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ABSTRACT. In this article a modification of the Chebyshev collocation method is applied to the solution
of space fractional differential equations. The fractional derivative is considered in the Caputo sense. The
finite difference scheme and Chebyshev collocation method are used. The numerical results obtained by this
approach have been compared with other methods. The results show the reliability and efficiency of the

proposed method.

1. INTRODUCTION

The fractional partial differential equations (FPDESs) arise in numerous problems of engineering, physics,
mathematics, chemistry, biology,and viscoelasticity ( [1], [2], [3], [4])-Most fractional differential equations
do not have exact analytical solutions, thus many authors are seeking ways to numerically solve these
problems( [5], [6]).

Recently, some different methods to solve fractional differential equations have been given such as variational
iteration method [7], homotopy perturbation method [8], adomian decomposition method [9], homotopy
analysis method [10], and collocation method [11]. A least square finite element solution of a fractional-order
two-point boundary value problems, developed in [12]. Sumudu transform method for solving fractional

differential equations and fractional diffusion-wave equation as well proposed in [13]. Wavelet operational
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method for solving fractional partial differential equations used in [14]. Method of lines to transform the space
fractional Fokker-Planck equation into a system of ordinary differential equations suggested in( [15], [16]) .The
space fractional diffusion equations are solved numerically .Khader proposed Chebyshev collocation method
to discretize space fractional diffusion equations to obtain a linear system of ordinary differential equations
and he solved the resulting system by finite difference method [17]. Saadatmandi and et al. [18]applied Tau

approach to solve space fractional diffusion equations.

2. BASIC IDEAS AND DEFINITIONS

Definition 2.1. The Caputo fractional derivative operator § D2 of order « is defined in the following
form [4]:

)
6 D5 f(w) = F(’rnl—a) Jo (zft)a—(tr?bﬂ dt, a>0,

wherem —1<a<m, meN, z>0.

Caputo fractional derivative operator is a linear operation and for the Caputo derivative we have [19]:

0 Dre =0, (2.1)
0, n € Ny and n < |[a],

§ Doz = o 0 [a] )
mxniaa n € Ny and n > [a],

where ¢ is a constant and [«] denotes the smallest integer greater than or equal to o and Ny = {1,2,...}. For

a € Ny, the Caputo differential operator coincides with the usual differential of integer order ( [19], [20], [21]).

Definition 2.2. The weighted — L¥norm is defined in the following form [22]:
1
full it = ([ lule)Puwla)dn)? for 1<p < oc, (23)
—1
and we again set
lullpee -1,y = sup_[u(@)] = [Jull Lo (—1,1)- (2.4)
—1<z<1

The space of functions for which a particular norm is finite forms a Banach space, indicated byL? (—1,1).
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Definition 2.3. We define natural Sobolev norms as follows [22]

llull e —1,1) Z||U(k)||m Y R (2.5)

The Hilbert space associated with this norm is denoted by H(—1,1). we also define the seminorms

|U|H{yvf"(_1,1) = ( Z ||“(k)‘|%gu(f1,1)>1/2- (2.6)
k=min(m,N+1)
2.2. A review of the Chebyshev polynomials
The well known Chebyshev polynomials are defined on the interval [-1, 1] as [23]:
TO(Z) - 17
Ti(z) = z,

Tni1(z) = 22T, (2) — Th-1(2), n=1,2

g een o

The analytic form of the Chebyshev polynomials T;,(z) of degree n is given by the following

i ) —i—1)! ,
T"(Z) =n (_1)22n—21_1 (n v ) n—2i

P @Oin—2i)° (2.7)

where [§] denotes the integer part of n/2. The orthogonality condition is

3

, fori=j5=0,

/ G, ),
Y, gy - 9 fori=j#0,
0

. fori#i.

In order to use these polynomials on the interval € [0, 1], we define the so called shifted Chebyshev poly-
nomials by introducing the change of variable z=2x-1.We denote T},(2z — 1) by

T (x), defined as:

- 22k (n 4+ k —1)!
n k k _
ngo —(n—k)! ¥, n=2,3,..,

(2.8)
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where Tg (z) = 1 and Ty (z) = 2z — 1.
A function u(x), which is squared integrable in [0, 1], may be expressed in terms of shifted Chebyshev poly-

nomials as:
o0
u(x) = aT; (x),
i=0

where

1 [ u)Tg(2) 2 /1 u(t) T () ‘
co = — ————dx, ¢; = — —————dz, i=1,2,.... 2.9
0 71'/0 Vo — 22 T Jo Vx—x? (2:9)

Theorem 2.1. [19] Let u(z) be approximated by shifted Chebyshev polynomials as:

um () =Y T} (x), (2.10)
i=0
and o > 0, then
D% (up,(z)) = Z Z ciwﬁ)xk_o‘, (2.11)

i=[a] k=[]

(@)

where w; )’ is given by:

a e 22K+ k- 1D)ID(k+1
W@ = (_1yi-k 2l )IT(k + 1)

’ (i —k)(2K)T(k+1—a) (2.12)

3. THE PROCESS OF SOLVING THE SPACE FRACTIONAL DIFFUSION EQUATION AND MODIFIED METHOD

we consider space fractional diffusion equation [17]

Ou(z,t)
ot

0%u(x,t)
Ox®

=d(z,1) +s(z,t), a<z<b 0<t<M, l<a<2, (3.1)

with initial condition

u(z,0) = up(z), a <z <b, (3.2)
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and boundary conditions

u(a,t) = u(b,t) =0, (3.3)

where the function s(x,t) is a source term.
We use the Chebyshev collocation method to discretize 3.1 and to get a linear system of ordinary differential
equations and use the finite difference method (FDM) ( [24], [25]) to solve the resulting system, and obtain

the coefficients in the approximate solution. So we approximate u(x,t) as:

From Eqs. 3.1, 3.4 and using Theorem 2.1 we have:

SO = 35T ABulate + s(a.) .
1=0

i=[a] k=[]

Collocating, Eq. 3.5 at (m + 1 — [«]) points z;, yields:

dXi(t), ., mo N
Z%Ti (Z‘P) = Z Z )\i(t)w;k)gjg +S(33p,t), P=0,1,...m— [a]. (3.6)
=0 i=[a] k=[a]

Now we use of roots of shifted Chebyshev Polynomials T, +1-[a] (x) as suitable collocation points.

By substituting Eqs 3.4 and 2.11 in the boundary conditions 3.3 we get

=D =0, Y N(t)=0. (3.7)
=0 =0

If so, [a] equations obtained from 3.7, along with m+1-[a] equations obtained from 3.6 give (m+1) ordi-
nary differential equations which may be solved by using FDM, i=0,1,...,.N, 7 = %, 0<t; <M,t;, =1ir,
to get the m unknown )\;, i=0,1,...,m, in various time levels t,,. by determining the unknowns A;(¢,) [17],the

approximate m degree polynomials Different time of ¢,, as obtained as follows:

U (2,10) = Y Ni(tn) T} () = AT () + AT (2) + A3 T3 (2) + ... + A T (2)
=0

= A" Nt A2 L+ AR ™ (3.8)
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in which T is the final time and A = X\;(t,).

To improve the proposed method , Firstly, on average, approximate solution w.,(z,t,) obtained by
3.8 and the exact solution of problem 3.1,s0 it new approximate first stage is called and the symbol

UN ewapprozimate(1) (337 tn) show. Namely :
1
UN ewapproz(1) (1‘7 tn) = 5 [’U,m(l', tn) + Uey (J?, tn)] . (39)

Note that ey (z,t) and Uappros (T, tn), respectively are exact solution and approximate solution of the prob-
lem 3.1. At this stage , if [uncwapproz(1)(T;tn) — Uex(2,15)| to obtain,it is observed that the value of the
amount |Ugpprox (T, tn) — ey (2, t,) is smaller. In other words, the error between the first stage approximate
and exact solution of the problem, the smaller of ,the error between the approximate solution obtained from
3.8 and the exact solution problem.

In the second stage,on average,approximate solution first gain and the exact solution problem and the second

stage is called an New approximation solution, and the symbolu ycwappros(2) (% tr) show.Namely :

1
uNewapprow(Q) ($, tn) = 5[ Newapproxz(1) (IZ’, tn) + Uex (l’, tn)] (310)

At this stage , if the value of |uncwappros(2) (%, tn) — Uee (T, tn| to determine, it will be seen that the value
of the amount |unecwapproz(1)(T,tn) — Uex(T,t,| is smaller. In other words,the error between, the exact
solution and approximate solution of the second stage, is the first step lower. If so, this trend continue, the
average, the approximate solution to the (n-1)th, with the exact solution ., (x,t,) of the problem, it will
be obtained new approximate polynomial and (n)th stage new approximate polynomial is called and the

symbolu yewapproz(n) (T, tn) show , namely:

1
UN ewapproz(n) (JC, tn) = 5 [uNewappro;E(n—l) (I, tn) + Ueg ('Ia tn)] (311)

It will be seen, that the amount of |Uncwapprow(n)(T,tn) — Uee(Z,tn| is much smaller that the amount
[tapproz (T, tn) — Uex (T, )] 15.50 that Ugpproz (%, tr) polynomial approximation to the results of the proposed
method is [17].this claim with the numerical results obtained by solving the presented examples shown. In
fact with this work , the numerical solution of equation3.1 is improved. The results of numerical examples ,

the absolute errors and the new approximation solutions for the various iterations of the improved method
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, for tables, is presented and compared by the several other numerical methods. In this work,the number of

repeat procedures , with the symbol i is shown in the tables.

4. ERROR ANALYSIS AND CONVERGENCE

This section is concerned with the studying of the convergence analysis and getting an upper bound for

the error of the proposed formula.

Theorem 4.1. [19] The error |[Ep(m)| = |D*u(x) — D%un,(x)| in approzimating D%u(zx) by D*up(z) is

bounded as:
00 i k—[a]
Erm) <| Y a( D> > 0w, (4.1)
i=m+1  k=[a] 5=0
where

_ (_1)i—k2i(i+k—1)!F(k—a_i_l) o
Oijk = hj1“(k+%)(i—k)!F(lcf,l,]-+1)I,(k+2j_7oé+1)7 i=12,...

Theorem 4.2. (Chebyshev truncation theorem) . The truncation error u(x)—upy (x), where uy (z) = Z;@V:o ex T (),

is the truncated Chebyshev series of u, satisfies the inequality [22]:

m

lu(@) = un@)lpg 1y SONT™ 37 [u® gy, for 1< p < oo, (4.2)
k=min(m,N+1)

for all functions u whose distributional derivatives of order up to m belong to L2 (—1,1). C is a constant and
depends on m.

If so, when N — oo, we have:

m

0< lim (fJu(z) —un(@)llLe(-11)) < Jim (CNT™ Z ||U(k)||Lﬁ,(71,1))7 (4.3)

li
N—00 N—00
k=min(m,N+1)

In the equation 4.3, if max | Z;n:min(m,N—Q—l) [| () Lz (—1,1)] < M, weher M dimension is fixed, in the case we
have: limy_, o (CN~—™ Ezl:mm(m’N+1) [ Iz, (~1,1)) = 0.

Then, according equation 4.3, and according to the squeeze theorem, we have:

limy oo ([Ju(z) = un (@)l Ly, (~1,1)) = 0.

The result is a convergence of approach gives us.
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Now, to discuss modified method error analysis is presented, polynomial approximations obtained 3.8 of

the proposed approach [17], Py(z,t,) call. Namely:

m

Po(@,tn) = (2, tn) = > Ni(tn) T} (). (4.4)
i=0
so we have:
|Po(,t0) = tiea(x,tn)| < €0, (4.5)
If you put
1
uNewapproz(l)(xa tn) = g[um(x; tn) + Uez(fE, tn)] =P (tn)v (46)
we have:
‘Pl(l'vtn)_uez(xatn)l Sgb (47)

Considering the ties 4.5, 4.6 and 4.7, we have:

= |Po(z,tn) — ez (@, tn)| < 261 < €0,

so the result is:

el < —. (48)

For these arrangements, if uncwappros(2) (T, tn) = %[um(x, tn) + Uex (2, t,)] to Pa(ty) call, you can write:
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1
= |P1(33atn) - er(xatn” < 289 = |§[P0($7tn) + uew(xvtn)] - uew(xatn” < 29

= |Po(z,tn) — e (T, tn)] < 2 X 289 < &,

so the result is:

€2 <

By following this process, the n-th stage will be:

IA

€n

In fact, if P,(x,t,) polynomial approximation is made in step n, we get the following result:

For 4.11, can be written:

0 < lim (|Pp(x, tn) — ez (z,t,)]) < lim (

n— oo

then, according equation 4.12, and according to the squeeze theorem, we have:

lim (|Pn(l’,tn) - uer(xatn‘) =0.

n—oo

The result is a convergence of approach gives us.

€0

22"

€0

on’

(4.9)

(4.10)

(4.11)

(4.12)
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Remark 1. The presented method, can be applied for solution of numerical the fractional Riccati dif-

ferential equation.also

Dou(t) +u*(t) —1=0, t>0,0<a <1,

with the initial condition «(0) = g,

in next section we illustrated this approach by example 5.1.

5. NUMERICAL RESULTS

Example 5.1. Consider the fractional Riccati differential equation of the form

Du(t) +u*(t) —1=0,t>0,0< a <1,

with the initial condition

u(0) = uyg,

and the parameter «, refers to the fractional order of the time derivative.

For a = 1; the Eq.5.1 is the standard Riccati differential equation

2
t)—1=0
o T
The exact solution to this equation is
2t
et —1
t) = ——.
U/( ) th + 1

Now we approximate the function u(t) by using formula ?? and its Caputo derivative D%*u(t) by using the

presented formula 2.11 with m=>5.Then fractional Riccati differential equation 5.1 is transformed to the fol-

lowing approximated form:
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where wz(a,? is defined in 2.12.

Also the initial condition 5.2 is given by :

t

We now collocate Eq.5.3 at (m + 1 — [«]) points ¢, as:

%

5
SN w4+ (S eTi(t,)? ~1=0, p=0,1,2,3,4. (5.5)
=1 k=1 =0

Note that t;,s are roots of shifted Chebyshev polynomial T3 (¢), i.e.

to = 0.5, t1 = 0.206107, to = 0.793893, t3 = 0.024471, ¢4 = 0.975528.

By using Eqgs.5.4 and 5.5, we obtain a system of non-linear algebraic equations which contains 6 equations
for the unknowns ¢;,7i =0,1, ..., 5.
By solving the previous system, utilizing the Newton iteration method, we obtain the unknown c¢;,7 =

0,1,...,5, and therefore, the approximate solution is obtained via:
5
us (t) = Z CiTi* (t) (56)
i=0
For @ =1, and then determine the coefficients ¢; about5.6, polynomial approximation as follows:

5
us(t) = > T} (t) = 2.66714 x 10717 +0.9993722 + 0.01576092% — 0.418932> + 0.1806342* — 0.01524772°.
=0

(5.7)

In this way, the improved method described for polynomial approximation 5.7 was used. In the table 1, 2 the
numerical results and absolute error between the exact solution u.,, and the approximate solution uqpprox

with different values of i, by means of the proposed modified method are given.
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Table 1: Comparison of absolute errors for u(x)at m=5 with different values of i for example 5.1. by

modified method
X i=0 i=10 i=20 i=30 i=35
|Error(0)] |Error(10)] | Error(20)] |Error(30)] | Error(35)]
0.0 2.66714x10~'7 0.00000 0.00000 0.00000

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

2.58369x107°
6.22951x107°
3.25723x107°
2.16611x107°
4.38002x107°
1.64887x107°
3.04507x107°
4.75369%x10~°
1.43902x10~°
3.98000x 1076

2.52314x1078
6.08351x 1078
3.18089x 108
2.11534x1078
4.27737x1078
1.61022x10~8
2.97370x1078
4.64228x1078
1.40529% 1078
3.88672x1078

2.46400x 1011
5.94093x 10711
3.10634x 10711
2.06575x 10711
4.17711x107 1
1.57249x 1011
2.90398x 1011
4.53346x 10711
1.37235x 1011
3.79574x 10712

2.39808x 10~
5.80924x 10714
3.02536x 1014
2.02061x 10714
4.06897x10~14
1.53211x10~
2.84217x10714
4.44089x 10714
1.35447x10~ 4
3.77476x 10717

6.93889x 10716
1.77636x 1016
9.43690x 10716
6.10623x 10716
1.27676x10~1°
4.44089x 10716
6.66134x10716
1.33227x10~1°
4.44089x 10716
2.22045x 10716

Table 2: comparison of absolute errors for u(x)at m=>5 with different values of i for example 5.1. by

mo

dified method

X

i=40
| Error(40)]

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
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Example 5.2. In this section, we consider space fractional diffusion equation3.1 with a = 1.8, of the form:

ou(z,t)
ot

Ot Bu(z,t)
ox!8

= d(z,t) + s(z, t),

where, 0 < z < 1, with the diffusion coefficient: d(x,t)= I'(1.2)z'®, and the source function: s(x,t)=3x2(2x —
1)e~t. The initial and boundary conditions are respectively as:

u(x,0)=2%(1 — z),

u(0,t)=u(1,t)=0.

The exact solution of this problem is u(x,t)= 2(1 — z)e~*.

We apply the present method with m=3, and approximate the solution as follows:

3

ug(z,t) =Y Ni(O)T7 (). (5.8)

=0

In 5.8, after determining the coefficients A;(t) for T=2 [17], Polynomial approximation is as follows.

3
ug(1,2) = Ni(tsoo) Ty () = A5 + A0 + A3%00? 4+ A§%0a® =
1=0

—8.673617' + 0.000894z + 0.134649z” — 0.1355437° (5.9)

In Table3, the absolute error, between the exact solution ue, and the approximate solution uqppror at m=3
and time step 7 = 0.0025, with the final time T=2 is given. Also, In the table 4, 5 ,6 the numerical results
and absolute error between the exact solution u.;, and the approximate solution ugppror With different values

of i, by means of the proposed modified method are given.

It is notable that by considering 7 = 0.0025,and using finite differential method (FDM) about 5.8 [17], we
will has 800 (£ = 525 = 800) level time for approximate solutions u(z,t,), 0 < z < 1.

In the above example all 800 values of u(zx,t,) are calculated by utilizing mathematica.

Example 5.3. [16] In this example, we consider the following space fractional diffusion equation

Ou(zx,t)
ot

0%u(x,t)
Ox®

= P(x) +s(z,t), 0<z <1 (5.10)

with initial conditionu(z, 0) = 24,

and boundary conditions
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Table 3: Comparison of absolute errors for u(x,2) at m=3 and T=2 for example 5.2.

x  Modified method Method[17] Method [26] Method [18]
0.0 2.46519x10732  1.70849 x10~* 4.483787x1073  0.00

0.1 2.60209x10~1%  2.10940 x10~° 4.479660x10~3  2.89x10~°
0.2 5.20417x10718 1.76609 x10~* 4.201329x10~2  1.09x10~*
0.3 8.67362x107'®  3.01420 x10~* 3.695172x1073  2.20x10~*
0.4 1.04083x107'7  4.04138 x10~* 3.007566x1073  3.40x10~*
0.5 1.38778x10717  4.89044 x10~% 2.184889 x10~3 4.45x10~*
0.6 2.08167x10'7  4.89044 x10~* 1.273510 x10~2 5.15x10~*
0.7 1.38778x10~'7  5.63305 x10~* 0.319831 x10~2 5.27x10~*
0.8 1.38778x10~'7  6.33367 x10~* 0.629793 x10~% 4.60x10~*
0.9 2.77556x10717  7.05677 x10~* 1.528978 x1073 2.91x10~*
1.0 0.00000 8.82821 x10~% 2.331347 x10=2 0.00

Table 4: Comparison of absolute errors for u(x,2)at m=3 and T=2 with different values of i for example

5.2. by modified method

x i=0 i=5 i=10 i=15 i=20
|Error(0)] |Error(5)] |Error(10)] |Error(15)] |Error(20)]

0.0 8.67362x1071° 2.71051x10720  8.47033 x10722 2.49698 x10723 8.27181x10~%
0.1 8.23560x107°  2.57363 x1076  8.04258x10~%  2.51331x107?  7.85408x10~!!
0.2 1.49747x10=%  4.67958 x107%  1.46237x10~7  4.56991x107%  1.42810x1019
0.3 2.00921x10~%  6.27878x107%  1.96212x10~7  6.13162x107°  1.91613x10*°
0.4 2.34628x107%  7.33213 x1076  2.29129x10~7  7.16028x107%  2.23759x 10710
0.5 2.49617x10~*  7.80052x1075%  2.43766x10~7  7.61770x107°  2.38059x10~'°
0.6 2.44636x10~*  7.64488 x1076  2.38902x10~7  7.46570x10~°  2.33303x10~'°
0.7 2.18435x10~*  6.82609x107%  2.13315x10~7  6.66611x107°  2.08316x10~*°
0.8 1.69763x10~* 530508 x1076 1.65784x10~7  5.18075x107°  1.61898x10~*°
0.9 9.73680x107°  3.04275x1075  9.50859x10~%  2.97144x10~°  9.28574x10~!!
1.0 2.60209x107'8  2.77556 x10~'7 0.00000 0.00000 0.00000

uw(0,t) = 0,u(1,t) =et,

where the function s(z,t) = —2e~tx

The exact solution to this equation is e t24.

4

4

is a source term, andP(z) = 3;I'(5 — ).

By applying the proposed method [17] for @ = 1.2, polynomial approximation is as follows:
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Table 5: Comparison of absolute errors for u(x,2)at m=3 and T=2 with different values of i for example

5.2. by modified method

1=25
|Error(25)]

1i=30
|Error(30)]

1=35
|Error(35)]

1=40
| Error(40)]

i=45
|Error(45)]

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

2.58494x 10726
2.45440x 10712
4.46280x 10712
5.98792x 1012
6.99246x 10712
7.43915x10712
7.29072x 10712
6.50988x 1012
5.05931x 1012
2.90179x10~12
0.00000

8.07794x 1028
7.66997x 10714
1.39462x10~ 13
1.87123x10~13
2.18513x 10713
2.32474x10713
2.27839x 10713
2.03434x10713
1.58096x 1013
9.06775x 10714
0.00000

2.52435%x 1072
2.39674x1071°
4.35763x10~19
5.84775x10~ 1%
6.82440x1071°
7.25808x 10717
7.11237x1071°
6.35603x 10717
4.92661x10715
2.83107x10715
0.00000

7.88861x 10731
7.45931x1017
1.35308x 1016
1.82146x10~16
2.11636x 10716
2.22045x10716
2.22045x 10716
1.94289x 10716
1.52656x 1016
6.93889x10~17
0.00000

2.46519x 10732
2.60209x 1018
5.20417x10718
8.67362x10~'8
1.04083x 1017
1.38778x 1017
2.08167x10~17
1.38778 x 10717
1.38778x 1017
2.77556x 1017
0.00000

Table 6: comparison of absolute errors for u(x,2)at m=3 and T=2 with different values of i for example 5.2.

by modified method

X

i=50
| Error(50)]

0.0

0.00000

0.1 0.00000

0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000

1.0 0.00000
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Table 7: Comparison of absolute errors for u(x,1)at m=4 and T=1 with different values of i for example

5.2. by modified method

i=0
|Error(0)]

i=10
| Error(10)]

i=20
|Error(20)]

i=30
|Error(30)]

1=40
| Error(40)|

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

1.38778 x 1017
5.01756x 1073

6.38835x 1073

5.64747x1073

3.99532x 10713
2.29764x1073

1.08549x 103

5.55277x10~4

5.68706x10~4

6.52824x 1074

0.00000

1.35525%x 10720
4.89996x 106
6.23862x 1076
5.51510x 1076
3.90167x10~6
2.24378 %106
1.06005x 106
5.42263x10~7
5.55377x 1077
6.37523x 107
3.39934x 10717

1.32349 x10~23

4.78512x 1078
6.09241x1077
5.38584x 107
3.81023x10°
2.19120x1077
1.03521x10~?
5.29540x 10710
5.42361x10710
6.22582x 10710
0.00000x10~7

1.29247x 10726
4.67296x10712
4.56991x 10712
5.94962x 10712
3.72093x 10712
2.13984x1012
1.01094x10~12
5.17141x1013
5.29633x 10713
6.07962x10~13
4.76800x 10717

1.26218x10~%°
4.56345x 10715
5.81029x 10715
5.13605x10~1°
3.63435x 10715
2.08776x10~1°
9.84182x 10716
5.09222x 1016
5.31044x 10716
5.84742x 10716
4.18183x10718

ug(z, 1) =

4

D N} (x) = 1.38778 x 10717 + 0.074363x — 0.2744322% + 0.3395162° + 0.2284322*, (5.11)

=0

note that, in this example At = 0.001 is considered.

Now apply improved method for polynomial approximation expression 5.11,absolute error between the exact

solution, and new approximate solution obtained based on the number of repetitions of the process, shown

in Tables 7 and 8.

Example 5.4. [15] consider the following space fractional diffusion equation

with the initial condition

u(z,0) = (2% + 1) sin(1),

and boundary conditions

u(0,t)sin(t + 1), u(1,t) = 2sin(t + 1), fort >0,

Ou(x,t)

o W

0tPu(x,t)

Hrls

the source function s(z,t) = (22 + 1) cos(t + 1) — 2z sin(t + 1),

+s(x, 1),

0<r<l1

(5.12)
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Table 8: Comparison of absolute errors for u(x,1)at m=4 and T=1 with different values of i for example

5.2. by modified method

x  i=50 i=60 i=70 i=80
|Error(50)] | Error(60)] |Error(70)]| | Error(80)]

0.0 1.23260x10732 1.20371x1073% 1.17549 x10738 1.14794x10~*!
0.1 4.46548x107'® 4.06965x102! 3.97427x102* 3.88112x10~27
0.2 5.73658x10718 3.37867x 10721 3.29948x10~2* 3.222151x10~2%7
0.3 5.24988x10718 2.07294x10721 2.02436x10~2%  1.97691x10~27
0.4 4.76720x1071'® 1.22852x10720 1.19973x10723 1.17161x10~26
0.5 3.31277x10718 2.72581x10729 2.66192x10~23 2.59953x 1026
0.6 4.52805x10719 4.69916x1072° 4.58902x1072%  4.48146x10~26
0.7 3.81242x107'® 7.14857x10720 6.98103x10°23 6.81741x10~26
0.8 3.56196x10~17 1.00740x10~1° 9.83794x1023 9.60736x10~26
0.9 2.85435x10717 1.34756x10719 1.31598x10722 1.28513x10~25
1.0 1.11632x10717 1.73532x10719 1.69465x10~%%2  1.65493x10~25

andP(z) = I'(1.5)z%

5

The exact solution of this problem is u(z,t) = (2% + 1) sin(t + 1).

By applying the proposed method [17] , polynomial approximation is as follows:

2

up(w,1) = > MBI () = 0.909297 + 0.00049296 + 0.908804z2,

=0

(5.13)

note that, in this example At = 0.001 is considered.
Now apply improved method for polynomial approximation expression 5.13. Absolute error between the
exact solution, and new approximate solution obtained based on the number of repetitions of the process,

shown in Tables 9 and 10.

6. CONCLUSION

In this paper, we proposed a new modified of numerical method ,based on the shifted Chebyshev collocation
method and finite difference scheme, to find the solution of the space fractional diffusion equations and
fractional Riccati differential equation. In this method, the fractional derivatives are described in the Caputo
sense. Comparison between our proposed method and other methods , shows that this scheme is superior

and evidently the error gets smaller.



Int. J. Anal. Appl. 16 (6) (2018)

839

Table 9: Comparison of absolute errors for u(x,1)at m=2 and T=1 with different values of i for example

5.4. by modified method

X 1=0 i=10 1=20 1i=30 1=38
|Error(0)]  |Error(10)] | Error(20)] | Error(30)] |Error(38)]
0.0 2.22x10~ 0.00000 0.00000 0.00000 0.00000

0.1 4.43x107°
0.2 7.89x107°
0.3 1.03x10~*
0.4 1.18x10~*
0.5 1.23x1074
0.6 1.18x10~*
0.7 7.89x10~*
0.8 4.43x10~*
0.9 4.43x107'6
1.0 2.22x10716

4.33266x1078
7.70250x 108
1.01095x10~7
1.15538x 1077
1.20352x10~7
1.15538x 1077
1.01095x 1077
7.70250x 1077
4.33266x10~8
0.00000

4.23110x10711
7.52197x10 11
9.87258x10~ 1
1.12830x 10~
1.17531x 10~
1.12830x 10~
9.87258 x 10711
7.52197x 10711
4.23110x107 1
0.00000

4.13003x 10714
7.33857x 10714
9.63674x 1014
1.10134x10713
1.14797x10~13
1.10245x 10713
9.62563x 10~ 14
7.32747x10~14
4.13003x10~14
0.00000

2.22054x 10716
2.22045x10716
3.33067x 10716
3.33067x 10716
4.44089x 1016
6.66134x10~16
2.22045x 10716
2.22045x 10716
2.22045x10716
0.00000

Table10: Comparison of absolute errors for u(x,1)at m=2 and T=1 with different values of i for example

5.4. by modified method

b'e i=40

| Error(40)]

0.0 0.00000
0.1 0.00000
0.2 0.00000
0.3 0.00000
0.4 0.00000
0.5 0.00000
0.6 0.00000
0.7 0.00000
0.8 0.00000
0.9 0.00000
1.0 0.00000
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