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ABSTRACT. The main object of this paper is to introduce a new class of Laguerre-based poly-Genocchi
polynomials and investigate some properties for these polynomials and related to the Stirling numbers of

the second kind. We derive summation formulae and general symmetry identities by using different analytical

means and applying generating functions.

1. INTRODUCTION

The generalized Bernoulli, Euler and Genocchi polynomials of (real or complex) order « are usually defined

by means of the following generating functions (see [1-16]):
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So that obviously
B, (z) = B:(2), E,(z) = E}:(x) and G, () = G} (z), (n € N),

where Ng =NU {0} (N=1,2,3,---).

The classical polylogarithmic function Lix(z) is defined by (see [2], [10]):

o0

. z™
Lig(z) = ) —(kez). (1.4)
m=1
The poly-Bernoulli numbers and polynomials are defined by following generating functions (see [7], [8],
[9)):
le(l — 67t) > (k) t"
i1 X%Bn ok (1.5)
Lig(1—e™) ., < "

In the case k =1 in (1.5) and (1.6), we have
BY = B, BY(x) = B, ().

The poly-Genocchi numbers and polynomials are defined by following generating functions (see [14]):

2le
SR G(’f) 1.7
T Z T (1.7)
2Lip(1—e?) ., — k)"
B D D (18)

n=0
In the case k = 1in (1.7) and (1.8), we have

GV =G,,GY () = Gp(z).

The 2-variable Laguerre polynomials (2-VLP) L, (z,y), which is defined by (see [5]):

(1—1yt) P <1—x;t> ZL (@ y)t" ([ yt |< 1) (1.9)

n=0

It is equivalently given by (see [6]).
exp(yt)Co(xt) ZL x, y (1.10)

where Cy(x) denotes the 0** order Tricomi function. The n'* order Tricomi functions C,,(z) are defined as:

’I“

Z o (n € No) (1.11)
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with the following generating function:

x > n
exp (t - ?) = ;on(x)t : (1.12)
for ¢ # 0 and for all finite x.
From (1.9) and (1.10), we get
Lty =3 ELEY g oy, (113)
’ (s)2(n — s)!
s=0
Thus, we have
(_1)nxn n

where L, (x) are the classical Laguerre polynomials (see [1]).
Now, we recall here the following definition as follows:

The Stirling number of the first kind is given by

n

(@) =a(@—1)-(z—n+1)=Y_ Si(n,)z',(n>0) (1.15)
=0

and the Stirling number of the second kind is defined by generating function:
t - t!
(e -1 =n>" Sa(l,n) - (1.16)
l=n
2. 2-VARIABLE LAGUERRE-BASED POLY-GENOCCHI POLYNOMIALS

Let k € Z, we inroduce 2-variable Laguerre-based poly-Genocchi polynomials by the following generating

function:
2Lix (1 —e7?) — (k) tn
o oPCo(at) = ; G (,y) (2.1)
so that
n n
LGPy =Y G\, Lon(2,y). (2.2)

m=0 m

When z =y =0, LG;’“) =GW¥ (0,0) are called the poly-Genocchi numbers. For k =1 in (2.1), we have

oo

exp(yt)Co(xt) = Y 1Gulz,y)

n=0

tn

n!’

2Li1 (1 — e™t)

et +1 (23)

where G, (z,y) is Laguerre-based Genocchi polynomials (see [13]).

Thus, we have

LGst)(m>y) = LGn(xay)v (n > 0)
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On setting = 0, (2.1) reduces to the known result of Kim et al. [14.,p.Eq.(4)4776]:

Theorem 2.1. The following explicit summation formulae for Laguerre-based poly-Genocchi polynomials

holds true:

6O =S [ ") 2 ey, (2.5)

=\ m m—+1

Proof. Using generating function for Laguerre-based poly-Genocchi polynomials (2.1), we have

= t"  2Lig(1 —e7t)
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In particular £ = 2, we have
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Replacing n by n — m in the r.h.s of above equation, we have

E (2) hap— E E ha
nZOLGn (l‘,y) n! - m m+ 1LG(n m(m y) |

n=0 \m=0

On equating the coefficients of the like powers of ¢ in both sides, we get (2.5).

Remark 2.1. On setting x = 0, Theorem (2.1) reduces to the known result of Kim et al. [14.,p. 4777,
Theorem (2.1)].

Corollary 2.1. For n > 0, we have

3

n B,,m!

Gg) (v) = mE1

Grn-m(y)- (2.6)

m=0 m

Theorem 2.2. For n > 1, the degree of LGng)(m,y) is n-1. We have

G(k) - n—1 ng)
Li = Z +1Ln m—1(Z,y). (2.7)
m=0 m m+
Proof. From (2.1), we have
= t"  2Lig(l—e
Z LGP (x, y)g % exp(yt)Co(at)

n=0
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(o) (£

Replacing n by n — m in above equation and comparing the coefficients of ¢, we get

n n
m=0 m
From (2.8), we have
(k) n—1 _ (k)
LGn (os,y) n—1 Gm+1
- = L —m— ) ) > 1 2.
Piaaied O BN s RN CES) (2.9

Therefore by (2.9), we obtain the result (2.7).

Remark 2.2. For z = 0, Theorem (2.2) reduces to the known result of Kim et al. [14.,p. 4778, Theorem

(2.2)].

Corollary 2.2. For n > 1, the degree of Gt (x) is n-1. We have

Gl (1 Gk
= — gyt 2.10
- mZ:O - Y (2.10)
Theorem 2.3. For n > 0, we have
2p+1,0) [ n
LGR) (2, ) ZZ " p+ ) LG p(2,y). (2.11)
p=0 I=1 p
Proof. By using (2.1), we can be written as
> tn Lig(1 —e7?t) 2t
(k) A k
Z LG (2, ) " ( ; ] exp(yt)Co(xt) ) . (2.12)

n=0

Now

=1 p=l
1 & —1)r t
ey S s
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From equations (2.12) and (2.13), we get

> 1o (KR (D Sa(p 4 1,D) >
ZLG(k)(xy),Z<Z( )lk (]i)+1 p.><2=: n(2,9) )

n=0 p=0 \l=1
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Replacing n by n — p in the r.h.s. of above equation and comparing the coefficients of t” in both sides,

we arrive at the desired result (2.11).

Remark 2.3. For x = 0, Theorem (2.3) reduces to the known result of Kim et al. [14.,p. 4779, Theorem

(2.3)].

Corollary 2.3. For n > 0, we have

ip+l (71)l+p+1“52(p+ 1’1) n

G (y) = Gnp(y)- (2.14)
n k n—p
p=0I=1 Hp+1) p
Theorem 2.4. For n > 1, we have
n 4 l—‘rp n
LGP (zy+1)+ LGP (w,y) =2 11S5(p, 1) Ln_p(,y). (2.15)
p=11=1 P
Proof. By using definition (2.1), we have
> LGP (wy+ 1)5 +> LGglk)(%y)ﬁ
n=0 n=0
2Lip(1 — e~t) Wi (1 — et
=1 exp((y + 1)t)Co(xt) + . exp(yt)Co(wt)
= 2Lig(1 — e ") exp(y)tCy(xt)
o) P I+
_1)i+p »
= Z (22 ( l’z l!Sg(p,l)) — exp(yt)Co(xt)
=1 =1 P
P
o0 P 1+ [e’e) n
—1)tTp tP t
— (S 2 S s, ) 2 (S 2@ S
p=1 =1 ! p: n=0 m

Replacing n by n — p in the above equation and comparing the coefficients of t” in both sides, we obtain

the result (2.15).

Remark 2.4. Taking x = 0, Theorem 2.4 reduces to the known result of Kim et al. [14.,p. 4780, Theorem

(2.4)].

Corollary 2.4. For n > 1, we have

n l+:D n
GO (y+1)+ P (y) =2 Z 1Sy (p, 1) Y (2.16)
p=11=1 p

Theorem 2.5. For d € N with d = 1(mod2), we have

n p+1d— 1

l+p+1 |
1P =Y | Y Y EEE R LD (6, (. ean)

p=0 P =0 a=0 d
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Proof. From equation (2.1), we can be written as

t" 2Li (1 — et
Z LGP (x y Mexp(yt)a)(xt)

el +1
2Lij(1 — et 9 !
—< k(t )> <€dt+1;)(_1)aexp((a+y)t)co(mt)>
oo [/p+1 —1)Hptl g +1,1 tP - a—|— n
(S (g 5) (S Eemecitag)

Replacing n by n — p in above equation and comparing the coefﬁc1ent of t™ in both sides, we get (2.17).

Remark 2.5. For = 0, Theorem 2.5 reduces to the known result of Kim et al. [14.,p. 4780].

Corollary 5. For d € N with d = 1(mod2), we have

n p+1d— 1 l+p+l| 1
n
W=y (" e Y CIISEELD g, @8 oy
p=0 p 1=0 a=0

3. SUMMATION FORMULAE FOR LAGUERRE-BASED POLY-GENOCCHI POLYNOMIALS

In this section, we establish summation formula for Laguerre-based poly-Genocchi polynomials by using

series techniques method.

Theorem 3.1. The following implicit summation formulae for Laguerre-based poly-Genocchi polynomials
e (z,y) holds true:

l,p l

160 (@) = S P eoymrie® (). (3.1)

m,n=0 m n
Proof. Replacing ¢t by ¢ + u and rewrite the generating function (2.1) as

2Lix (1 — (e)~ (W)
ettv 41

“ t! up
Colalt + ) = ) 3 160 (2 )t i (3.2)
l,p=0

Replacing y by z in the above equation and equating the resulting equation to the above equation, we get

oo

l,p & l P

2—y)(ttu (k) tur (k) w

eFmv) ) ; LGl-s-p(w’y)ﬁH a ZZ LGl+p( )ﬁﬁ (33)
m,l=0 ,p=0

On expanding exponential function (3.3) gives
- [z =)t +w)Y t L S Y thur
Z Z LGl+p x,y) T Z LGHp(x,z)EH (3.4)

N!
N=0 l,p=0 l,p=0

which on using formula [16, p.52(2)]

S ) ‘Hy = > smm)E

N=0 n,m=0

: (3.5)
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in the left hand side becomes

N s G NN LV o
) Gy (@ y) o = ST uGP (-, D (3.6)
m,n=0 1,p=0 1.p=0

Now replacing [ by [ —m, p by p—n and using the lemma [16, p.100(1)] in the left hand side of (3.6), we get

= & (z— )t (k) ¢t uP
LG
m%::O l%::O min! trpmm= n(x v) (I =m)! (p—n)!
k t*u
= LG1(+)p(x’Z)ﬁ*.- (3.7)
10 ! p!

Finally on equating the coefficients of the like powers of ¢ and u in the above equation, we get the required

result.

Remark 3.1. Taking ! = 0 in assertion (3.1) of Theorem 3.1, we deduce the following consequence of

Theorem 3.1.

Corollary 3.1. The following summation formula for Laguerre-based poly-Genocchi polynomials HGSJC) (z,9)

holds true:
p
LGP (@, 2) = (z = )" LGP (2, y). (3.8)

n=0 n

Remark 3.2. Replacing z by z 4+ y in (3.8), we obtain

P

p
LGP (2 +y) =) 2 LGP (2, y). (3.9)

n=0 n

Theorem 3.2. The following summation formula for Laguerre-based poly-Genocchi polynomials HG,(JC) (z,9)

holds true:

n n ,
LGP (&, y +u) = Z . u]Lng_)j(x,y). (3.10)
j=0 J

Proof. Using (2.1), we can be written as
(o) . o0 ;
t"  2Lig(1—e7t) " St
(k) Lo _ 2kt ) -
T;:O LG (zyy + w) = Y exp((y + u)t)Co(xt) E LGP o JE:O W i

Now replacing n by n — j and comparing the coefficients of ¢" in both sides, we obtain (3.10).
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Theorem 3.3. The following summation formula for Laguerre-based poly-Genocchi polynomials HG%]C) (z,9)

holds true:

3

LGP (@ 4w,y +u) = LG () Lo (u, w). (3.11)

Proof. From (2.1) and (1.10), we have

Wexp((y—ku)t)a)( r+w)t) = <ZLG(’€) (z,y) ) (ZL (u, w) tm).

Now replacing n by n —m and comparing the coefficients of ¢ in both sides, we get (3.11).

Theorem 3.4. The following summation formula for Laguerre-based poly-Genocchi polynomials LG%k) (x,y)

holds true:

3

LGP (@, y+1) = LGP (2, y). (3.12)

Proof. Using definition (2.1), we have

= - t"  2Lig(1 —e7t)
3G — -3 6w v_amii—e ) t_
_ LGy (JZ, y+ 1) nl _ LGy (Z‘, y) o et + 1 exp(yt)C’O(xt)(e 1)

= (iLG%k)(x’y)ZD <i ) ZLG Mz, y) L,
n=0

m=0 n=0
e DI NS o Jet S
n=0m=0 ( m)'m' n=0 ! ’ n!

Finally, equating the coefficients of the like powers of t", we get (3.12).

4. IDENTITIES FOR 2-VARIABLE LAGUERRE-BASED POLY-(GENOCCHI POLYNOMIALS

In this section, we derive general symmetry identities for 2-variable Laguerre-based poly-Genocchi polyno-
mials LG%k)(x, y) by applying the generating function(2.1). Such type of identities have been introduced by
several authors (see [11], [12], [13], [15]).

Theorem 4.1. Let a,b> 0 and a # b, z,y € R, n > 0, then the following identity holds true:

n n
> a" ™ L G (b, by) LGP (au, aw)
m=0 m
n

amb”*mLGfﬁm(ax, ay) LGP (bu, bw). (4.1)
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Proof. Let
ip(l —e 9t ip(1—e 0t
) = ((ZL kfelat — 1><3§3th Sm ))) exp(ably + u)t)Co(abat)Coabuwt). (4.2)

Since G(t) is symmetric in @ and b and G(t) can written as
(bt)77l

ZLG(k) (bx, by) Z G(k (au, aw) -

o0 n n n
G(t) = Z Z a"_mmeGgi)m(bx, by) LGP (au, aw) t—' (4.3)
n=0 \m=0 m s
Similarly, we can show that
= ) = ( O™
G(t) = Z LG, (ax,ay Z
n=0 m=
o0 n n n
_ min—m (k) (k) v
G(t) = Z . a™b" MG, (ax, ay) L GYY (bu, bw) ok (4.4)

n=0 \m=0

(4.3) and (4.4), we arrive at the desired result.

Comparing the coefficients of tn—w, in

Remark 4.1. On setting b = 1 in Theorem 4.1, we get

n n
a" .G (2, y) LGP (au, aw)

i n
= Z amLG;kzm(ax,ay)Lfof)(u,w).

Theorem 4.2. Let a,b > 0 and a # b, z,y € R and n > 0, then the following identity holds true

n n a—1b—1
Z Z Z LGgi)m (by + g’t + 7, bx) LG%)(au) aw)bman—m

o\ m J i=0j=0

n n b—la—1
-y LG (ay + Zit, az) LG (bu, bw)a™ b, (4.5)
m=0 \ m | i=0j=0
Proof. Let
_ (L1 — e ™)) QLik(L— ™)\ apr 2
G(t) = ( (et D)2 + 172 (e 4+ 1) exp(ab(y + u)t)Co(abxt)Cy(abwt)

Aig(1 — e—ot) et 4 1\ [/ 2Lip(1 — e~ )
G(t) = (M exp(abyt)Colabet) | 5 e 1
eabt + 1)

x exp(abut)Co(abwt) (eat_|_1
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2Lig (1 — e~ %) = i bti 2Lig (1 — ™)
_ <<+1 exp(abyt)Co(abat) 3 O<—1> S
b—1
x exp(abut)Co(abwt) Z Tetd.
j=0
(i)Y SNyt et 3 G oo™
T\ et 1 o(a xt)zz(_l) e e ZL m (0, aw) m!
=0 j=0 m=0
a—1b—1

S 1O (o)
m=0 :

n n a—1b—1 o ) b m
G(t) = Z Z ( ) Z Z(*l)HJLGng_)m <by + gi + 7, bx) LG (au, aw)b™a" ™ e (4.6)
= =0 j

00 n b— la—l g

G(t) = Z Z Z 1)+ G( (ay + %z’ +74, aa:) LGE (bu, bw)a™ ™ | . (4.7)

n=0 \m=0 m i= j:O

On comparing the coefficients of tn—n, in (4.6) and (4.7), we arrive at the desired result (4.5).
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