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ABSTRACT. In the present paper we defined Z-convergent sequence spaces with respect to invariant mean
and a Musielak-Orlicz function M = (M}) over n-normed spaces. We also make an effort to study some

topological properties and prove some inclusion relation between these spaces.

1. INTRODUCTION AND PRELIMINARIES

Let o be an injective mapping from the set of the positive integers to itself such that o?(n) # n for all
positive integers n and p, where o?(n) = o(0?~1(n)). An invariant mean or a o-mean is a continuous linear

functional defined on the space £, such that for all z = (z,,) € loo:
(1) If z, > 0 for all n, then ¢(zx) >0,

(2) o(e) =1,
(3) ¢(Sw) = ¢(x), where Sz = (T4(n))-

V, denotes the set of bounded sequences all of whose invariant means are equal which is also called as the

space of o-convergent sequences. In [26], it is defined by

V, = {x €l : lilgntkn(x) = /¢, uniformly in n,{ =0 — limx},
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s T (n)

where ty, () = p

o-mean is called a Banach limit if ¢ is the translation mapping n — n 4+ 1. In this case, V,, becomes the set

of almost convergent sequences which is denoted by ¢ and defined in [11] as

¢ = {m €l : lilgn din(x) exists uniformly in n}7

TntTny1++Tntk

where dg,,(z) = o

The space of strongly almost converegnt sequences was introduced by Maddox [12] as follow:
¢ = {w €l lilgn din(Jx — Le|) exists uniformly in n for some E}.

The notion of ideal convergence was first introduced by P. Kostyrko [8] as a generalization of statistical
convergence which was further studied in topological spaces by Das, Kostyrko, Wilczynski and Malik see [1].
More applications of ideals can be seen in ([1], [2]). Mursaleen and Sharma [19] continue in this direction

and introduced I-convergence of generalized sequences with respect to Musielak-Orlicz function.

A family Z C 2% of subsets of a non empty set X is said to be an ideal in X if

(1) 9T

(2) A\ BeZimply AUBeZT

(3) AeZ, BC Aimply BeZ,
while an admissible ideal Z of X further satisfies {z} € Z for each z € X see [8].
A sequence (%y)nen in X is said to be Z-convergent to x € X, if for each € > 0 the set A(e) = {n eN:
|z — || > 6} belongs to Z.
A sequence (zp)nen in X is said to be Z-bounded to x € X if there exists an K > 0 such that {n € N :
|z,| > K} € Z. For more details about ideal convergence sequence spaces (see [7], [9], [15], [16], [17], [18],
[21], [25], [26], [27]) and references therein.

Let A = A;; be an infinite matrix of complex numbers a;;, where ,j,€ N. We write Az = (A;(z)) if

Ai(z) = Z a;jz; converges for each ¢ € N. Throughout the paper, by tj,(Az), we mean
j=1
An<.’1?) =+ Aa-l(n) (.’13) =+ ,Aak(n) (SL’)
kE+1

tin(Azx) = , forall k,neN.

A sequence space X is called as solid (or normal) if (agzi) € X whenever (zx) € X and (ay) is a sequence
of scalars such that |ag| <1 for all £ € N.
Let X be a sequence space and K = {k1 < k2 < ---} C N. The sequence space Zp = {(zyn) € w: (v,) € X}

is called K-step space of X.
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A canonical preimage of a sequence (71,) € Z3 is a sequence (y,,) € w defined by

Ty, ifneN;
Yn =
0, otherwise.

A sequence space X is monotone if it contains the canonical preimages of all its step spaces.

An Orlicz function M is a function, which is continuous, non-decreasing and convex with M (0) = 0, M(x) > 0
for > 0 and M(z) — o0 as x — 0.
Lindenstrauss and Tzafriri [10] used the idea of Orlicz function to define the following sequence space. Let

w be the space of all real or complex sequences x = (x), then

= frew: () <)

which is called as an Orlicz sequence space. The space £, is a Banach space with the norm

||| :inf{p>0:’;M(|if) < 1}.

It is shown in [10] that every Orlicz sequence space ¢y contains a subspace isomorphic to £,(p > 1). The
Ag—condition is equivalent to M (Lx) < kLM (x) for all values of > 0, and for L > 1.
A sequence M = (Mjy) of Orlicz function is called a Musielak-Orlicz function see ([13],[20]). A sequence
N = (Ny) defined by

Ny (v) = sup{|vju — (M) :u >0}, k=1,2,---

is called the complementary function of a Musielak-Orlicz function M. For a given Musielak-Orlicz function

M, the Musielak-Orlicz sequence space tq and its subspace haq are defined as follows
tm = {x € w: Ipm(cx) < oo for some ¢ > O},

hM:{wa:IM(cx)<oo for all c>0},

where Iy is a convex modular defined by

Im(z) =Y Mi(ap),z = (z1) € tar.
k=1

We consider t equipped with the Luxemburg norm
x
=1 M — <
|| mf{kz >0 IM(k) < 1}
or equipped with the Orlicz norm
1
I|z]|° = inf{E(l + IM(kx)) k> o}.

For more details about sequence spaces defined by Orlicz function see ([22], [23], [24]) and reference therein.

The concept of 2-normed spaces was initially developed by Géhler[3] in the mid of 1960’s, while that of
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n-normed spaces one can see in Misiak [14]. Since then, many others have studied this concept and obtained
various results, see Gunawan ([4],[5]) and Gunawan and Mashadi [6]. Let n € N and X be a linear space

over the field K, where K is field of real or complex numbers of dimension d, where d > n > 2. A real valued

function ||, -+ , || on X™ satisfying the following four conditions:
(1) ||z1, 22, ,xn|| = 0 if and only if z1, s, - - , x, are linearly dependent in X;
(2) ||lz1, 22, ,xy,|| is invariant under permutation;
(3) ||lax1, z2, -, x|l = || ||z1, 22, , 24| for any a € K, and
(4) [z +a" 20, wnl| < ||z, 22, 20l + (|2, 22, -+, 0|
is called a n-norm on X, and the pair (X,||-,---,||) is called a n-normed space over the field K.
For example, we may take X = R" being equipped with the Euclidean n-norm ||z1,x2,- - ,2,||g = the vol-
ume of the n-dimensional parallelopiped spanned by the vectors z1,z9, - - - , x, which may be given explicitly

by the formula

H$1,1'2, to 7xn||E = |det(xij)|a
where z; = (zj1, 22, ,&in) € R™ for each i = 1,2,--- n. Let (X,||-,--,||) be a n-normed space of
dimension d > n > 2 and {aj,as, - ,a,} be linearly independent set in X. Then the following function
|5+, |[oo on X"~ defined by
||$17.'I}2, T 7xn71||oo = maX{H.’l?]_,$2, e 7xn717ai|| 1= 1727 e an}

defines an (n — 1)-norm on X with respect to {a1, a2, -+ ,an}.
A sequence (x) in a n-normed space (X, ||-,---,-||) is said to converge to some L € X if

lim ||zg — L, 21, -+ ,2n-1]| =0 for every z1,--+,2z,—1 € X.

k—o0
A sequence (xy) in a n-normed space (X, ||-,--- ,||) is said to be Cauchy if

lim ||z —xp, 21, -, 2n=1]] =0 for every z1,---,2,01 € X.

k,p—o0

If every cauchy sequence in X converges to some L € X, then X is said to be complete with respect to the

n-norm. Any complete n-normed space is said to be n-Banach space.

In the present paper, we define some new sequence spaces by using the concept of ideal convergence, invariant
mean, Musielak-Orlicz function, n-normed and A transform as follows:

I—Cg(A,,/\/Lp’ ||7 7||) =

{x cw: {k eN: [Mk<|t’m(::($>),z1,-~- ,zn,1||>}pk > e} €T, for all nEN},
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IiCU(Aanpa ||a 7||) =

Htkn(A(w) D)

{wa:{keN:{Mk( 5

Pk
S 21, ,zn,1||)} 26} €Z, forall neN & for some LE(C}7
I*E&(A,M,p,”~,~u 7'||):

{mewzﬂ K >0 such that {kEN: {Mk(|tkn(;1(x)),zl,~-~ ,zn,1||)}pk EK} €Z, for all nEN}.

If we take p = (px) = 1, we get the spaces
I—Cg(A,M7H~7~-~ 7||) =

{wa:{keN: [Mk(||tk"(;1(z)),zl,~~ ,zn_lﬂﬂ Ze} € Z, for all nEN},

I_CU(Aanu'v"' 7||) =

tin(A(z) — L)

{zew:{keN:[Mk(H 5

S, ,zn_1||>} 26} €Z, forall neN & for some LGC},
Il (AMl- 0l =
{xGw:EI K > 0 such that {kGN: {Mk<||tkn?($),zl,~~ ,zn_1||>} ZK} €7, for all nGN}.

The following inequality will be used throughout the paper. If 0 < p, < supp, = H, D = max(1,271)
then
|ar + be " < Dffag["* + [br[* } (1.1)

for all k£ and ag, by € C. Also |a|P* < max(1,|a|f) for all a € C.

The main goal of this paper is to introduce the sequence spaces Z—c§ (A, M, p, [|-,- -+ ,-||), Z—c7 (A, M, p,||-,- -+ ,-|])
and Z — 07 (A, M,p,||-,- -+ ,-||) defined by a Musielak-Orlicz function M = (M) over n-normed spaces. We
also make an effort to study some topological properties and prove some inclusion relation between these

spaces.

2. MAIN RESULTS

Theorem 2.1 Let M = (M) be a Musielak-Orlicz function, p = (pr) be a bounded sequence of

positive real numbers. Then the spaces T — c§(A, M, p,|---- ), T — (A, M,p, |-, ,-|]) and T —
(A, Mp, ||+, -l]) are linear.
Proof. Let x,y € T — c¢§(A, M,p,||-,---,-|]) and let o, 8 be scalars. Then there exist positive numbers p;

and py such that for every € > 0

Dy = {k eN: [Mk(||t’“"(i(x)),zl,-.. ,zn_1||)r’“ > %} e, (2.1)
D, = {k eN: [Mk(||t’“”(2(y)),zh--- ,zn,1||)rk > %} €1, (2.2)
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Let p3 = max {2|alpy,2|B]p2}. Since M = (M) is non-decreasing, convex function and so by using inequal-

ity (1.1), we have
p
[Mk (Htkn(A(a:c-l-ﬁy)) 2, ,Zn71||)} 2

< [ )] [ (O )]
< [Mk(Htkn(i(m))’Zl’ 72n71|‘)}pk N [Mk(||tkn(i(y))7zl’ 727171“)}1);9

Now by (2.1) and (2.2), we have

tin(A P
{k eN: [Mk(n en(Alaz+By) - ,Zn71||)] fs e} C Dy U Ds.
p3
Therefore ax + By € T—c (A, M,p,||-,--+ ,||). Hence Z—cF (A, M, p,||-,---,-||) is a linear space. Similarly
we can prove that Z — ¢ (A, M, p,||-,--+ ,-||) and Z — ¢9_ (A, M,p, ||, ,||]) are linear spaces. O

Theorem 2.2 Let M = (My) be a Musielak-Orlicz function. Then

I—CS(A,M,]L ||7 7'|

) CI—CU(A,M,p, ||7 vH) CI—KZO(A,M,;D, ||7 7||)

Proof. The first inclusion is obvious. For second inclusion, let € Z — ¢7(4, M, p,||-,- -+ ,||). Then there
exists p; > 0 such that for every ¢ > 0

I ten(A(z) — L)

Alz{keN;[Mk( -

Pk
7217"'7zn71||):| ZE}GI.
Let us define p = 2p;. Since M = (M},) is non-decreasing and convex, we have

tin(A(x tin(A(xz) — L tin(L
(1250 ) < 0 (1 )+ an (1 ),

Suppose that & ¢ A;. Hence by above inequality and (1.1), we have

Pk
|:Mk (Htkn(?(ﬁf)) TIREE ;Zn71‘|)i|

< DD )] (1 )]

< D{e—i— [Mk<||tknf§L),zh~-~ ,zn,1||)rk}.

tion (L) Pl tin (L) "
Because of the fact that |Mj HT’Z“'“ s Zn—1|| < max {1, | My ||T,zl,~- s Zn—1]] , We

have

[Mk<|t’mf§L),zl,--- ,zn,lH)rk < oo.
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_ tin (L) Pk
Put K = Dqye+ | My HT,zl,-n,zn,lH . It follows that

{ken: [Mk<|tk”(;1(x)),zl,-~- 7zn,1||)]p’“ >K}et

which means x € Z — 2 (A, M, p,||-,--+ ,-||). This completes the proof of the theorem. |

Theorem 2.3 Let M = (M},) be a Musielak-Orlicz function, p = (px) be a bounded sequence of positive

real numbers. Then T — 7 (A, M,p, ||, ,-||) is a paranormed space with paranorm defined by

ot =int {0 (1 (820D )] <)

Proof. Tt is clear that g(x) = g(—z). Since My(0) = 0, we get g(0) = 0. Let us take z,y € T —
ch(A,./\/l,p,||~,--- aH) Let

B()={p>0: {Mk(|tk"(;1(x)),zl,~~ ,zn,1||)}”'° <1},

Bly)={p>0: [Mk(|tkn(;m’zl’”' aneall)]” <

AN
—_
N

Let p1 € B(x) and py € B(y). If p = p1 + p2, then we have
|:Mk<||tkn(14;()z+y)),zl7“. ’Zn%“)}

¢ (o )] 1Ay )]

p1+ p2 P1 P2

p
i (2 5] <

glw+y) < inf{(pr+p2)>0:p € Bla), p2 € Bly)}
< inf{pl>0:p1EB(m)}+inf{p2>O:p2€B(y)}
)

= g(z)+g(y).

Let n® — n where n,n° € C and let g(z® — ) — 0 as s — oco. We have to show that g(n®z® —nx) — 0 as
s — 00. Let

Ba*) = {p > 0+ (120D )] <1,

/

B(z® —z) = {p; >0: {M(|W7Zh... 7Zn_1|\)}pk < 1}.
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If ps € B(z®) and p, € B(z® — ) then we observe that

[ (1 21 el

IN

ten (A2 — nas s — nx
[Mk(ll kn ( S(n " ) I(? n )’I P ,zn_1ll)}
psin® =l +psnl  psln® —nl + psln|

S —n|ps tin(A(x®
e g (G
psIn® —nl + pglnl Ps

' tin(A(x® — x
WAy ()
psIn® —nl + pglnl Ps

From the above inequality, it follows that

tin (A2 — nx Pk
[Mk<|| k (g(n 7/7 ))7213"' 7Zn—1||)} <1
psIn® —nl + pglnl

and consequently,

gm’z® —nz) < inf { (pslns -+ p;lnl) >0:ps € B(a*),p, € B(x® — w)}

IN

(In° = nl) > 0inf {p > 0: p, € Ba") |
+ (o) > 0inf {(p)# : p, € Ba* — )}

— 0 as s — oo.
This completes the proof of the theorem. O

Theorem 2.4 Let M' = (M]) and M" = (M}!) are Musielak-Orlicz functions that satisfies the As-

condition. Then

(7’) T- Cg(Alevpa Ha 7||) gI—Cg<A»M/ oM”vpv ||7 7||)
(”) I_CG(AvM,J?’ ||’ 7”) C7T- c"(A7_/\/l/oM”,p7 H7 ’H>
(“Z) I_lgo(Aleypv ||7 7”) C7T- lgoG(A,M/OM”,p7 ||7 7”)

Proof. (i) We prove the theorem in two parts. Firstly, let M, (HM, 21,00 ,zn_1\|> > 0. Since M’ is

nondecreasing, convex and satisfies As-condition, we have

Pk
[y (v (124D, ez )]

< (s a2 [ (128 )]

< mac{1, (K6~ )" [aag (122D ]
P
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where K > 1 and ¢ < 1. From the last inequality, the inclusion

{wen: [y (g (12242 5 )] 2 )

tin(A p
C {keN: [M,Q(H kn( I),zh-“ 7Zn—1):| '
P
6 J
max{1, (K6—'M;/(2)7)}
is obtained. If z € Z — c§(M’, A, p,||-,--- ,-), then the set in the right side of the above inclusion belongs to

the ideal and so

{k: eN: [M,Q(M,;(HWpAm),Zh... 7zn,1||))}pk > e} cT.

Secondly, suppose that Mj, (Hw, 21,0 ,zn_1||) < 4. Since M}/ is continuous, we have

ten (A
M,Q’(M,Q(Hk;x),zl, ,zn,1||>) < e forall €e>0

which implies

tin(A Pk
T —lim [M,;’(M,;(H enlAT) ,zn,lu)ﬂ " =0 ase—0.
p
This completes the proof of (i) part. Similarly, we can prove other parts. O

Theorem 2.5 Let M' = (M}) and M" = (M}!) are Musielak-Orlicz functions that satisfies the Ag-

condition. Then

(i)I—Cg(A,M,p,H','“ 7||) ﬂI—CS(A,M/,p,H-,--- 7”) gI_Cg(A’M/+M7p’|""" 7||)
(ii)I*CU(A7M,p,||~,~~~ 7'||)ﬁI*CU(AaM/vI%H'v“' a||) ngcU(A,M'+M,p7||~,~-- 7”)

(iii) T =13, (A, M,p, [+ () NI =G (A, M, p, [ ol]) €T = IS (A M + M,p, [, ,-]).

Proof. (i) Let x € Z — c§(A, M,p, ||+, ) N T — g(A, M ,p,||,--- ,-]]). Then there exists K; > 0 and

K5 > 0 such that
ten(A(2))

Ay = {keN; [Mk<|| -

Pk
azlv"'vznfl|‘>:| ZKl}GI

and
Az = {k eN: [MIQ<||tkn(;i(x))’zlv ’anlH)}pk > KQ} el

for some p > 0. Let k ¢ A; U Ay. Then we have
p
[+ ) (| =t )]

e )
s (S )

{Kl + KQ}

IN

N
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tin(A P
k¢ B = {k e N: [(M,g +Mk)(||w,zl,-~- ,zn,1||)) " > K}. We have A; U A, € T and so
p
B C A; U Ay which implies B € Z. This means that © € Z — ¢§ (A, M’ + M,p,||-,--- ,-||). This completes
the proof of (i) part of the theorem. Similarly, we can prove (ii) and (iii) part. O

Theorem 2.6 If sup [Mk(t)]pk < oo for allt > 0, then we have
k

I*CU(A,M,p, ||7 7”) ngégo(A,M,p, ||7 7||)
Proof. Let x € T — ¢ (A, M,p,||-,--- ,-||). By using inequality (1.1), we have
trn (A(x)) 17" trn(A(z) — L) P
<
(1P < D [ (PR )]

N A C )

where p = 2p;. Hence, we have

{k eN: [Mk(|tk"(;1(x))>rk > K} C {k eN: [Mk<||tlm(A(pml)L),z1, ,zn_1>]pk > e}

for all » and some K > 0. Since the set in the right side of the above inclusion belongs to the ideal, all of

its subsets are in the ideal. Hence

{k eN: {Mk(nw)]” > K} €T

p

which completes the proof. (Il
Theorem 2.7 Let 0 < pp < g < 0o for each k € N and (Z—’;) be bounded. Then following inclusions hold

(Z)I_Cg(A7M7Q7H7 7||) QI—CS(AaMJ?vHv a||)

(i’i)I*CU(A7M,q,||',“~ aH) g.'Z*CU(A“/\/l,p,H-,-H aH)

Proof. (1) Let x € T — c§(A, M, q, ||, ,-|]). Write ay, = 5—:. By hypothesis, we have 0 < o < ay, < 1. If

[Mk(Hw,Zl,'“ ,zn_lH)}% > 1, the inequality
[Mk(|t’m(13($))7zh... ’Zn_1||>]p'“ < {Mk(IW,Zh“' 7zn_1||>rk

holds. This implies the inclusion
(A Pk
{ken: [a (112G 2z )] 2 e



Int. J. Anal. Appl. 16 (6) (2018) 892

dk
and so the result is obvious. Conversely, if [Mk (HM, 21,0 ,zn,1||)} < 1, we obtain the following

inclusion

{k eN: [Mk(”M’Zl’”' ’Zn—l”)}pk 2 6}

since then the inequality

O () (P (L) '

holds. Hence we conclude that © € Z—c§ (A, M,p,||-,--- ,-||)- This completes the proof of (i) part. Similarly,

we can prove (ii) part. O

Theorem 2.8 If 0 < inf py < pr <1 for each k € N. Then the following inclusions hold:

(i) L= cg(AMp o) €L = cF(AM ] ,-])
(“) I*CJ(A“/VI,]?, ||a 7||) ngcU(A,M, ||7 7”)
Proof. Let x € T — c¢§(A, M,p,||-,--,-|]). Suppose that k ¢ {{Mk(Hw,zl,n ,zn_l)]pk > e} for

0 < e < 1. By hypothesis, the inequality

Mk(”tkn(?(m))»zl,... 72,171”) < {M’“<||W;l(x))’zl’m ’Zn*l‘mpk

holds. Then we have k ¢ {k eN: M;(HW,@,--- 7,zn,1||> > e} which implies
{k EN:Mk<||w,z1,-~ ,zn_1||) > e}

C {k eN: [Mk(|tkn(ﬁ(x)),zl,~~ ,zn_1||)]pk > e}.

Hence z € T — ¢§ (A, M,||-,- - ,-||) since the set

{k €N: Mk(|tk"(12(x)),z1,--- ,zn_1||> > 6} cT.

This completes the proof of (i) part. Similarly, we can prove (ii) part. |

Corollary 2.9 If 0 < inf pr, < pr <1 for each k € N. Then the following inclusions hold:
(7') 7- Cg(AvMa Ha 7||) QI_CS(A»MJ?, Hv 7||)
(”) I—CU(A7M, ||’ 7”) cI- C‘T(A,,/\/l,p, ||’ 7”)

Proof. The proof is obvious by Theorem 2.8. ]
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