of S.
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(2) Let C; and Cs be any two complex neutrosophic left ideals of semigroup S, and z,y € S. Then

(pe, - €M1 Upe, - e )(zy) = max{pe, (zy) - 1Y) pe, (xy) - ettea(@v)}
> max{pec, (y) eiter (y)’pc2 (y) - eiuCQ(y)}
= (pe, - €M1 Upe, - €2 (y).
Similarly,
(ge, . etver |y qc, 'ei”c2)(xy) > (qe, . efver | ac, ~€iV62)(y),

And

(e, - €41 Nre, - eex)(ay) = min{re, (ny) - €0 e, (ay) - e}
< minfre, (v) - €0, 1, (y) - e )

= (Tcl ceern ey s e )(y>

Thus C; UC5 is a complex neutrosophic left ideal of semigroup S.

The union of complex neutrosophic right ideal can be proved in a similar manner. O

Theorem 5.7. If C; and Cy be a complex neutrosophic right and left ideals of a semigroup S, respectively.
Then C1 ® Co € C1 N Ca.

Proof: Let C; is complex neutrosophic right ideal and Cs is any complex left neutrosophic ideal of S.
Then by Proposition 5.3 and Proposition 5.4 we have C; ® Co CC; ® S CC; and C; ® Co C S ®Cy C Co.
Hence Ci ®Cy CC1NCy. O

Theorem 5.8. If S is reqular semigroup, then C1 ® Co = C1 N Cq for every complex neutrosophic right ideal
C1 = (pe, - €M1, qe, - €1 1, - €¢1) and every complex neutrosophic left ideal

Co = (pe, - €2, qe, - €¢2, 1, - €™C2) of S.

Proof: Let a be any element of S. Since S is regular, there exist an element z € S such that a« = azxa.
Hence we have

(pe, - €1 ope, - e™2)(a) = sup {min{pe, (y) - "1, pe, () - €207 }}

a=ykK

= sup {min{pe,(y) 1@ po_ (k) - eca(r)}}

aroa=yK

min{pe, (az) - €%, pe, (o) - e'te2 ()}

v

v

min{pe, (@) - €<, pe, (@) - etez(@)}

= (pC1 : eiucl N bes - eiﬂcz)(a).
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Similarly,
(qcl .efver o qc, - e'LVCQ)(O() > (qu cefrern qc, * eiVCQ)(a).
And
(re, - €1 ore, -e“er)(a) = inf {max{re, () - 1) re, () - €2}
a=ykK
= inf {max{re, (y) - €W, re, (k) - ™2 (9)}}

S HlaX{T’cl (OéIE) : eiwcl (az), re, (a) : eiwc2 (a)}
< maxfre, (@) ¢4 ), e, (a) - e (®)

= (re, - €™ Urg, - ec2)(a).
SoC1®Cy D CiNCa and Cy ® Co C C1 NCs is true from Theorem 5.7. Hence C1 ® Co =C1 NCy. O
Theorem 5.9. For a non-empty subset H of a semigroup S. We have

(1) H is a subsemigroup of S if and only if the characteristic complex neutrosophic set Cr = (T, Icy, Foy,)
of H in § is a complex neutrosophic subsemigroup of S.

(2) H is a left (right) ideal of S if and only if the characteristic complex neutrosophic set Cp =
(Tey,Ioy, Foy) of H in S is a complex neutrosophic left (resp., right) ideal of S.

Proof: Straightforward. O

Theorem 5.10. For every complex neutrosophic right ideal Cy = (T¢,, Ic,, Fe,) and every complex neutro-

sophic left ideal Co = (T¢,, Ic,, Fe,) of a semigroup S, if C1 ® Co = C1 NCq, then S is regular.

Proof: Assume that C; ® Co = C; N Cq for every complex neutrosophic right ideal C; = (T¢,, I, , Fe,)
and every complex neutrosophic left ideal Co = (T¢,, Ic,, Fc,) of a semigroup S. Let R and £ be any right
and left ideal of S, respectively. In order to see that R N L C RL holds. Let o be any element of R N L,
then the characteristic complex neutrosophic sets Cr = (Tey, Iog, For) and Ce = (Te,, Ic,., Fe,) are a
complex neutrosophic right ideal and a complex neutrosophic left ideal of S, respectively, by Theorem 5.9.

It follows from the hypothesis and proposition 5.2, that is

Ter (o) = (TogoTeo)(a) = (Ter NTe,)(a)

= Togne (o) = 1.e™m

IC‘RC (Oz) - (ICR o ICL)(OZ) - (ICR N ICC)(a)

Icnn, (a) =1.¢""
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and

For,(a) (Feg o Fep)(a) = (Fop U Fe,)(a)

= fogroe (a) =0.

So that & € RL. Thus RN L C RL. Since the inclusion in the other direction always holds, we obtain that

RNLCRL. It follows from Lemma 2.1, that S is regular. [
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