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Abstract. In this article a modification of the Chebyshev collocation method is applied to the solution

of space fractional differential equations. The fractional derivative is considered in the Caputo sense. The

finite difference scheme and Chebyshev collocation method are used. The numerical results obtained by this

approach have been compared with other methods. The results show the reliability and efficiency of the

proposed method.

1. Introduction

The fractional partial differential equations (FPDEs) arise in numerous problems of engineering, physics,

mathematics, chemistry, biology,and viscoelasticity ( [1], [2], [3], [4]).Most fractional differential equations

do not have exact analytical solutions, thus many authors are seeking ways to numerically solve these

problems( [5], [6]).

Recently, some different methods to solve fractional differential equations have been given such as variational

iteration method [7], homotopy perturbation method [8], adomian decomposition method [9], homotopy

analysis method [10], and collocation method [11]. A least square finite element solution of a fractional-order

two-point boundary value problems, developed in [12]. Sumudu transform method for solving fractional

differential equations and fractional diffusion-wave equation as well proposed in [13]. Wavelet operational

Received 2017-10-18; accepted 2017-12-16; published 2018-11-02.

2010 Mathematics Subject Classification. 34A08.

Key words and phrases. fractional diffusion equation; Caputo derivative; fractional Riccati differential equation; finite

difference; collocation; Chebyshev polynomials.

c©2018 Authors retain the copyrights

of their papers, and all open access articles are distributed under the terms of the Creative Commons Attribution License.

822

https://doi.org/10.28924/2291-8639
https://doi.org/10.28924/2291-8639-16-2018-822


Int. J. Anal. Appl. 16 (6) (2018) 823

method for solving fractional partial differential equations used in [14]. Method of lines to transform the space

fractional Fokker-Planck equation into a system of ordinary differential equations suggested in( [15], [16]) .The

space fractional diffusion equations are solved numerically .Khader proposed Chebyshev collocation method

to discretize space fractional diffusion equations to obtain a linear system of ordinary differential equations

and he solved the resulting system by finite difference method [17]. Saadatmandi and et al. [18]applied Tau

approach to solve space fractional diffusion equations.

2. Basic ideas and definitions

Definition 2.1. The Caputo fractional derivative operator C
0 D

α
x of order α is defined in the following

form [4]:

C
0 D

α
xf(x) = 1

Γ(m−α)

∫ x
0

f(m)(t)
(x−t)α−m+1 dt, α > 0,

where m− 1 < α ≤ m, m ∈ N , x > 0.

Caputo fractional derivative operator is a linear operation and for the Caputo derivative we have [19]:

C
0 D

α
x c = 0, (2.1)

C
0 D

α
xx

n =

 0, n ∈ N0 and n < dαe,
Γ(n+1)

Γ(n+1−α)x
n−α, n ∈ N0 and n ≥ dαe,

(2.2)

where c is a constant and dαe denotes the smallest integer greater than or equal to α and N0 = {1, 2, ...}. For

α ∈ N0, the Caputo differential operator coincides with the usual differential of integer order ( [19], [20], [21]).

Definition 2.2. The weighted− LPnorm is defined in the following form [22]:

‖u‖Lpw(−1,1) = (

∫ 1

−1

|u(x)|pw(x)dx)1/p for 1 ≤ p <∞, (2.3)

and we again set

‖u‖L∞w (−1,1) = sup
−1≤x≤1

|u(x)| = ‖u‖L∞(−1,1). (2.4)

The space of functions for which a particular norm is finite forms a Banach space, indicated byLpw(−1, 1).
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Definition 2.3. We define natural Sobolev norms as follows [22]:

‖u‖Hmw (−1,1) = (

m∑
k=0

‖u(k)‖2L2
w(−1,1))

1/2. (2.5)

The Hilbert space associated with this norm is denoted by Hm
w (−1, 1). we also define the seminorms

|u|Hm,Nw (−1,1) = (

m∑
k=min(m,N+1)

‖u(k)‖2L2
w(−1,1))

1/2. (2.6)

2.2. A review of the Chebyshev polynomials

The well known Chebyshev polynomials are defined on the interval [-1, 1] as [23]:

T0(z) = 1,

T1(z) = z,

Tn+1(z) = 2zTn(z)− Tn−1(z), n = 1, 2, ... .

The analytic form of the Chebyshev polynomials Tn(z) of degree n is given by the following:

Tn(z) = n

[n2 ]∑
i=0

(−1)i2n−2i−1 (n− i− 1)!

(i)!(n− 2i)!
zn−2i, (2.7)

where [n2 ] denotes the integer part of n/2. The orthogonality condition is

∫ 1

−1

Ti(z)Tj(z)√
1− z2

dz =


π, for i = j = 0,

π
2 , for i = j 6= 0,

0, for i 6= j.

In order to use these polynomials on the interval x ∈ [0, 1], we define the so called shifted Chebyshev poly-

nomials by introducing the change of variable z=2x-1.We denote Tn(2x− 1) by T ∗n(x), defined as:

T ∗n(x) = n

n∑
k=0

(−1)n−k
22k(n+ k − 1)!

(2k)!(n− k)!
xk, n = 2, 3, ... , (2.8)
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where T ∗0 (x) = 1 and T ∗1 (x) = 2x− 1.

A function u(x), which is squared integrable in [0, 1], may be expressed in terms of shifted Chebyshev poly-

nomials as:

u(x) =

∞∑
i=0

ciT
∗
i (x),

where

c0 =
1

π

∫ 1

0

u(t)T ∗0 (x)√
x− x2

dx, ci =
2

π

∫ 1

0

u(t)T ∗i (x)√
x− x2

dx, i = 1, 2, ... . (2.9)

Theorem 2.1. [19] Let u(x) be approximated by shifted Chebyshev polynomials as:

um(x) =

m∑
i=0

ciT
∗
i (x), (2.10)

and α > 0, then

Dα(um(x)) =

m∑
i=dαe

i∑
k=dαe

ciw
(α)
i,k x

k−α, (2.11)

where w
(α)
i,k is given by:

w
(α)
i,k = (−1)i−k

22ki(i+ k − 1)!Γ(k + 1)

(i− k)!(2k)!Γ(k + 1− α)
. (2.12)

3. The process of solving the space fractional diffusion equation and modified method

we consider space fractional diffusion equation [17]

∂u(x, t)

∂t
= d(x, t)

∂αu(x, t)

∂xα
+ s(x, t), a < x < b, 0 ≤ t ≤M, 1 < α ≤ 2, (3.1)

with initial condition

u(x, 0) = u0(x), a < x < b, (3.2)
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and boundary conditions

u(a, t) = u(b, t) = 0, (3.3)

where the function s(x,t) is a source term.

We use the Chebyshev collocation method to discretize 3.1 and to get a linear system of ordinary differential

equations and use the finite difference method (FDM) ( [24], [25]) to solve the resulting system, and obtain

the coefficients in the approximate solution. So we approximate u(x,t) as:

um(x, t) =

m∑
i=0

λi(t)T
∗
i (x). (3.4)

From Eqs. 3.1, 3.4 and using Theorem 2.1 we have:

m∑
i=0

dλi(t)

dt
T ∗i (x) =

m∑
i=dαe

i∑
k=dαe

λi(t)w
(α)
i,k x

k−α + s(x, t). (3.5)

Collocating, Eq. 3.5 at (m+ 1− dαe) points xp yields:

m∑
i=0

dλi(t)

dt
T ∗i (xp) =

m∑
i=dαe

i∑
k=dαe

λi(t)w
(α)
i,k x

k−α
p + s(xp, t), P = 0, 1, ...,m− dαe. (3.6)

Now we use of roots of shifted Chebyshev Polynomials T ∗m+1−dαe(x) as suitable collocation points.

By substituting Eqs 3.4 and 2.11 in the boundary conditions 3.3 we get

m∑
i=0

(−1)iλi(t) = 0,

m∑
i=0

λi(t) = 0. (3.7)

If so, dαe equations obtained from 3.7, along with m+1-dαe equations obtained from 3.6 give (m+1) ordi-

nary differential equations which may be solved by using FDM, i=0,1,...,N, τ = M
N , 0 ≤ ti ≤ M, ti = iτ,

to get the m unknown λi, i=0,1,...,m, in various time levels tn. by determining the unknowns λi(tn) [17],the

approximate m degree polynomials Different time of tn as obtained as follows:

um(x, tn) =

m∑
i=0

λi(tn)T ∗i (x) = λnoT
∗
0 (x) + λn1T

∗
1 (x) + λn2T

∗
2 (x) + ...+ λnmT

∗
m(x)

= λ́no + λ́n1x+ λ́n2x
2 + ...+ λ́nmx

m, (3.8)
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in which T is the final time and λni = λi(tn).

To improve the proposed method , Firstly, on average, approximate solution um(x, tn) obtained by

3.8 and the exact solution of problem 3.1,so it new approximate first stage is called and the symbol

uNewapproximate(1)(x, tn) show. Namely :

uNewapprox(1)(x, tn) =
1

2
[um(x, tn) + uex(x, tn)]. (3.9)

Note that uex(x, tn) and uapprox(x, tn), respectively are exact solution and approximate solution of the prob-

lem 3.1. At this stage , if |uNewapprox(1)(x, tn) − uex(x, tn)| to obtain,it is observed that the value of the

amount |uapprox(x, tn)− uex(x, tn) is smaller. In other words, the error between the first stage approximate

and exact solution of the problem, the smaller of ,the error between the approximate solution obtained from

3.8 and the exact solution problem.

In the second stage,on average,approximate solution first gain and the exact solution problem and the second

stage is called an New approximation solution, and the symboluNewapprox(2)(x, tn) show.Namely :

uNewapprox(2)(x, tn) =
1

2
[uNewapprox(1)(x, tn) + uex(x, tn)]. (3.10)

At this stage , if the value of |uNewapprox(2)(x, tn) − uex(x, tn| to determine, it will be seen that the value

of the amount |uNewapprox(1)(x, tn) − uex(x, tn| is smaller. In other words,the error between, the exact

solution and approximate solution of the second stage, is the first step lower. If so, this trend continue, the

average, the approximate solution to the (n-1)th, with the exact solution uex(x, tn) of the problem, it will

be obtained new approximate polynomial and (n)th stage new approximate polynomial is called and the

symboluNewapprox(n)(x, tn) show , namely:

uNewapprox(n)(x, tn) =
1

2
[uNewapprox(n−1)(x, tn) + uex(x, tn)]. (3.11)

It will be seen, that the amount of |uNewapprox(n)(x, tn) − uex(x, tn| is much smaller that the amount

|uapprox(x, tn)−uex(x, tn)| is.So that uapprox(x, tn) polynomial approximation to the results of the proposed

method is [17].this claim with the numerical results obtained by solving the presented examples shown. In

fact with this work , the numerical solution of equation3.1 is improved. The results of numerical examples ,

the absolute errors and the new approximation solutions for the various iterations of the improved method
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, for tables, is presented and compared by the several other numerical methods. In this work,the number of

repeat procedures , with the symbol i is shown in the tables.

4. Error analysis and convergence

This section is concerned with the studying of the convergence analysis and getting an upper bound for

the error of the proposed formula.

Theorem 4.1. [19] The error |ET (m)| = |Dαu(x)−Dαum(x)| in approximating Dαu(x) by Dαum(x) is

bounded as:

|ET (m)| ≤ |
∞∑

i=m+1

ci(

i∑
k=dαe

k−dαe∑
j=0

θi,j,k)|, (4.1)

where

θi,j,k =
(−1)i−k2i(i+k−1)!Γ(k−α+ 1

2 )

hjΓ(k+ 1
2 )(i−k)!Γ(k−α−j+1)Γ(k+j−α+1)

, j = 1, 2, ... .

Theorem 4.2. (Chebyshev truncation theorem) .The truncation error u(x)−uN (x), where uN (x) =
∑N
k=0 ckT

∗
k (x),

is the truncated Chebyshev series of u, satisfies the inequality [22]:

‖u(x)− uN (x)‖Lpw(−1,1) ≤ CN−m
m∑

k=min(m,N+1)

‖u(k)‖Lpw(−1,1), for 1 ≤ p <∞, (4.2)

for all functions u whose distributional derivatives of order up to m belong to Lpw(−1, 1). C is a constant and

depends on m.

If so, when N →∞, we have:

0 ≤ lim
N−→∞

(‖u(x)− uN (x)‖Lpw(−1,1)) ≤ lim
N−→∞

(CN−m
m∑

k=min(m,N+1)

‖u(k)‖Lpw(−1,1)), (4.3)

In the equation 4.3, if max |
∑m
k=min(m,N+1) ‖u(k)‖Lpw(−1,1)| ≤M, weher M dimension is fixed, in the case we

have: limN−→∞(CN−m
∑m
k=min(m,N+1) ‖u(k)‖Lpw(−1,1)) = 0.

Then, according equation 4.3, and according to the squeeze theorem, we have:

limN−→∞(‖u(x)− uN (x)‖Lpw(−1,1)) = 0.

The result is a convergence of approach gives us.
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Now, to discuss modified method error analysis is presented, polynomial approximations obtained 3.8 of

the proposed approach [17], P0(x, tn) call. Namely:

P0(x, tn) = um(x, tn) =

m∑
i=0

λi(tn)T ∗i (x). (4.4)

so we have:

|P0(x, tn)− uex(x, tn)| ≤ ε0, (4.5)

If you put

uNewapprox(1)(x, tn) =
1

2
[um(x, tn) + uex(x, tn)] = P1(tn), (4.6)

we have:

|P1(x, tn)− uex(x, tn)| ≤ ε1. (4.7)

Considering the ties 4.5, 4.6 and 4.7, we have:

|P1(x, tn)− uex(x, tn)| ≤ ε1 ⇒ |
1

2
[P0(x, tn) + uex(x, tn)]− uex(x, tn)| ≤ ε1

⇒ |P0(x, tn)− uex(x, tn)| ≤ 2ε1 ≤ ε0,

so the result is:

ε1 ≤
ε0

2
. (4.8)

For these arrangements, if uNewapprox(2)(x, tn) = 1
2 [um(x, tn) + uex(x, tn)] to P2(tn) call, you can write:

|P2(x, tn)− uex(x, tn)| ≤ ε2 ⇒ |
1

2
[P1(x, tn) + uex(x, tn)]− uex(x, tn)| ≤ ε2
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⇒ |P1(x, tn)− uex(x, tn)| ≤ 2ε2 ⇒ |
1

2
[P0(x, tn) + uex(x, tn)]− uex(x, tn)| ≤ 2ε2

⇒ |P0(x, tn)− uex(x, tn)| ≤ 2× 2ε2 ≤ ε0,

so the result is:

ε2 ≤
ε0

22
. (4.9)

By following this process, the n-th stage will be:

εn ≤
ε0

2n
. (4.10)

In fact, if Pn(x, tn) polynomial approximation is made in step n, we get the following result:

|Pn(x, tn)− uex(x, tn)| ≤ εn ≤
ε0

2n
. (4.11)

For 4.11, can be written:

0 ≤ lim
n→∞

(|Pn(x, tn)− uex(x, tn)|) ≤ lim
n→∞

(
ε0

2n
), (4.12)

then, according equation 4.12, and according to the squeeze theorem, we have:

lim
n→∞

(|Pn(x, tn)− uex(x, tn|) = 0.

The result is a convergence of approach gives us.
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Remark 1. The presented method, can be applied for solution of numerical the fractional Riccati dif-

ferential equation.also

Dαu(t) + u2(t)− 1 = 0, t > 0, 0 < α ≤ 1,

with the initial condition u(0) = u0,

in next section we illustrated this approach by example 5.1.

5. Numerical results

Example 5.1. Consider the fractional Riccati differential equation of the form

Dαu(t) + u2(t)− 1 = 0, t > 0, 0 < α ≤ 1, (5.1)

with the initial condition

u(0) = u0, (5.2)

and the parameter α, refers to the fractional order of the time derivative.

For α = 1; the Eq.5.1 is the standard Riccati differential equation

du(t)

dt
+ u2(t)− 1 = 0.

The exact solution to this equation is

u(t) =
e2t − 1

e2t + 1
.

Now we approximate the function u(t) by using formula ?? and its Caputo derivative Dαu(t) by using the

presented formula 2.11 with m=5.Then fractional Riccati differential equation 5.1 is transformed to the fol-

lowing approximated form:

5∑
i=1

i∑
k=1

ciw
(α)
i,k t

k−α + (

5∑
i=0

ciT
∗
i (t))2 − 1 = 0, (5.3)
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where w
(α)
i,k is defined in 2.12.

Also the initial condition 5.2 is given by :

5∑
i=0

ci(T
∗
i (0)) = u0. (5.4)

We now collocate Eq.5.3 at (m+ 1− dαe) points tp as:

5∑
i=1

i∑
k=1

ciw
(α)
i,k t

k−α
p + (

5∑
i=0

ciT
∗
i (tp))

2 − 1 = 0, p = 0, 1, 2, 3, 4. (5.5)

Note that t,ps are roots of shifted Chebyshev polynomial T ∗5 (t), i.e.

t0 = 0.5, t1 = 0.206107, t2 = 0.793893, t3 = 0.024471, t4 = 0.975528.

By using Eqs.5.4 and 5.5, we obtain a system of non-linear algebraic equations which contains 6 equations

for the unknowns ci, i = 0, 1, ..., 5.

By solving the previous system, utilizing the Newton iteration method, we obtain the unknown ci, i =

0, 1, ..., 5, and therefore, the approximate solution is obtained via:

u5(t) =

5∑
i=0

ciT
∗
i (t). (5.6)

For α = 1 , and then determine the coefficients ci about5.6, polynomial approximation as follows:

u5(t) =

5∑
i=0

ciT
∗
i (t) = 2.66714× 10−17 + 0.999372x+ 0.0157609x2 − 0.41893x3 + 0.180634x4 − 0.0152477x5.

(5.7)

In this way, the improved method described for polynomial approximation 5.7 was used. In the table 1, 2 the

numerical results and absolute error between the exact solution uex, and the approximate solution uapprox

with different values of i, by means of the proposed modified method are given.
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Table 1: Comparison of absolute errors for u(x)at m=5 with different values of i for example 5.1. by

modified method

x i=0 i=10 i=20 i=30 i=35

|Error(0)| |Error(10)| |Error(20)| |Error(30)| |Error(35)|

0.0 2.66714×10−17 0.00000 0.00000 0.00000

0.1 2.58369×10−5 2.52314×10−8 2.46400×10−11 2.39808×10−14 6.93889×10−16

0.2 6.22951×10−5 6.08351×10−8 5.94093×10−11 5.80924×10−14 1.77636×10−16

0.3 3.25723×10−5 3.18089×10−8 3.10634×10−11 3.02536×10−14 9.43690×10−16

0.4 2.16611×10−5 2.11534×10−8 2.06575×10−11 2.02061×10−14 6.10623×10−16

0.5 4.38002×10−5 4.27737×10−8 4.17711×10−11 4.06897×10−14 1.27676×10−15

0.6 1.64887×10−5 1.61022×10−8 1.57249×10−11 1.53211×10−14 4.44089×10−16

0.7 3.04507×10−5 2.97370×10−8 2.90398×10−11 2.84217×10−14 6.66134×10−16

0.8 4.75369×10−5 4.64228×10−8 4.53346×10−11 4.44089×10−14 1.33227×10−15

0.9 1.43902×10−5 1.40529×10−8 1.37235×10−11 1.35447×10−14 4.44089×10−16

1.0 3.98000×10−6 3.88672×10−8 3.79574×10−12 3.77476×10−15 2.22045×10−16

Table 2: comparison of absolute errors for u(x)at m=5 with different values of i for example 5.1. by

modified method

x i=40

|Error(40)|

0.0 0.00000

0.1 0.00000

0.2 0.00000

0.3 0.00000

0.4 0.00000

0.5 0.00000

0.6 0.00000

0.7 0.00000

0.8 0.00000

0.9 0.00000

1.0 0.00000
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Example 5.2. In this section, we consider space fractional diffusion equation3.1 with α = 1.8, of the form:

∂u(x, t)

∂t
= d(x, t)

∂1.8u(x, t)

∂x1.8
+ s(x, t),

where, 0 < x < 1, with the diffusion coefficient: d(x,t)= Γ(1.2)x1.8, and the source function: s(x,t)=3x2(2x−

1)e−t. The initial and boundary conditions are respectively as:

u(x,0)=x2(1− x),

u(0,t)=u(1,t)=0.

The exact solution of this problem is u(x,t)= x2(1− x)e−t.

We apply the present method with m=3, and approximate the solution as follows:

u3(x, t) =

3∑
i=0

λi(t)T
∗
i (x). (5.8)

In 5.8, after determining the coefficients λi(t) for T=2 [17], Polynomial approximation is as follows.

u3(x, 2) =

3∑
i=0

λi(t800)T ∗i (x) = λ́800
o + λ́800

1 x+ λ́800
2 x2 + λ́800

3 x3 =

− 8.673617−19 + 0.000894x+ 0.134649x2 − 0.135543x3 (5.9)

In Table3, the absolute error, between the exact solution uex and the approximate solution uapprox at m=3

and time step τ = 0.0025, with the final time T=2 is given. Also, In the table 4, 5 ,6 the numerical results

and absolute error between the exact solution uex, and the approximate solution uapprox with different values

of i, by means of the proposed modified method are given.

It is notable that by considering τ = 0.0025,and using finite differential method (FDM) about 5.8 [17], we

will has 800 (Tτ = 2
0.0025 = 800) level time for approximate solutions u(x, tn), 0 < x < 1.

In the above example all 800 values of u(x, tn) are calculated by utilizing mathematica.

Example 5.3. [16] In this example, we consider the following space fractional diffusion equation

∂u(x, t)

∂t
= P (x)

∂αu(x, t)

∂xα
+ s(x, t), 0 < x < 1 (5.10)

with initial conditionu(x, 0) = x4,

and boundary conditions
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Table 3: Comparison of absolute errors for u(x,2) at m=3 and T=2 for example 5.2.

x Modified method Method[17] Method [26] Method [18]

0.0 2.46519×10−32 1.70849 ×10−4 4.483787×10−3 0.00

0.1 2.60209×10−18 2.10940 ×10−5 4.479660×10−3 2.89×10−5

0.2 5.20417×10−18 1.76609 ×10−4 4.201329×10−3 1.09×10−4

0.3 8.67362×10−18 3.01420 ×10−4 3.695172×10−3 2.20×10−4

0.4 1.04083×10−17 4.04138 ×10−4 3.007566×10−3 3.40×10−4

0.5 1.38778×10−17 4.89044 ×10−4 2.184889 ×10−3 4.45×10−4

0.6 2.08167×10−17 4.89044 ×10−4 1.273510 ×10−3 5.15×10−4

0.7 1.38778×10−17 5.63305 ×10−4 0.319831 ×10−3 5.27×10−4

0.8 1.38778×10−17 6.33367 ×10−4 0.629793 ×10−3 4.60×10−4

0.9 2.77556×10−17 7.05677 ×10−4 1.528978 ×10−3 2.91×10−4

1.0 0.00000 8.82821 ×10−4 2.331347 ×10−3 0.00

Table 4: Comparison of absolute errors for u(x,2)at m=3 and T=2 with different values of i for example

5.2. by modified method

x i=0 i=5 i=10 i=15 i=20

|Error(0)| |Error(5)| |Error(10)| |Error(15)| |Error(20)|

0.0 8.67362×10−19 2.71051×10−20 8.47033 ×10−22 2.49698 ×10−23 8.27181×10−25

0.1 8.23560×10−5 2.57363 ×10−6 8.04258×10−8 2.51331×10−9 7.85408×10−11

0.2 1.49747×10−4 4.67958 ×10−6 1.46237×10−7 4.56991×10−9 1.42810×10−10

0.3 2.00921×10−4 6.27878×10−6 1.96212×10−7 6.13162×10−9 1.91613×10−10

0.4 2.34628×10−4 7.33213 ×10−6 2.29129×10−7 7.16028×10−9 2.23759×10−10

0.5 2.49617×10−4 7.80052×10−6 2.43766×10−7 7.61770×10−9 2.38059×10−10

0.6 2.44636×10−4 7.64488 ×10−6 2.38902×10−7 7.46570×10−9 2.33303×10−10

0.7 2.18435×10−4 6.82609×10−6 2.13315×10−7 6.66611×10−9 2.08316×10−10

0.8 1.69763×10−4 5.30508 ×10−6 1.65784×10−7 5.18075×10−9 1.61898×10−10

0.9 9.73680×10−5 3.04275×10−6 9.50859×10−8 2.97144×10−9 9.28574×10−11

1.0 2.60209×10−18 2.77556 ×10−17 0.00000 0.00000 0.00000

u(0, t) = 0, u(1, t) = e−t,

where the function s(x, t) = −2e−tx4 is a source term, andP (x) = 1
24Γ(5− α).

The exact solution to this equation is e−tx4.

By applying the proposed method [17] for α = 1.2, polynomial approximation is as follows:
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Table 5: Comparison of absolute errors for u(x,2)at m=3 and T=2 with different values of i for example

5.2. by modified method

x i=25 i=30 i=35 i=40 i=45

|Error(25)| |Error(30)| |Error(35)| |Error(40)| |Error(45)|

0.0 2.58494×10−26 8.07794×10−28 2.52435×10−29 7.88861×10−31 2.46519×10−32

0.1 2.45440×10−12 7.66997×10−14 2.39674×10−15 7.45931×10−17 2.60209×10−18

0.2 4.46280×10−12 1.39462×10−13 4.35763×10−15 1.35308×10−16 5.20417×10−18

0.3 5.98792×10−12 1.87123×10−13 5.84775×10−15 1.82146×10−16 8.67362×10−18

0.4 6.99246×10−12 2.18513×10−13 6.82440×10−15 2.11636×10−16 1.04083×10−17

0.5 7.43915×10−12 2.32474×10−13 7.25808×10−15 2.22045×10−16 1.38778×10−17

0.6 7.29072×10−12 2.27839×10−13 7.11237×10−15 2.22045×10−16 2.08167×10−17

0.7 6.50988×10−12 2.03434×10−13 6.35603×10−15 1.94289×10−16 1.38778×10−17

0.8 5.05931×10−12 1.58096×10−13 4.92661×10−15 1.52656×10−16 1.38778×10−17

0.9 2.90179×10−12 9.06775×10−14 2.83107×10−15 6.93889×10−17 2.77556×10−17

1.0 0.00000 0.00000 0.00000 0.00000 0.00000

Table 6: comparison of absolute errors for u(x,2)at m=3 and T=2 with different values of i for example 5.2.

by modified method

x i=50

|Error(50)|

0.0 0.00000

0.1 0.00000

0.2 0.00000

0.3 0.00000

0.4 0.00000

0.5 0.00000

0.6 0.00000

0.7 0.00000

0.8 0.00000

0.9 0.00000

1.0 0.00000
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Table 7: Comparison of absolute errors for u(x,1)at m=4 and T=1 with different values of i for example

5.2. by modified method

x i=0 i=10 i=20 i=30 i=40

|Error(0)| |Error(10)| |Error(20)| |Error(30)| |Error(40)|

0.0 1.38778×10−17 1.35525×10−20 1.32349 ×10−23 1.29247×10−26 1.26218×10−29

0.1 5.01756×10−3 4.89996×10−6 4.78512×10−8 4.67296×10−12 4.56345×10−15

0.2 6.38835×10−3 6.23862×10−6 6.09241×10−9 4.56991×10−12 5.81029×10−15

0.3 5.64747×10−3 5.51510×10−6 5.38584×10−9 5.94962×10−12 5.13605×10−15

0.4 3.99532×10−13 3.90167×10−6 3.81023×10−9 3.72093×10−12 3.63435×10−15

0.5 2.29764×10−3 2.24378×10−6 2.19120×10−9 2.13984×10−12 2.08776×10−15

0.6 1.08549×10−3 1.06005×10−6 1.03521×10−9 1.01094×10−12 9.84182×10−16

0.7 5.55277×10−4 5.42263×10−7 5.29540×10−10 5.17141×10−13 5.09222×10−16

0.8 5.68706×10−4 5.55377×10−7 5.42361×10−10 5.29633×10−13 5.31044×10−16

0.9 6.52824×10−4 6.37523×10−7 6.22582×10−10 6.07962×10−13 5.84742×10−16

1.0 0.00000 3.39934×10−17 0.00000×10−17 4.76800×10−17 4.18183×10−18

u4(x, 1) =

4∑
i=0

λi(t)T
∗
i (x) = 1.38778× 10−17 + 0.074363x− 0.274432x2 + 0.339516x3 + 0.228432x4, (5.11)

note that, in this example ∆t = 0.001 is considered.

Now apply improved method for polynomial approximation expression 5.11,absolute error between the exact

solution, and new approximate solution obtained based on the number of repetitions of the process, shown

in Tables 7 and 8.

Example 5.4. [15] consider the following space fractional diffusion equation

∂u(x, t)

∂t
= P (x)

∂1.5u(x, t)

∂x1.5
+ s(x, t), 0 < x < 1 (5.12)

with the initial condition

u(x, 0) = (x2 + 1) sin(1),

and boundary conditions

u(0, t) sin(t+ 1), u(1, t) = 2 sin(t+ 1), for t > 0,

the source function s(x, t) = (x2 + 1) cos(t+ 1)− 2x sin(t+ 1),
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Table 8: Comparison of absolute errors for u(x,1)at m=4 and T=1 with different values of i for example

5.2. by modified method

x i=50 i=60 i=70 i=80

|Error(50)| |Error(60)| |Error(70)| |Error(80)|

0.0 1.23260×10−32 1.20371×10−35 1.17549 ×10−38 1.14794×10−41

0.1 4.46548×10−18 4.06965×10−21 3.97427×10−24 3.88112×10−27

0.2 5.73658×10−18 3.37867×10−21 3.29948×10−24 3.222151×10−27

0.3 5.24988×10−18 2.07294×10−21 2.02436×10−24 1.97691×10−27

0.4 4.76720×10−18 1.22852×10−20 1.19973×10−23 1.17161×10−26

0.5 3.31277×10−18 2.72581×10−20 2.66192×10−23 2.59953×10−26

0.6 4.52895×10−19 4.69916×10−20 4.58902×10−23 4.48146×10−26

0.7 3.81242×10−18 7.14857×10−20 6.98103×10−23 6.81741×10−26

0.8 3.56196×10−17 1.00740×10−19 9.83794×10−23 9.60736×10−26

0.9 2.85435×10−17 1.34756×10−19 1.31598×10−22 1.28513×10−25

1.0 1.11632×10−17 1.73532×10−19 1.69465×10−22 1.65493×10−25

andP (x) = Γ(1.5)x0.5.

The exact solution of this problem is u(x, t) = (x2 + 1) sin(t+ 1).

By applying the proposed method [17] , polynomial approximation is as follows:

u2(x, 1) =

2∑
i=0

λi(t)T
∗
i (x) = 0.909297 + 0.00049296x+ 0.908804x2, (5.13)

note that, in this example ∆t = 0.001 is considered.

Now apply improved method for polynomial approximation expression 5.13. Absolute error between the

exact solution, and new approximate solution obtained based on the number of repetitions of the process,

shown in Tables 9 and 10.

6. Conclusion

In this paper, we proposed a new modified of numerical method ,based on the shifted Chebyshev collocation

method and finite difference scheme, to find the solution of the space fractional diffusion equations and

fractional Riccati differential equation. In this method, the fractional derivatives are described in the Caputo

sense. Comparison between our proposed method and other methods , shows that this scheme is superior

and evidently the error gets smaller.
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Table 9: Comparison of absolute errors for u(x,1)at m=2 and T=1 with different values of i for example

5.4. by modified method

x i=0 i=10 i=20 i=30 i=38

|Error(0)| |Error(10)| |Error(20)| |Error(30)| |Error(38)|

0.0 2.22×10−18 0.00000 0.00000 0.00000 0.00000

0.1 4.43×10−5 4.33266×10−8 4.23110×10−11 4.13003×10−14 2.22054×10−16

0.2 7.89×10−5 7.70250×10−8 7.52197×10−11 7.33857×10−14 2.22045×10−16

0.3 1.03×10−4 1.01095×10−7 9.87258×10−11 9.63674×10−14 3.33067×10−16

0.4 1.18×10−4 1.15538×10−7 1.12830×10−11 1.10134×10−13 3.33067×10−16

0.5 1.23×10−4 1.20352×10−7 1.17531×10−11 1.14797×10−13 4.44089×10−16

0.6 1.18×10−4 1.15538×10−7 1.12830×10−11 1.10245×10−13 6.66134×10−16

0.7 7.89×10−4 1.01095×10−7 9.87258×10−11 9.62563×10−14 2.22045×10−16

0.8 4.43×10−4 7.70250×10−7 7.52197×10−11 7.32747×10−14 2.22045×10−16

0.9 4.43×10−16 4.33266×10−8 4.23110×10−11 4.13003×10−14 2.22045×10−16

1.0 2.22×10−16 0.00000 0.00000 0.00000 0.00000

Table10: Comparison of absolute errors for u(x,1)at m=2 and T=1 with different values of i for example

5.4. by modified method

x i=40

|Error(40)|

0.0 0.00000

0.1 0.00000

0.2 0.00000

0.3 0.00000

0.4 0.00000

0.5 0.00000

0.6 0.00000

0.7 0.00000

0.8 0.00000

0.9 0.00000

1.0 0.00000
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