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ABSTRACT. By making use of the principle of subordi uce a new class for higher- order

derivatives of multivalent analytic functions associate stava operator. Also we obtain

some results for this class.

Let R(p,m) denote the class

) is given by (1.1) and g € R(p, m) given by

g(z):Zp+an+pzn+pv (p,mGN:{l,Q,"'};ZEU),

n=m
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then the Hadamard product (or convolution) f x g of f and g is defined by

(f*g)(z) =2"+ Z Antpbuipz" P = (g% f)(2).

n=m

A function f € R(1,m) is said to be starlike of order « in U if and only if

2f'(2) .
Re{ ) }>a, 0<a<l;zel).

Denote the class of all starlike functions of order a in U by S*(«).

A function f € R(1,m) is said to be prestarlike of order « in U if

z

A= ra *f) €57, (a<).

Denote the class of all prestarlike functions of order « in U by R(«).
Clearly a function f € R(1,m) is in the class (0) if and only if f is i il and R(3) = S*(3)

Fr(ar, -+ a3 81, -+, Br; 2) is defined by the following

forn =0
z(x+1)---(x+n-1) forne N.

Corresponding ion hp(aq, -+ ,a;; 81, , Br; 2) defined by

P Beiz) = 2P F(on, o B B 7). (1.2)
Dziok ivastava 2] introduced a linear operator
Hy(an, - ou; b1, Bk)  R(p, 1) — R(p, 1),
defined in terms of the Hadamard product as
Hp(on, - ou; Bry -+ Be) f(2) = hploa, -+ ous Bry -+, Brs 2) * f(2).

If f € R(p,m) is given by (1.1), then we have

o0

Hy(ar, -+ 00581, , Br) f(2) = 2P + Z

n=m

(1)n - ()n 'an+pzn+P. (1.3)
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In order to make the notation simple, we write
HY¥ () = Hy(ou, -+ 03B, Br).
We note from (1.3) that, we have
2 (HYF (1) f(2)) = arHE (a1 + 1) f(2) = (a1 = p)HE (1) £(2). (1.4)

Differentiating (1.4), (¢ — 1) times, we get

-1
2 (B (01) ()" = ax (HEF (01 + 1)) = (o = (15)

We note that special cases of the Dziok-Srivastava operator H[l;k(al) in C gear operator
[3], the Carlson-Shafer operator [1], the Ruscheweyh derivative operat, Owa fractional
operator [7], and many others.

Let H be the class of functions h with h(0) = 1, which are a
Definition 1.1. A function f € R(p,m) is said to be i m;h) if it satisfies the subor-
dination condition:

(@)
1—n)(p—q+1) Fan) f(z

p! 2P—4

and m, we obtain the following subclasses of analytic

—p),az = ¢ and 1 = a, the class Ezl;k

o(n, a1, m; h) reduces to

2) For [ = 2, =p=ay=p =1,a; =2and h(z) = 3% (-1 < b < 1,a > b), the class

1+bz

1Lk . .
Byt (n, class H(n,a,b) which was studied by Yang [11].

3) p=n=oaz=p1 =1, 01 =2and h(z) = 122, the class EL*(n, a1, m; h) reduces
to the siwhi studied by Singh and Singh [10].
4) For | = =qg=m=p=ay=p1=1,a; =2and h(z) = 1+ Mz(M > 0), the class E;*(n, a1, m;h)

reduces to the class Hq(1,a;1 + Mz) = S(a, M) which was studied by Zhou and Owa [12] and Liu [4]
respectively.

In order to prove our main results, we need the following lemmas.

Lemma 1.1. [6] Let g be analytic in U and let h be analytic and convex univalent in U with h(0) = ¢(0).
If
1
g(z) + ;zg’(z) < h(z), (1.7)
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where Re(pu) > 0 and p # 0, then
g(z) < h(z) = uz‘“/ t=Th(t)dt < h(z)
0
and b is the best dominant of (1.7).

Lemma 1.2. [9] Leta <1 ,f € S*(a) and g € R(«). Then, for any analytic function F in U

g (fF)

S W) oo (FW)).

where ¢o (F(U)) denotes the closed convex hull of F(U).

2. MAIN RESULTS

Theorem 2.1. Let 0 <n <e. Then Eé:’fl(s, ay,m;h) C E]lo*”fl(n,oz h).

Proof. Let 0 <nmp<eand f € Ell;”fl(a, ay,m;h).

Suppose that

p—q+1)!
(o) = L= (2.1)
p!
Then the function g is analytic in U with ¢(0)
Since f € Ell;”f] (e,a1,m; h), then we have
(a)
e(p— @) (Hy"(a1)f(2))
L o < h(2). (2.2)
By taking the derivative f (2.1) with respect to z and using (2.2), we get
(2)
(1-e)p—gq+ e(p—q)! (Hy* (o) f(2))" _ 2 /

) a =9(z) + p—qgt19 (2) < h(2)

— 1
Hence, an P=a+ , yields

g(z) < h(2). (2.3)
Nothing t < 1 and that h is convex univalent in U, it follows from (2.1),(2.2) and (2.3) that

(1= n)p—q+ D! (HF) )™ o — o)t (H¥(01)1(2))

+

p' 2P—q+1 p' 2p—q
(g-1) (@)
n [ =)@ —q+ ! ([ e)IE)" T ep— ot (HM ) E)" | (1= 1) gz) < h(2)
€ p! 2P—a+1 p! zp—a c) 9 2):
Therefore, f € E;;ffl (n, a1, m; h) and the proof of Theorem 2.1 is completed. a

Theorem 2.2. Let Re{a1} >0 and oy # 0. Then EL%(n, a1 +1,m;h) C EL%(n, aq, m; h).

»q »q
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Proof. Let f € EL%(n,a1 4+ 1,m; h) and suppose that

(=) =g+ D! HF )" e — o) (Hy o) £(2)

9(z) = p! Zp—q+1 + pl 2P—q (2.4)
Then, from (1.5), (2.4) is equivalent to
(g—1) (a—1)
()= (1 p-a+ ) (HMe)fG) T o - 0) (Bl + D) (25)
9 B p—q+1 p' 2p—q+1 pl 2P—aq+ ’ ’

Differentiating both sides of (2.5) with respect to z and using (1.5), we have

- a1 (p — ! Lk(q
g(2) + 24'(2) = (1_’7(;‘1:;1111)) (p—q+1)! (HLH(

_ <1_p_77‘;1+1> (g —)(p—q+1)!

L —q) (HY (o1 + 1) f(2)
p! ZP—4

From (2.5) and (2.6), we get

a1g(z) + 2¢'(2) =

that is

o)+ 2g'(z) = L1

2p—q+1

Since f € ELk(n, aq + 1 s from (2.7) that

»q

9(2) + —29'(2) < h(2), (Re{a1} > 0,01 #0).

Hence, ati L a 1.1 with g = a1, yields g(z) < h(z). By using (2.4), we obtain the following

— g+ 1) (H () f(2) 7Y L np=a)! (HL*(a1) f(2))
p! zp—a+l p! ~P—q

=< h(z).

This shows that f € EL%(n, aq,m; h) and the proof of Theorem 2.2 is completed. O

g

Theorem 2.3. Let f € R(p,1) and

Re{M} > %, (2.8)

2P

where 0,(a,b;2) = hy(a,aa, -+ ,ap, 150,00, -+, a3 2) is defined as in (1.2). Then

I,k . I,k .
Ep (777 ba ]-a h) C Ep (77’@7 17 h)

»q )
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Proof. Let f € EL%(n,b,1;h). Then, we have

(0 =mp—a+ ! (HF @) 10~ (HE (@ ()

p' zP— q+1 zP—aq
_(1—77)(p—q+1) abz H”“ )
B p' zP q+1
(q)
1(p—)! (Gp(a,b;2) (H’k( _ (Oplab;2)
- ( - « zP—‘I - - £ (2), (2.9)
where (1)
(o) = A= =g+ D! (HFO)/() T -t (0L (2.10)
4= p! 2P—a+1 p! ’
From (2.8) note that the function W has the Herglotz representatio
0 b; d
zP lzj=1 1 —xz
where p(z) is a probability measure defined on the unit circle [2] =1 a
/ dp(
lz|=1
Since h is convex univalent in U, it follows from (2.9), (
(a-1)
(L—n)p—q+1)! (H*@)f(2)"
p' Zp—q+1
This shows that f € EL*(n,a,1;h) O
Theorem 2.4. Let 0 < a <
Proof. Define the funct
(a)”z”“, (0<a<b;zel).
(0)n
Then
Op(a,b;z)
T 9(2) € R(p, 1), (2.12)
where pla, g, ag, 1;b, a9, -+, ag; 2) is defined as in (1.2) and
z
xg(z) = - (2.13)
(1 z) (1-2)
By (2.13), we see that g xg(z) €S (1-2%)CS*(1-2).
For 0 < a < b which shows that
b
g(z) e R (1 - 5) . (2.14)

Let f € EL%(n,b,1;h). Then from (2.9) (used in the proof of Theorem 2.3) and (2.12)), we can write

(=)= g+ O DI np =t (@)Y g

p! Zp—atl p! 2P—4 g(z) x 2
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where (z) is defined as in (2.10).
Since h is convex univalent in U, 1(z) < h(z) and z € S*(1 — &), it follows from (2.14), (2.15) and Lemma

1.2 that = w
-1
(L= —a+ D (H Q)" " - ot (B (@)
T — + — =< h(z).
p! zp—atl p! 2p—q
Therefore, f € EY k(n, a,1; h) and the proof is completed. O

Theorem 2.5. Letn >0,v> 0 and f € Elk(n,al,m yYh+1—7). If v < 0, where

g1 -1
1 (p—q+1)/1up5 -1
=-(1- d , 2.16
Yo 2( n y 11w U ( )

then f € ELY (0,01, m;h). The bound ~o is the sharp when h(z) = .

z

Proof. Suppose that

Lk (g, (
g(z) — (p_f)!_‘_ 1)' (Hp ( ) ))

LetfeE”“(n,al,m ~vh+ 1 —+) with n > 0 and v > 0£ Then, we have

(2.17)

(1—n)(p—q+1)! (H

g(z) + png’(z) =

—qg+1 p! z p' 2P—4
<yh(z) +1—7

By using Lemma 1.1, we have

g9(z) < T () dE 41—y = (h 6)(2), (2.18)
where

(pP—a+1) ? tp_g-H -1
P / i1 (2.19)
0 1-

If 0 < v <, iven by (2.16), then it follows from (2.19) that

—q+1) [P b

:M/ S 1, ( ) dut1—~
n 0
_q+1) p—q+1_1

1
1

>’Y(p / L du+1—~v>—
n o 14w 2

Now, by using the Herglotz representation for ¢(z), from (2.17) and (2.18), we get

B Lk (o > (g—1)
(v Z!—i_ ok (Hp (Z;z{:_(,_l)) < (h*@)(2) < h(2).

Since h is convex univalent in U, then f € EL%(0, ay, m; h).

For h(z) = 2~ and f € R(p,m) defined by

p—gtl 4

(p—q+1)! (H () ()" yp—q+ 1) oo /Z ¢t
0 1-

dt+1—7,

p! ZP—atl n
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we have
(g—1) (9)
A=n)p =g+ VM) E) T np—at (B e)fE)T
p' 2p—q+1 p' zP—4a =z -
Thus, f € Ezl;”fl(n,al,m; vh 4+ 1 —7). Also, for v > 7y , we have
(g=1) 1 pmadl g
(p—q+1)! (Hz"(1)f(2)) Yp—q+1) [tu 1
Re{ i P — ” N du—i—1—7<§7 (z = -1),
which implies that f ¢ EL”’;(O,oq,m;h). Therefore the bound vy cannot be increase (z) = .
This completes the proof of the theorem. |
Theorem 2.6. Let f € EL%(n, a,m;h) be defined as in (1.1). Then the fun@bion I de
1) = 22 [T 0, (Rele) > g (2.20)
0
is also in the class Ezl;,’f](n,al,m; h).
Proof. Let f € Ezl,’ffl(n,al,m;h) be defined as in (1.1). T
(g—1) (9)
(L=n)(p—q+1)! (Hp* (1) f(2)) " Faa) f(2) ™
' < h(z) (2.21)
p! 2P—q+1 zP—4a
For f € R(p,m) and Re(c) > —p, we find from m) and
(2.22)
Define the function J by
(@)
n(p — @)t (Hy*(e)1(2)) (2.23)

p! ZP—4

(¢—1) (9)
)" ne— )t (HM e f(2)"
Zp—aq+1 p! 2P—q
/ (g—1) / (q)
1,k cl(z)+21'(2) 1,k cl(z)+21'(2)
o (2] (o (225))
2p—q+1 p! 2P—q

(1—m)(p—q+1)! (HE (0)I(2) """ L 1 —a)! (Hé’k(al)I(Z))(Q)>
p! Zp—atl p! 2P—q

! 2p—aq+1 + p! 2P~

1 ((1 ) p—q+ ) (HY () GI )Y ip — o)t (HE*(an) <zf’<z>>)<q)>

= J(2) + (2J'(2) +pJ(2)) = J(2) +

!
h(z).
s s C+sz(z)—< (2)

Hence, an application of Lemma 1.1 with p = ¢+ p, yields J(z) < h(z). By using (2.23), we get

(=)o —q+ 0! (HHIE) " =gt (H 0)1(:)"”

p' 2P—q+1 p' 2P—q = h(Z),
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which implies that I € EL%(n, a1, m;h). O

Theorem 2.7. Let f € R(p,m) and I be defined as in (2.20). If

(1= )p—q+ D) (HF)IE) ™ np—q+ 1)1 (H (1) f(2) "
p! Zp—q+1 p! Zp—q+1

<h(z), (p>0),  (2.24)

then I € EL%(0,a1,m;h).

Proof. Suppose that

(p—q+1)! (HF(a)I(2) "
p! ZPp—aq+1 '

J(z) = (2.25)

Then the function J is analytic in U with J(0) = 1. Differentiating both S 2.25) avith respect to z,

we have

KoV I(2)) @
T (2) = (p—z!Jr 1)! (H;l)k(zgg( ) (p— 1) (2). (2.26)

Making use of (2.22), (2.24), (2.25) and (2.26), we dedu

(1= m)(p—q+1)! (H(01)](2))"
p' Zp—q-i-l

zp—q-i-l

’ (¢—1)
1, cl(z)+z1'(z)
2, o (o (225759
p' Z:D—q-i-l

emma 1.1 with p = %, yields J(z) < h(z). By using (2.25), we get

(p—q+1) (Hé’k(al)I(Z))(q_l)

p! Zp—aq+1 = h(Z),
which implies that I € EIl;ff] (0, a1, m; h). a
Theorem 2.8. Let f € Ezl;ffl(n,al,m; h), g € R(p,m) and
9(2) 1
R z. 2.27
{22 2.27)

Then f*g € Ezl;”fl(n,al,m; h).
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Proof. Let f € EL%(n,a1,m;h) and g € R(p,m). Then, we have

(L—0)(p—q+ 1) (HF () (fx9) ()" nip— ) (HF (o) (f  9) ()"

! 2P—q+1 + p! zb—4
C(1-n)p-qg+1) (g(z)) . <(Hzl),k(a1)f(z))(q—1)>
B p! 2P ZPatl
— z Lk (e5] z (@ z
+77(pp! 0! (g;)) . ((Hp ) ) >: (@) v o(2), (2.28)

where

(1= m)(p—q+1)! (HE(01) f(2)) "

o(z) = p g + o (2.29)
From (2.27) note that the function géi) has the Herglotz represen n
(2.30)
where p(z) is a probability measure defined on the unit
Since h is convex univalent in U, it
(a)
(L= —g+1)! (Hy* (o / p—q)! (Hp*(aa) (fx9) (2)) "
: - = P(xz) dp(x)
p! p! ZP4 |z|=1
=< h(z).
This shows that O
Theoremn: n,ar,m;h), g € R(p,m) and 2'7Pg(z) € R(a), (o < 1). Then fxg €

b€ EL%(n,a1,m;h) and g € R(p,m), from (2.28) (used in the proof of Theorem 2.8), we can

(1—m)(p— g+ 1) (HE(an) (f # g) (2)) 4 L 1= )t (o) (f *9) ()@
p! Zp—a+1 ! p—a
_ (217g(2) * (20(2)

g e

(zeU), (2.31)

where ¢(2) is defined as in (2.29). Since h is convex univalent in U, (z) < h(z), 2!7Pg(z) € R(a) and
z € S*(),(a < 1), it follows from (2.31) and Lemma 1.2, we get the result. O
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