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ABSTRACT. The main purpose of this paper is to derive some new generalizations of weighted Ostrowski
type inequalities. The new established inequalities are carried out for a twice differentiable mapping in
different L, spaces. Applications throught considering Griiss type inequality and numerical integration are

also provided.

1. INTRODUCTION

The Ostrowski’s inequality [1] can be considered as a very powerful tool for enhancement of numerical
integration rules. It provides convenient potintial window for establishing bounds for the well known Newton-
Cotes rules. To illustrate this point, consider f : [a,b] — R to be a bounded function such that b — a is

small, then
b
1= [f @

can be, simply, approximated by sampling at one point as I*(x) = (b — a) f(z) for some z € [a,b]. Now, if
f/ exists and is bounded, the inequality of Ostrowski may be stated as follows

+b
I*(z) — I < 1 ﬁ ' 1.1
e - a< g (5 I (1)

Received 2018-02-12; accepted 2018-04-27; published 2018-07-02.
2010 Mathematics Subject Classification. 26D15.

Key words and phrases. Ostrowski’s inequality; Weight function; Griiss inequality; Numerical integration.
(©2018 Authors retain the copyrights

of their papers, and all open access articles are distributed under the terms of the Creative Commons Attribution License.

503


https://doi.org/10.28924/2291-8639
https://doi.org/10.28924/2291-8639-16-2018-503

Int. J. Anal. Appl. 16 (4) (2018) 504

where

1l = sup [f"(z)].

z€la,b]
Consequently, over the past few decades, there have been many studies on obtaining sharp bounds of

(1.1) by considering the mappings and their derivatives in various Lebesgue spaces. Further, the new bounds
have been carried out by implementing weighted and non-weighted Peano kernel. Several weighted and non-
weighted versions of (1.1) have been derived. Applications in both numerical integration and probability
are also presented in this regards. For instance, Roumeliotis et. al [2] proved a weighted integral inequality
of Ostrowski’s type for mappings whose second derivatives are bounded. Cerone [3] obtained bounds for
the deviation of a function from a combination of integral means over the end intervals covering the entire
interval. Qayyum et. al [4] established a new Ostrowski’s type inequality using weight function which
generalizes the inequality in [3]. Barnett [5] reported a companion of (1.1) and the generalized trapezoid
inequalites for various classes of functions, including functions of bounded variation, Lipschitzian, convex
and absolutely continuous functions. Recently, Budak et. al [6] presented a new generalization of weighted
Ostrowski’s type inequality for mappings of bounded variation. Several further generalizations of (1.1) are
provided in [7] - [16].

In [12], Qayyum et. al proved the following non-weighted generalization of Ostrowski’s type integral

inequality.

Theorem 1.1. Let f : [a,b] — R be a twice differentiable mapping. Then

’m[a(m—a)—ﬁ(b—f)]f'(x)—f(x)
T b

1 « B
+ g [m_a/f(t)dt+b_m/f(t)dt] ;

oo — o + 86— )] LD

f" € Lo [a,b],
1 q _ \at+1
< (2q+1)% [OL (1131 il)||f”| f// c Lp [a,b}, (12)
+ﬂq(b—x)q+}q2(a+ﬁp)v p>17l+l:1’

[a(z—a)+B(b—x)
tla@-a)-b-a) 1 fre L0

where a and B are non-negative real numbers such that not both zero.

In this paper, motivated by the non-weighted case in [12], new general weighted Peano kernel has been
defined. To obtain new general weighted inequality of Ostrowski’s type that is more generalized and extended

as compare to [12]. We consider a twice differentiable mapping f where, respectively, f” € Lo, f" € L,
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and f” € Li. Moreover, we utilize Griiss type inequality to present the perturbed verion of our result.
Finally, we investigate the new general weighted inequality in numerical integration.

Before we introduce our main result for a general weighted inequality of Ostrowski’s type, we commence
with the following definition and lemma.

Definition: Let w: (a,b) — (0,00) be a non-negative weighted function (density) such that

b

/w(t)dt<oo.

a

The domain of w may be finite or infinite and may vanish at the boundary points. We denote the moments

b b
m(a,b) = bia/w(t)dt’ M(a,b):bia/tw(t)dt,
b
N(ab) = bia / Puw(t)dt,  p(a,b) = J‘nf((sé’))
o%(a,b) = ZEZ’ZZX — 1i2(a,b). (1.3)

Furthermore, for a function f : [a,b] — R, we define the functional

b
S(fsa,b) = bia/f(t)w () dt. (1.4)

Lemma 1.1. Let f : [a,b] = R be a twice differentiable mapping. Denote by P,, : [a,b}2 — R the weighted

Peano kernel function that is given by

o [ —ww(wde, € o)
P,(z,t) = 4 (1.5)
ﬁﬁ bf (t —vw)w(u)du, te (z,b],
where a, B > 0 and not both zero. Then the following identity
b
[ Powtir " @it = (fi0.5), (16)
where
F(finf) = i {lam(a. )@ = pla.a)
+ Bm(z,b)(z — p(z,b))] f '(x)
— [am(a,z) + pm(z,b)] f(z)
+aS(f;a.x) + BS(fix.b)} | (1.7)

holds.
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Proof: From (1.5), we have

b

/ Pu(a,t)f " (t) dt

a

_ aHm_a/(/ (t—w)w ) oy

—f(@) / wlu)du+ [ f(t)w(t)dt]

Ié] 1
+a+ﬁb—x

x)]w(u)du+jf(t)w(t)dt] .
b P

After further simplification, the identity (1.6) can be obtained.

b
[f () / (& — ) w(u)du

2. MAIN RESULTS

Theorem 2.1. Let f : [a,b] = R be a twice differentiable mapping in (a,b) . Then Vz € [a,b], we have

|F(f;a,B)]

{am(a,x) [(ZE — u(a,x))? + o2 (a,:c)]

+ Bm(z,b) [(z — p(z, b))% + o2 (,b)
i D e,

< @—a)? 1 ) (2.1)
ﬂq b 2 q ||f //|| f € Lp [a/a b] )
+Wwf(bft) mi(t,b)dt| 5T p>1,%+$=1,
max {am(a, x) (x — p(a, z)) ,
Bm(a,b) (u(a,b) — )} Ll "Ly a.

where the functional F (f;a, ) is defined in (1.6).
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Proof: Taking the modulus of the right hand side of (1.6), yields

b b
[ Pwnsr @d < [P0l 0l 22)
Hence, for f" € Ly [a, b
b
F(fa) <0 [ 1Pate ] dr (2.3)
Now, using (1.5) provids,
b
/|Pw(:c,t)| dt

—x/uw(u)du—l—%/th(t)dt
153 1 x? /
+a+ﬂb—x 2/w(u)du
b b
—x/uw (u) du—l—%/th (t)dt| . (2.4)

Thus, by combining (2.3) and (2.4), the first inequality of (2.1) results.
Further, from (2.2) and by using Hélder’s integral inequality for f " € L, [a,b], we have
1

b
F(faB) < 11 / Pu(a.t)"dt] | (2.5)

where ]% + % =1 with p > 1. Now, by (1.5) and utilizing the weighted mean value theorem for integrals,

we have

b
/\Pw(x,t)|th
a

x t q

() e (o)

a a
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+<a-€5> b—ij jt‘“ dt
- (aiﬂ) x—aq/(t;a/w
+<aiﬂ> b—a: /b e /w (w)du | dt, (2.6)

and so, by considering (2.5) and (2.6) the second inequality of (2.1) is obtained.
Finally, for f” € Ly [a,b], we have from (1.6)

F(fia,B) < t:Fp]|P w (@ OIS (2.7)
where,
1 xr
t:}g)b] |P,(x,t)] = max aiﬂ - / (x —uw) w(u)du ,
g1
a+ﬁbf:c/(u_x)w(u)du
= - i 5 max {am(a, z)(x — p(a, ) ,

pm(x,b)(u(z,b) — x|} . (2.8)

Therefore, combining (2.7) and (2.8) gives the third inequality of (2.1), and so, the theorem is now

completely proven.

Remark 2.1. Setting w(u) = 1 in Theorem (2.1) provids the corresponding non-weighted result (1.2) in [12].

For different weights, a variety of results can be obtained.
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Corollary 2.1. Let the condition of Theorem (2.1) holds. Then

[F(f;a,B)]

IN

{am(a,z) [(z — u(a, z))? + o (a, )]

+ Bm(z,b) [(J: — (2, 0))? 4 02 (=, b)}}

If "Nl
“2a + B)

IN

[oz (z —a)*m(a,z) + B (z — b)> m(z, b)}

M.

2ot f) (2.9)

Proof: From (1.5), we have

b
/|Pw(a:,t)|dt

1 « 1 r 2
_ §a+5$_a/(m—t) w (1) dt
8 1
2
+§a+ﬁb—x/(x_t) w (t) dt.

Now, by noting that

x

/ (x—t)°w(t)dt < t:}lp] (z —1)° [(z — a) m(a, z)]

= (z—a)’ m(a,z),

and

(z—t) wt)dt < teS](pr] (z — 1) [(b— ) m(z,b)]

se—

= (b—2)*m(z,b).
The desired second inequality of (2.9) can be obtained.
Corollary 2.2. Setting o = 8 in Theorem (2.1) gives
% {[m(a,z)(z — p(a, ) + m(z, b)(z — p(z,b))] f'(x)

— (m(a,z) + m(z,b)) f(x) + S(f;a,z) + S(f;2,0)}]
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{m(a,z) [(z — p(a,z))* + 0 (a,2)]
+ m(z,b) [(x — p(x, b)) + o2 (x,b)
" Ve,
X A—ee
< =L af(t —a)* mf(a, t)dt (2.10)
b % Hqu f//ELp[Uab}:
+(b—) f(b_t) m(t,b)dt ya p>1,%+%:1,
max {m(a,z) (z — p(a,x)) ,
mia,b) (u(ab) — )} P f" € Lilab].

Remark 2.2. Setting w(u) = 1 in Corollary (2.2) gives the corresponding non-weighted result obtained
by [12] for the case o = .

Corollary 2.3. Setting x = (a +b) /2 in Theorem (2.1) gives

1 a+b a+b a+b

w{[am(av o) (5 ))
a+b at+b a+b ,(a+b
() (e () ()

—[am( o) oo ()l ()

+aS(f, a, b>+BS(f ;bb)}‘

(i, 242) (532 ~ o, 55207 + 0* (0, 552)]
O ROl e R C L) | S
oo a? )
X1 "l
a;b
at [ (t—a)*mi(a,t)dt
< a (2.11)
b " e Fre bl
f//
+B7 [ =t mAtb)dt | Goyatsy p>1141=1,
at
2
max{ozm(a, aTb) (a;b - /”'(a'a aTer) )
f//
B m(e£,b) (u(2gt,b) — 22y} L f7e Lijat].
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Remark 2.3. Setting w(u) = 1 in Corollary (2.3), gives the corresponding non-weighted result obtained
by [12] when x = (a + b) /2.

Corollary 2.4. If (2.10) evaluated at x = (a +b) /2, then

b b b
5 { e S e S5
b - ] £
b b b
—(m(a,a;— )+m(a—2|— 7b))f((l;_)
+ 8l 50+ 5 25 |
{mfo, 250 (48 — 0, 5" + 2 0.8
+ m(“§b7b) (45" — u(=52,0) + 0% (452, ) ]}
Ao Fre Loy
I (t—a)® mi(a, t)dt
< 9 (2.12)
b am £ € Lylab,
+j£®—ﬂ%mWWMt %p%7 p>11+1=1,
max {m(a, +b) (% ,%)) )
(e, 6) (52, b) — %ﬁ}”ﬂv 7€ Lfa.t].

3. PERTURBED RESULTS
The Griiss inequality is as follows [13].

Theorem 3.1. Let f, g : [a,b] — R be integrable functions on [a,b] such that ¢ < f(z) < ® andy < g(x) <T

YV € [a,b], where @, ®, v, I' are constants. Then

b_a/f dw~——/f /f@ﬁ

(@ =) (=), (3.1)

<

N

where the constant i is sharp.

Now, the perturbed verions of the results in the pervious section may be obtained by using Griiss type

inequalities involving the Cebysev functional [14],

T(fvg):M(fg§aab)_M(f§a7b)M(g§a7b)7 (32)
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where

is the integral mean of f over [a,b].

Theorem 3.2. Let f : [a,b] = R be a twice differentiable mapping such that v < f "(z) <T Vz € [a,b] and
a>0,6>0, a+5#0. Then

’F(f;aaﬂ)—Q(a]:_ﬁ)

+ Bm(z,b) [(z — p(x,b)? + o? (2,b)]]]

[If " _ k} :

F
2

[am(a,z) [(z — p(a, 2))* + 0 (a,z)]

IN

IA

(b—a)N
(b—a) T —~)
4(a+p)
ﬂm(l‘, b) (/L(.%', b) - CL‘)} ’ (33)

IN

max {am(a,z) (x — p(a,z)) ,

where F (f;a, B) is given by (1.7), k= (f'(b) — f '(a)) / (b—a), and

7),
[ xfa>2/z (t — a)* m?(a, t)dt
(

5 \? £t m? 1
b— ) / “bM] Hat 20 —a) (3.4)

—{[am(a,2) [(z - p(a,x))* + 0% (a,)]

+

+ ) (o D)+ 0 0] g | } -

Proof: Replacing f(t) by P,(z,t) and g(t) by f " (x) in (3.2) yields,
T (Po(x,t),f"(x)) = M(Py(z,t)f"(x);a,b) (3-5)

—M(Pu(x,t);a,b)M(f "(x);a,b).
Now, by using both (1.6) and (2.4), we have

T(Puw0),f"(@) = o {F(fia0)
k

2(a+p)

+ Bm(x,b) [(x — u(z, b))2 + 02 (z, b)” } , (3.6)

[am(aa SU) [(:L' - M(a7 x))z + 02 (CL, Z)]
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where k is the secant slope of f ' over [a,b] as given in (3.4) . Moreover, by [3], we have

(Pu(@,t), Pu(a,t) T2 (f "(2), f "(2))

(Po(a,t), f"(z) € La[a,b] )

Nl

T (Po(z,t), f " (2)) T

IN

%T% (P, (z,1), P (2,1)),

IN

(v < f"(z) T, Va € [a,b])

IN

(@—¢) (=), (3.7)

((p < Py(a,t) <®, ¥ (a,1) € [a,b]2) .

NG

But,

[N

1 12 2
- —k
[ 147
I'—~y
< — .
< 7 (:5)
where v < f"(z) <T, V& € [a,b].
Now, for T2 (P, (x,t), P, (z,t)), we consider (1.5) as follows
0 < T3 (Py(x,t), Plx,t))
= [M((Pa(,1)0,b) = MP(Pu(x,t);a,5)]
b 23
) b [ Py(x,t)dx
= 2de- e
= b_a/(Pw(x,t)) dx ' a
= N(x), (3.9)

where N(z) is given in (3.4).
Therefore, by combining (3.6), (3.7), (3.8), and (3.9) gives the first and the second inequalities of (3.3).

Further, to determine the values of ¢ and ® for which ¢ < P, (z,t) < ®, V¥ (z,t) € [a,b]*, it may be noticed
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from the definition of P, (z,t) in (1.5) that for a, 8 > 0, a + 8 # 0, we have

® = sup P,(z,t)
te(a,b]

= = j_ 3 max {am(a, z) (x — p(a, ), Bm(z,b) (u(z,d) —x)},

¢ = inf P,(x,t)=0. (3.10)
t€la,b]

Hence, from (3.6), (3.8), (3.10) and the last inequality in (3.7), we obtain the third inequality in (3.3)

and the theorem is now completely proved.

4. APPLICATION IN NUMERICAL INTEGRATION

Leta=0( << <Gr1<@G=z=0<m <-+<Np_1 <1, = b be a partition of the interval
[a,b}, with xr; € [Ci,CH_l] for 7 = 0,1, ..... ,n— 1, J?; (S [T]j,?]j+1] fOI“j = 0,1, ..... ,n — 1, § = Ci-i-l — Ci, and

A =141 —n;. Consider the following general quadrature rule.

A(ﬂ( 1, )
= aZmz xi) — (wi — pa) [ (20)]

+ﬁZm ) — (&) =) £ (23)] (4.1)

Theorem 4.1. Let the conditions of Theorem (2.1) hold. The following weighted quadrature rule for weighted

/f dt+A/f

= (fa<7n7w)+R(f7<7nax)a (42)

integral holds

where A (f,(,n,x) is defined by (4.1), the remainder R (f,(,n,x) satisfies the estimate

R(f,¢m,x)
< {azmz{ — i) +0ﬂ
2 I£ "
+ 8 m; {(1’? - 1) +0}f2} 5 (4.3)

2 * * *2 -
and the parameters m;, p;, o;, mj, Wi, and o;= are given by

mi = m((,Giv1), i = (G, Giv1),  0f =0 (Giy Giv) s

my = mmn),  wy=pmn4), end o =0 (0;,1m41) - (4.4)
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Proof: Applying the first inequality of (2.1) over the interval [(;, (;41] with = 2; € [(;, {;+1] and over

the interval [n;,n;41] with z = 27 € [n;,1;11] gives

lami(zi — i) f (i) + Bmj (25 — pi)f ' («f) — amif(x:) + Bm] f(2])

Git1 Nj+1
+%/f(t)w(t)dt+§ / F(t)w (1) dt
Gi M4

< fom, (@) + o)+ B (a5 — )+ 2]y 1 D,

for all 3,5 =0,1,......,n — 1. Summing over 4, j from 0 to n — 1 and using the triangle inequality produces

the desired result (4.2).

Theorem 4.2. Let the conditions of Theorem (2.1) hold. The following weighted quadrature rule for weighted

integral holds

x b
< [ w5 [ e
= A(f,¢,n2)+ R(f,¢n,2),

where A (f,(,n,x) is defined by (4.1), the remainder R (f,(,n,x) satisfies the estimate

R(f,¢,n )

Cit1
qu

< 57/@—@)2qmq(§i,t)dt

Ci
I,
Ve,

g0 Mj+1 .
+xa (Mj+1 — ) ma(t,njq1)dt

5

(4.5)

Proof: Applying the second inequality of (2.1) over the interval [(;, (;4+1] with z = z; € [, (;+1] and over

the interval [1;,7;+1] with = 27 € [n;,1;11] gives

|ami(a; — pa) f /(i) + Bmj (@] — @) f ' (2F) — amif(x:) + Bmj f(x7)

Ci+1 Nj4+1
+%/f(t)w(t)dt+§ / Ft)w (¢) dt
i ;
. Git1
«
< |5 [ e-arimena
Gi
q Mj+1 % ”f,,”
* % / (41 — )% m(t, 1;41)dt Tp.

nj
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forall 4,5 =0,1,......,n — 1. Summing over ¢,j from 0 to n — 1 and using the triangle inequality produces

the desired result (4.5).

Theorem 4.3. Let the conditions of Theorem (2.1) hold. The following weighted quadrature rule for weighted

integral holds

5/f dt+A/f
= A(f.Gn.2)+ R (£,

where A (f,C,n,x) is defined by (4.1), the remainder R (f,(,n,x) satisfies the estimate

R(f7 C,T]’:l:)
< max [am; (z; — ) , Bm (w5 —25)] 1f "Il - (4.6)

Proof: Applying the third inequality of (2.1) over the interval [(;, (;y1] with @ = a; € [, (;+1] and over

the interval [1;,7;+1] with = 27 € [n;,1j11] gives

lami(z; — i) f ' (@i) + Bmj (25 — pi)f ' («f) — amif(x:) + Bm] f(2])

Cit1 Nj4+1
+5 [ o ﬁ+*/f
G

< max{ami (@i — ) ,ﬁm; (/i; - x;)} f ””1

for all 3,5 =0,1,......,n — 1. Summing over 4, j from 0 to n — 1 and using the triangle inequality produces

the desired result (4.6).
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