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Abstract. The convergence of Fourier series of a function at a point depends upon the behaviour of the

function in the neighborhood of that point and it leads to the local property of Fourier series. In the proposed

paper a new result on local property of |A; δ|k-summability of factored Fourier series has been established

that generalizes a theorem of Sarigöl [13] (see [M. A. Sariögol, On local property of |A|k-summability of

factored Fourier series, J. Math. Anal. Appl. 188 (1994), 118-127]) on local property of |A|k-summability

of factored Fourier series.

1. Introduction and Motivation

Suppose
∑
an be a given infinite series with sequence of partial sum (sn) and let A = (anv) be a lower

triangular matrix with nonzero diagonal entries. Then A defines the sequence-to-sequence transformation
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from the sequence s = (sn) to A(s) = (An(s)), with

An(s) =

n∑
v=0

anvsv. (1.1)

A series
∑
an is summable |A|k (k ≥ 1) if, (see [13])

∞∑
n=1

|ann|1−k|An(s)−An−1(s)|k <∞, (1.2)

and the series
∑
an is summable |A; δ|k (k ≥ 1) if, (see [6])

∞∑
n=1

|ann|1−k−δk|An(s)−An−1(s)|k <∞. (1.3)

Let us consider two lower triangular matrices Ā and Â associated with A as follows:

ānv =

n∑
r=v

anr, (n, v = 0, 1, 2, ..., )

and

ânv = ānv − ān−1,v. (n = 1, 2, 3, ..., ).

In special case, when A = (N̄ , pn) then |A, δ|k-summability reduces to |N̄ , pn; δ|k-summability and for

k = 1, (|N̄ , pn; δ|) is equivalent to |R, pn; δ|-summability (see [2]). Also, if we take A = (C,α) with (α > −1),

then |A, δ|k-summability becomes |C, α, (α− 1)(1− 1/k)δ|k in Flett’s notation. Furthermore, for double ab-

solute factorable summability matrix (see [11]).

We use the notations

∆cn = cn − cn+1 and ∆̄cn,v = cnv − cn−1,v, c−1,0 = 0, (n, v = 0, 1, 2, ..., ).

A sequence (λn) is called a convex sequence if,

∆2(λn) ≥ 0 for every n ∈ Z+,

where
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∆2(λn) = ∆(λn)−∆(λn+1) and ∆(λn) = λn − λn+1.

Let f(t) ∈ L(−π, π) be a 2π periodic function. Without loss of generality let us consider that a0 = 0

in the Fourier series expansion of f(t) that is,

∫ π

−π
f(t)dt = 0. (1.4)

Thus the Fourier series expansion of f(t) becomes:

f(t) =

∞∑
n=1

(an cosnt+ bn sinnt) =

∞∑
n=1

An(t). (1.5)

It is well known that the convergence of the Fourier series at t = x is a local property of f [16] (i.e., it

depends only on the behavior of f in an arbitrarily small neighborhood of x) and hence the summability of

the Fourier series at t = x by any regular linear summability method is also a local property of f. Moreover,

as regards to the approximation of Fourier series of functions see the recent results [9], [10] and [5].

2. Preliminaries

Dealing with Riesz summability and local property of Fourier series, Mohanty [12] has established that

|R, log(n), 1|-summability of a factored Fourier series

∑ An
log(n+ 1)

(2.1)

of a function f(t) at any point t = x is a local property of the generating function of f(t) but the summability

|C, 1| of this series is not. Subsequently, replacing the series (2.1) by∑ An(t)

(log log(n+ 1))δ
(δ > 1). (2.2)

Matsumoto [7] as obtained a new result on local property of |R, pn, 1|-summability.

Generalizing the above result Bhatt [1] proved the following theorem:

Theorem 2.1. Suppose (λn) is a convex sequence such that
∑ λn

n is convergent, then the |R, log(n), 1|-

summability of a factored Fourier series
∑
An(t)λn log(n) at any point t = x is a local property of f(t).
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By replacing the factor λnlog(n) in a most general form, Mishra [8] has proved the following theorem.

Theorem 2.2. Suppose (pn) be a sequence satisfying following conditions:

Pn = O(npn),

Pn∆pn = O(pnpn+1).

Then the |N̄ , pn|-summability of a factored Fourier series

∞∑
n=1

An(t)λnPn(npn)−1 (2.3)

at any point t = x is a local property of f(t), where (λn) is a convex sequence.

Replacing |N̄ , pn|-summability in Mishra’s result, Bor [3] proved a more general form on |N̄ , pn|k-

summability method. Quite recently, Bor [4] introduced the following result on |N̄ , pn|k-summability of

a factored Fourier series at any point t = x as a local property of f(t) under more appropriate conditions

then those given in the theorem.

Theorem 2.3. Let the positive sequence (pn) and a sequence (λn) be such that

∆Xn = O(n−1);

∞∑
n=1

1

n
{|λn|k + |λn+1|k}Xk−1

n 5∞;

∞∑
n=1

(Xk
n + 1)|∆λn| 5∞,

where Xn = (npn)−1Pn. Then the |N , pn|k-summability of a factored Fourier series

∞∑
n=1

λnXnAn(t) at any

point t = x is a local property of f(t).

Later Sarigöl (see [13]) has proved the following



Int. J. Anal. Appl. 16 (2) (2018) 213

Theorem 2.4. Suppose that A = (anv) is a positive normal matrix satisfying

an−1, v = anv, (n 5 v + 1)

ān,0 = 1 (n = 0, 1, 2, ..., )

n−1∑
v=1

avvân,v−1 = O(ann),

∆xn = O(n−1),

where Xn = 1
(nann) . If a sequence (λn) satisfying following conditions

∞∑
n=1

n−1{|λkn|+ |λn+1|k}Xk
n−1 5∞,

∞∑
n=1

(Xk
n + 1)|∆λn| 5∞.

Then the |A|k-summability of a factored Fourier series

∞∑
n=1

λnXnAn(t) at any point t = x is a local property

of f(t).

Again to improve upon and generalize Theorem 2.4, Sulaiman [14] has proved the following theorem for

a normal matrix.

Theorem 2.5. Let A = (anv) is a normal matrix satisfying

|ân,v+1| ≤ |ann|,

∞∑
n=v+1

|ân,v+1| ≤ ∞,

n−1∑
v=1

|avv||ân,v+1| = O(|ann|),

∆Xn = O(
1

n
),
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where Xn = 1
(nann) . If a sequence (λn) satisfying the following conditions

∞∑
n=1

n−1{|λkn|+ |λn+1|k}Xk
n−1 5∞,

∞∑
n=1

Xn|∆λn| 5∞.

Then the |A|k-summability of a factored Fourier series

∞∑
n=1

λnXnAn(t) at any point t = x is a local property

of f(t).

3. Main result

In the present paper, we have established a new result on local property of |A, δ|k-summability of factored

Fourier series

∞∑
n=1

λnXnAn(t) in the form of a theorem as follows.

Theorem 3.1. Suppose A = (anv) is a positive normal matrix such that

an−1,v ≥ an,v (n 5 v + 1); (3.1)

ān,0 = 1 (n = 0, 1, ..., ); (3.2)

n−1∑
v=1

avvân,v−1 = O(ann); (3.3)

m+1∑
n=v+1

ân,v+1a
−δk
nn = O(vδk); (3.4)

m+1∑
n=v+1

a−δknn |∆̄anv| = O(vδk), ; (3.5)

∆Xn = O(n−1), (3.6)

where Xn = 1
(nann) . If a sequence (λn) satisfying the following conditions

∞∑
n=1

n−1{|λ|k + |λn+1|k}Xk
nn

δk 5∞; (3.7)

∞∑
n=1

(xkn + 1)|∆λn|nδk 5∞. (3.8)
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Then the |A, δ|k-summability of a factored Fourier series

∞∑
n=1

λnXnAn(t) at any point t = x is a local prop-

erty of f(t).

Remark 3.1. The element ânv = 0 for each n, v. In fact, it is easily seen from the positiveness of the

matrix, (3.1) and (3.2), that â00 = 1,

ânv = ān0 − āv−1,0 +

v−1∑
j=0

(an−1,j − anj)

=

v−1∑
j=0

(an−1,j − anj) = 0 (1 5 v 5 n)

and equal to zero otherwise.

In order to prove the above theorem we need the a lemma as follows.

Lemma 3.1. Suppose that the matrix A and the sequence (λn) satisfy the conditions of the theorem, and

that (sn) is bounded. Then factored Fourier series

∞∑
n=1

λnXnAn(t) is summable to |A, δ|k (k = 1, δ = 0).

Proof. Let (Tn) be an A− transformation of

n∑
i=1

λiXiAn(t), then

Tn =

n∑
i=0

anisi =

n∑
i=1

ani

i∑
v=1

λvXv =

n∑
v=1

λvXv

n∑
i=v

ani =

n∑
v=1

ānvλnXv

∆̄Tn = Tn − Tn−1 =

n∑
v=1

(ānv − ān−1,v)λvXv =

n∑
v=1

ânvλvXv

∆̄Tn =

n−1∑
v=1

(ânvλvXv)sv + annλnXnsn

but, ∆(ânvλvXv) = λvXv∆ânv + ∆(λvXv)ân,v+1

= λvXv∆̄anv + (Xv∆λv + ∆Xvλv+1)ân,v+1.
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∆̄Tn =

n−1∑
v=1

ân,v+1Xv∆λvsv +

n−1∑
v=1

ân,v+1λv+1∆Xvsv +

n−1∑
v=1

∆̄anvλvXvsv + annλnXnsn

= Tn,1 + Tn,2 + Tn,3 + Tn,4, (say).

To complete the proof, it is sufficient to show that by using Minkowski’s inequality

∞∑
n=1

a1−k−δk
nn |Tn,m|k <∞ (m = 1, 2, 3, 4).

Using Hölder inequality and (3.1), (3.2), (3.8),

Let

I1 =

m+1∑
n=2

a1−k−δk
nn |Tn,1|k

5
m+1∑
n=2

a1−k−δk
nn

{
n−1∑
v=1

ân,v+1Xv|∆λv||sv|

}k

= O(1)

m+1∑
n=2

a1−k−δk
nn

{
n−1∑
v=1

ân,v+1Xv|∆λv|

}k

= O(1)

m+1∑
n=2

a−δknn

n−1∑
v=1

ân,v+1X
k
v |∆λv|

{
(ann)−1

n−1∑
v=1

ân,v+1|∆λv|

}k−1

.

Since,

ân,v+1 =

n∑
r=v+1

(anr − an−1,r) =

n∑
r=0

(an−1,r − an,r)

5
n−1∑
r=0

(an−1,r − anr) = ān−1,0 − ān0 + ann = ann.

⇒
n−1∑
v=1

ân,v+1|∆λv| 5 ann

n−1∑
v=1

|∆λv| = O(ann).
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I1 = O(1)

m+1∑
n=2

a−δknn

n−1∑
v=1

ân,v+1X
k
v |∆λv|

= O(1)

m∑
v=1

Xk
v |∆λv|

m+1∑
n=v+1

ân,v+1a
−δk
nn

= O(1)

m∑
v=1

Xk
v |∆λv|vδk

= O(1).

Using Hölder inequality, and (3.3), (3.4), (3.6), (3.7),

I2 =

m+1∑
n=2

a1−k−δk
nn |Tn,2|k

5
m+1∑
n=2

a1−k−δk
nn

{
n−1∑
v=1

ân,v+1|λv+1||∆xv||sv|

}k

= O(1)

m+1∑
n=2

a1−k−δk
nn

{
n−1∑
v=1

ân,v+1|λv+1|avvXv

}k

= O(1)

m+1∑
n=2

(ann)−δk
n−1∑
v=1

ân,v+1|λv+1|kavvXk
v

{
(ann)−1

n−1∑
v=1

avvân,v+1

}k−1

= O(1)

m+1∑
n=2

(ann)−δk
n−1∑
v=1

ân,v+1|λv+1|kavvXk
v

= O(1)

m∑
v=1

avvX
k
v |λv+1|k

m+1∑
n=v+1

a−δknn ân,v+1

= O(1)

m∑
v=1

avvX
k
v |λv+1|kvδk

= O(1)

m∑
v=1

1

v
Xk
v |λv+1|kvδk

= O(1).
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Using Hölder inequality, and (3.1), (3.2),

I3 =

m+1∑
n=2

a1−k−δk
nn |Tn,3|k

5
m+1∑
n=2

a1−k−δk
nn

{
n−1∑
v=1

|∆̄anv||λv|Xv|sv|

}k

= O(1)

m+1∑
n=2

a1−k−δk
nn

{
n−1∑
v=1

|∆̄anv||λv|Xv

}k

= O(1)

m+1∑
n=2

a−δknn

n−1∑
v=1

|∆̄anv||λv|kXk
v

{
(ann)−1

n−1∑
v=1

|∆̄anv|

}k−1

.

We know

n−1∑
v=1

|∆̄anv| =
n−1∑
v=1

(an−1,v − anv)

= ān−1,0 − ān,0 + an0 − an−1,0 + ann

= an0 − an−1,0 + ann ≤ ann.

I3 = O(1)

m+1∑
n=2

a−δknn

n−1∑
v=1

|∆̄anv||λv|kXk
v

= O(1)

m∑
v=1

|λv|kXk
v

m+1∑
n=v+1

a−δknn |∆̄anv|

= O(1)

m∑
v=1

|λv|kXk
v v

δkavv

= O(1).
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Finally, using (3.7),

I4 =

∞∑
n=1

a1−k−δk
nn |Tn,4|

5
∞∑
n=1

a1−k−δk
nn {ann|λn|Xn|sn|}k

= O(1)

∞∑
n=1

a1−k−δk
nn {ann|λn|Xn}k

= O(1)

∞∑
n=1

(ann)−δkann|λ|kXk
n

= O(1)

∞∑
n=1

(ann)−δk|λ|kXk
n

1

n

= O(1).

Thus the proof of the above Lemma is established.

Proof of the Theorem 3.1. Since the convergence of the Fourier series at a point is a local property of

its generating function f(t), the theorem follows by formula from chapter II of the book (see details [17])

and from the above Lemma 3.1.

Applications. Now we apply the theorem to the weighted mean in which A = (anv) is defined as

anv = pvP
−1
n , when (0 5 v 5 n) where Pn = p0 + p1 + ...+ pn; therefore, it is well known that

ānv = P−1
n (Pn − Pv−1)

and

ân,v+1 = (PnPn−1)−1pnPv.

One can now easily verify that taking δ = 0 the conditions of the theorem reduce to those of Theorem 2.3.

We may now ask weather there are some examples (other then weighted mean methods) of matrices

A that satisfy the hypotheses of the theorem. For this, apply the theorem to the Cesàro method of order α

with (0 5 α 5 1) in which A is given by [15]

anv =
Aα−1
n−v
Aαn

.
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It is well known that

ānv =
Aαn−v
Aαn

and

ânv =
vAα−1

n−v
nAαn

.

It is now seen that by taking account of Aαn ≈ nα

Γ(α+1) conditions (3.1)-(3.8) are satisfied. Therefore the

above theorem is same as the following result.

Corollary 3.1. Let k ≥ 1 and 0 ≤ α ≤ 1. If (λn) a convex sequence satisfying following condition-

s:
∞∑
n=1

nαk−α−k{|λ|k + |λn+1|k}nδk 5∞,

∞∑
n=1

|∆λn|nδk 5∞.

Then the |C,α, (α− 1)(1− 1
k )δ|k summability of a factored Fourier series

∞∑
n=1

λnXnAn(t) with Xn = Aα
n at

any point t = x is a local property of the generating function f(t).

4. Conclusion

The result obtained here is more general in the sense that, by substituting δ = 0, the |A; δ|k-summability

reduces to |A|k-summability.
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