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DONOHO-STARK UNCERTAINTY PRINCIPLE ASSOCIATED
WITH A SINGULAR SECOND-ORDER DIFFERENTIAL
OPERATOR

FETHI SOLTANI

ABSTRACT. For a class of singular second-order differential operators A, we
prove a continuous-time principles for L! theory and L2 theory, respectively.
Another version of continuous-time principle using L' N L? theory is given.

1. INTRODUCTION

The classical uncertainty principle says that if a function f(t) is essentially zero

outside an interval of length ¢ and its Fourier transform f(w) is essentially zero
outside an interval of length dw, then

ot.dw > 1;

a function and its Fourier transform cannot both be highly concentrated. The
uncertainty principle is widely known for its ”philosophical” applications: in quan-
tum mechanics, of course, it shows that a particle’s position and momentum cannot
be determined simultaneously [10]; in signal processing it establishes limits on the
extent to which the ”instantaneous frequency” of a signal can be measured [9].
However, it also has technical applications, for example in the theory of partial
differential equations [8].
Here we consider the second-order differential operator defined on ]0, co[ by
A/
"
Au=u"+ 1
where A is a nonnegative function satisfying certain conditions and p is a nonneg-
ative real number. This operator plays an important role in analysis. For example,
many special functions (orthogonal polynomials) are eigenfunctions of an operator
of A type. The radial part of the Beltrami-Laplacian in a symmetric space is al-
so of A type. Many aspects of such operators have been studied; we mention, in
chronological order, in 1979 Chébli [2]; in 1981 Trimeche [15]; in 1989 Zeuner [18];
in 1994 Xu [17]; in 1997 Trimeche [16]; in 1998 Nessibi et al. [13]. In particular, the
first two of these references investigate standard constructions of harmonic analy-
sis, such as translation operators, convolution product, and Fourier transform, in
connection with A.

u + p?u,
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Many uncertainty principles have already been proved for the Sturm-Liouville
operarator A, namely by Rosler and Voit [14] who established an uncertainty princi-
ple for Hankel transforms. Bouattour and Trimeche [1] proved a Beurling’s theorem
for the Sturm-Liouville transform. Daher et al. [3, 4, 5, 6] give some related versions
of the uncertainty principle for the Sturm-Liouville transform (Titchmarsh’s the-
orem, Hardy’s theorem and Miyachi’s theorem). Ma [11, 12] proved a Heisenberg
uncertainty principle for the Sturm-Liouville transform.

Building on the ideas of Donoho and Stark [7] we show a continuous-time princi-
ple for the L' theory. The analogous of this uncertainty principle in the L? theory
is also given. We prove another versions of continuous-time principle for the L?
theory and for the L! N L? theory.

This paper is organized as follows. In Section 2 we recall some basic properties of
the Fourier transform F associated to A (Plancherel theorem, inversion formula,...).
In Section 3 we prove a continuous-time principle for L! theory. The last section of
this paper is devoted to show another versions of continuous-time principles using
L? theory and L' N L? theory.

2. THE OPERATOR A

We consider the second-order differential operator A defined on 0, co[ by
A/
Au =" + —u + p?u,
A
where p is a nonnegative real number and
A(z) = 2T B(z), a>-1/2,

for B a positive, even, infinitely differentiable function on R such that B(0) = 1.
Moreover we assume that A and B satisfy the following conditions:
(i) A is increasing and xl;ngo A(z) = oc.
A . : '()
(ii) s decreasing and lli)ngo @)
(iii) There exists a constant § > 0 such that

s

= 2p.

’jl/((f)) =2p+ D(x)exp(—éx) if p>0,
A(z)  20+1 oo
O + D(x)exp(—dx) if p=0,

where D is an infinitely differentiable function on |0, co[, bounded and with bounded
derivatives on all intervals [zg, co], for 2o > 0. This operator was studied in [2, 13,
15], and the following results have been established:

(I) For all A € C, the equation

Au=—)\u
{ u(0) =1, ¥/ (0)=0

admits a unique solution, denoted by @y, with the following properties:
) satisfies the product formula

e = [ ol g, DA(R)z for xy >0
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where w(z,y,.) is a measurable positive function on [0, co[, with support in [|x —
yl, x + y], satisfying

o0
/ w(z,y,2)A(z)dz = 1,
0
’LU(.’,E, y,Z) - w(y, x, Z) for z > O7

w(z,y,z) =w(z,z,y) for z>0;

for z > 0, the function A — ¢, (z) is analytic on C;
for A € C, the function  — @, (z) is even and infinitely differentiable on R;
for all A,z € R,

loa(z)| < 15 (2.1)
for all A,z > 0,

1 1
T) = ——Jjo(Ax —0\(x
oa(r) \/%J( )+m,\()

where j, is defined by j,(0) = 1 and j,(s) = 2°T'(a + 1)s*J,(s) if s # 0 (with
Jo the Bessel function of first kind), and the function 8y satisfies

a0l < 2 J/ Q(s)lds) exp ( J/ Q(s)lds)

with ¢1, ¢y positive constants and @ the function defined on ]0, co[ by

o = ) )

(IT) For nonzero A € C, the equation Au = —\?u has a solution ®, satisfying

1
dy\(z) = exp(tAx)V (x, \),
) = s explidn)V (5, )
with lim, o V(2,A) = 1. Consequently there exists a function (spectral function)
A= e(A),

such that
o = c(A)Px 4+ ¢(—=A)P_, for nonzero A € C.

Moreover there exist positive constants ki, ks, ks such that
B2 < Je()] < Rala 2

for all A such that ImA < 0 and || > k3.
Notation 2.1. We denote by

 the measure defined on [0, oo by du(z) := A(z)dx; and by LP(u), 1 < p < oo,
the space of measurable functions f on [0, oo[7 such that

e 1/p
oo = (| 1#@Pduta) " <o, 1<p<o0,
0
| flloe(uy == ess sup |f(z)] < oo;
z€[0,00[
dA
2l
the space of measurable functions f on [0, 00|, such that || f{/z»¢) < oc.

v the measure defined on [0, co[ by dv()) := and by L?(v), 1 < p < oo,
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The Fourier transform associated with the operator A is defined on L*(u) by

F(f)A) = /OOO oa(@)f(z)du(z) for A e R.

Some of the properties of the Fourier transform F are collected bellow (see
[2, 13, 15, 16, 17]).
(a) L' — L>-boundedness. For all f € L'(u), F(f) € L>(v) and

IF ey < MMzt go- (2.2)
(b) Inversion theorem. Let f € L'(u), such that F(f) € L'(v). Then
f(z) :/0 ox(@)F(f)N)dv(X), ae. z€[0,00] (2.3)

(¢) Plancherel theorem. The Dunkl transform F extends uniquely to an isometric
isomorphism of L?(u) onto L?(v). In particular,

1fllz20) = IF(PllL20)- (2.4)
Let T be measurable set of [0,00[. We introduce the time-limiting operator Pr
by
S, teT
Prf(t) := { 0, tel0,00[\T. (2.5)

This operator is bounded from L?(u), 1 < p < oo into itself and
1Prflle) < Wflleege, f€LP(w). (2.6)

Let W be measurable set of [0, c0[. We introduce the partial sum operator Sy
by

F(Swf)=F(w. (2.7)
This operator is bounded from L?(u) into itself and
ISw fllezguy < I fllezqns € L2 (w). (2.8)
Theorem 2.2. If v(W) < oo and f € L' (u) or f € L?(u),
Swi@) = [ or@FNNd) (29)
w

Proof. If f € L'(u), then by (2.2),

IF (Pl = /W F(P)@)ldow) < oW,
and
1wl = ([ 1FO@Pw) " < o,
Thus Fi(f)lw € L' () N L2(v) and by (2.7),
Swf=F(F()iw).

This combined with (2.3) gives the result.
If f € L?(u), then by (2.4),

IFIwllrwy < VYWV)f Iz,

IF w2y < 1f ez

and
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Thus F(f)lw € L'(v) N L?(v). This yields the desired result. O

3. AN L' UNCERTAINTY PRINCIPLE

Let T and W be measurable sets of [0, co[. We say that a function f € L(p) is
e-concentrated to T if there is a measurable function g(¢) vanishing outside T' such

that || f — gl < ellfllzi-
If f is ep-concentrated on T in L!(u)-norm (g being the vanishing function) then

I = Brfllon = [ 15000 <1 =gl < erlf i

and therefore f is ep-concentrated to T in L' (p)-norm if and only if || f—Pr f[| L1 () <
erllfllzr (-

Let By (W) denote the set of functions g € L () that are bandlimited to W (i.e.
g € B1 (W) implies Swg = g).

We say that f is e-bandlimited to W in L'(p)-norm if there is a g € By (W) with
1 =gl < el fllzr -

The space B1 (W) satisfies the following property.
Lemma 3.1. Let T and W be measurable sets of [0,00[. For g € By(W),

1Pyl
gl

Proof. If u(T) = oo or v(W) = oo, the inequality is clear. Assume that (7)) < co
and v(W) < oo. For g € B (W), from Theorem 2.2,

olt) = /W o0 (£)F(g) (w)dv(w)

< W(T)(W).

and by (2.1) and (2.2),
lg@®) < vW)llgllLr -
Hence
1 PrgllL ) = /T lg(8)|dpu(t) < w(T)v(W)ligllLr -
Therefore, for g € B1(W),
1 Prgllr
gl ()
which yields the result. O

< u(T)v(W),

It is useful to have uncertainty principle for the L!(u)-norm.
Theorem 3.2. Let T and W be measurable sets of [0,00] and f € L'(u). If f is
er-concentrated to T and ey -bandlimited to W in Ll(u -norm, then

1-— ET —EW
l4+ew
Proof. Let f € L'(u). The triangle inequality gives

IPrfllerwy = 1 f i = I1f = Prfllo -

Since f is ep-concentrated to T in L (u)-norm,

I1Prflleeny = (1 —er)|lfllLr - (3.1)

(W) =
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On the other hand, f is ey-bandlimited to W in L!(x)-norm, by definition there
isa gin By (W) with ||f —gllz1(u) < ew|lfllz1(u- For this g and by (2.6), we have

1Prglley = I1Prflleig — 1Pr(f = 9l
> | Prfllci —ewllfllziw
and also
gl < (X +ew)llfllzr -
So that
I1Prgllz: () - IPrfllrwy — ew I f Il w)
lollzigy — A+ew)lfllergw
Thus, by (3.1) we deduce

1 Prgll: () l-er—ew
lgllzry —  1+ew
This combined with Lemma 3.1 proves Theorem 3.2. (]

4. AN L2 UNCERTAINTY PRINCIPLES

Let T and W be measurable sets of [0, 00[. We say that a function f € L?(u) is
e-concentrated to T if there is a measurable function g(¢) vanishing outside T' such
that ||f —gllL2(u) < ellfllL2(u- Similarly, we say that F(f) is e-concentrated to W
if there is a function h(w) vanishing outside W with || F(f) — k| 20y < el fllz2()-

If f is ep-concentrated to 7" in L?(pu)-norm (g being the vanishing function) then

1/2
I = Prfllzeg = ( /[ S OPa) <1 = gllzzgn < ez

and therefore f is ep-concentrated to T in L?(p)-norm if and only if || f—Pr f|| 2 () <
el fllz2 (-

From (2.7) it follows as for Pr that F(f) is ey-concentrated to W in L?(v)-norm
if and only if

IF(f) = FSwhHlleze) = I1f = Swfllzgy < ewllfll2n-

Let By(W) denote the set of functions g € L?(u) that are bandlimited to W (i.e.
g € Ba(W) implies Swg = g).

We say that f is e-bandlimited to W in L?(u)-norm if there is a g € Bo(W) with
If = gll2gy < ellfllzequ-

The space Bo(W) satisfies the following property.
Lemma 4.1. Let T and W be measurable sets of [0,00[. For g € Bo(W),

1Prgll2
I9ll£2 ()

Proof. Assume that u(7T) < co and v(W) < co. For g € By(W), from (2.9),

o) = | oo F (@) w)v(w
and by (2.1) and Holder’s inequality,

9] < Vv(W)llgllL2 (-

W)W,
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Hence
| Prllzzgn / OPdu®)” < i@ llgl 20

Therefore, for g € Bo(W
||PT9||L2(;L)
HQHLQ(M) -
which yields the result. ([l

w(T)v(W) ,

It is useful to have uncertainty principle for the L?(y)-norm.
Theorem 4.2. Let T and W be measurable sets of [0,00[ and f € L*(n). If f is
er-concentrated to T and ey -bandlimited to W in L?(u)-norm, then

1— ET —EW
1+ ew
Proof. Let f € L?(u). The triangle inequality gives
1P fllz2oy 2 12 = 1f = Prfllez -
Since f is ep-concentrated to 7' in L?(u)-norm,
IPrfllezuy = (1 =)l fll2 - (4.1)

On the other hand, f is ey-bandlimited to W in L?(u)-norm, by definition there
is a g in Bo(W) with || f —gllz2¢u) < ew||fllz2¢u)- For this g and by (2.6), we have

wTw(W) =

1Prgllezqy = NPrflle — 1Pr(f = 9)llLew
> |Prfllrz —ewllfllz2w
and also
l9llz2(y) < (1 +ew)| fllzz(w-
So that

IPrgllz2() o 1Prflle ) — ew 1fllz2 )

lollzzqy  — (X +ew)llfllz2w
Thus, by (4.1) we deduce

| Prgllzz() S l—er—ew
lgllzzqy —  1+ew
This combined with Lemma 4.1 proves Theorem 4.2. O
Lemma 4.3. Let T and W be measurable sets of [0,00[. For f € L*(u),
|Sw Pr £l 12 () -
2y~

Proof. Assume that u(7T) < co and v(W) < cc.
Let f € L?(u). From (2.5) and (2.9),

SwPrf(s) — /Wsow<s>f<PTf><w>du<w>
/ uls) / o (®) F(H)dp(t)du(w).
w T

Wy (W).

Since by (2.1),

/ / ’@w 8)puw (t ’dﬂ t)dv(w JAVAY ”f”Lz(u) <o
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by Fubini’s theorem,

Swhrf() = [ 10) [ puts)enaruwan.
so that
SwPrf(s) = [ as.0f@an). (42)
T
where
q(s,t) = /W Yw(8)pw®)dv(w), teT,se0,00]
Fort €T, let

a(s) = a(st) = [ ulshput)av ).
Then the inversion formula (2.3) shows that

F(g0)(w) = Lwepu (1),
By Plancherel’s formula (2.4) it then follows

h s,t)[2du(s) = h 1(s)?dp(s) = N viw v )
/O|q<,t>|du<> /Olg()ldu() /O|f< )(w)2du(w) < (W)

By applying Holder’s inequality to (4.2),

|SwPr f(s)|* < IIfH%mL)/TI(J(svt)l2du(t)~
Hence - s
1w Pr g < Il ([ [ lats0Pauoants) "
By Fubini-Tonnelli’s theorem,

1/
1w Pr s < Il ([ [l 0Pau(s)auo) " < 1l Vil

Thus, the proof is complete. O

Another uncertainty principle for L?(u)-norm is obtained.
Theorem 4.4. Let T and W be measurable sets of [0,00] and f € L*(p). If
f is ep-concentrated to T in L?(u)-norm and F(f) is ey -concentrated to W in
L?(v)-norm, then
wTyv(W)>1—er —ew.
Proof. Let f € L?(u). From (2.8) it follows
If = SwPrfllL2 If = Swflle2u + 1Swf — SwPrfll2
ewll 2y + I1f = Prflleaqu
(er +ew)llfllz2)

IN A IA

The triangle inequality gives

1Sw Prfllezw) > 1fllc2q — If = SwPrflirzy > (1 —ew —er)| fllzz(n)-
It then follows that ||Sw Prf| r2(u) > (1 —ew —e7)|| fllL2(u)- The Lemma 4.3 show

that
Vi W fllL2u) = (1 —er — ew)ll fllL2(w)

which gives the desued result. [
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An uncertainty principle for L' (u) N L?(u) theory is obtained.
Theorem 4.5. Let T and W be measurable sets of [0,00[ and f € L*(u) N L?(p).
If f is ep-concentrated to T in L*(u)-norm and F(f) is ew -concentrated to W in
L?(v)-norm, then
WD) > (1— 7)1 — ew).
Proof. Assume that u(7T) < co and v(W) < cc.
Let f € L'(u) N L?(u). Since F(f) is ey-concentrated to W in L?(v)-norm, then

1/2
liso < ewliflzgn + ([ 1F@)Paww)
< ewllfllezgn + VATIFGD =0
Thus by (2.2),
(1= e 20 < VIV 3o (43)

On the other hand, since f is ep-concentrated to T in L (u)-norm,

1l < erlflg + [ 17Ok
< erllfllerg + Vu(DIfl 2
Thus
(I —en)lfllzrw < VD) fllz20)- (4.4)
Combining (4.3) and (4.4) we obtain the result of this theorem. O
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