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ABSTRACT. A generalization of multiplier, controlled g-frames and g-Bessel sequences to *x-g-frames and
x-g-Bessel sequences in Hilbert pro-C*-modules is presented. It is demonstrated that controlled x-g-frames

are equivalent to x-g-frames in Hilbert pro-C*-modules.

1. INTRODUCTION

Frame theory is an application of harmonic analysis. This theory has been rapidly generalized to Hilbert
spaces and Hilbert C*-modules. In 2005, Sun [22] introduced the notion of g-frames as a generalization of
frames for bounded operators on Hilbert spaces. Frank-Larson [5] have extended the theory for elements of
C*-algebras and (finitely or countably generated) Hilbert C*-modules have been considered in [1].

It is well known that Hilbert C*-modules are a generalization of Hilbert spaces where the inner product

takes values in a C*-algebra rather than in the field of complex numbers. The theory of Hilbert C*-modules
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has applications in the study of locally compact quantum groups, complete maps between C*-algebras, non-
commutative geometry and KK-theory. Not all properties of Hilbert spaces hold in Hilbert C*-modules. For
instance, the Riesz representation theorem for continuous linear functionals on Hilbert spaces can not be
extended to Hilbert C*-modules [23] and there exist closed subspaces in Hilbert C*-modules that have no
orthogonal complement [16]. Moreover, as known, every bounded operator on a Hilbert space has an adjoint
whereas there are bounded operators on Hilbert C*-modules which do not have this property [17]. So, it is
to be expected that frames and *-frames in Hilbert C*-modules are more complicated than those in Hilbert
spaces. The properties of g-frames for Hilbert C*-modules have been widely investigated in the literature (
see [1,5,12,25], and the references therein).

The paper is organized as follows.In the next section, we give a brief survey of the fundamental definitions
and notations of Hilbert pro-C*-modules.

Section 3 is devoted to investigating *-g-frames with A-valued bounds and analyzing their elementary
properties. In Section 4 we define the concept of controlled *-g-frames and we show that a controlled x-g-
frame is equivalent to a *-g-frame in Hilbert pro-C*-modules. Finally, in section 5 we define multipliers of

controlled *-g-frame operators in Hilbert pro-C*-modules.

2. PRELIMINARIES

In this section, we recall some of the basic definitions and properties of pro-C*-algebras and Hilbert
modules over them [7,15,18].

A pro-C*-algebra is a complete Hausdorff complex topological x-algebra A whose topology is determined
by its continuous C*-seminorms in the sense that a net {a)} converges to 0 iff p(ay) — 0 for any continuous

C*-seminorm p on A and we have:

(1) plab) < p(a)p(b);
(2) pla*a) = p(a)*;
for all C*-seminorms p on A and a,b € A.

If the topology of pro-C*-algebra is determined by only countably many C*-seminorms, then it is called
a o-C'*-algebra.

Let A be a unital pro-C*-algebra with unit 14 and let a € A . Then spectrum sp(a) of a € A is the
set {A € C: Al4 — a is not invertible}. If A is not unital, then the spectrum is taken with respect to its
unitization A.

If AT denotes the set of all positive elements of A, then A™ is a closed convex C*-seminorms on A. We

denote by S(A), the set of all continuous C*-seminorms on .A.

Example 2.1. Every C*-algebra is a pro-C*-algebra.
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Example 2.2. A sub-closed x-algebra of a pro-C*-algebra is a pro-C*-algebra.

Proposition 2.1 ( [6]). Let A be a unital pro-C*-algebra with an identity 14.Then for any p € S(A), we

have:
1) p(a) = p(a*) foralla € A;

p(la) = 1;
Ifa,b € A* and a < b, then p(a) < p(b);

(1)

(2)

(3)

(4) If 14 < b, then b is invertible and b=1 < 14;

(5) If a,b € AT are invertible and 0 < a < b, then 0 < b~ ! <a~%;
(6) If a,b,c € A and a < b then c*ac < c¢*be;

(7)

Ifa,b e A' and a®> < b2, then 0 < a < b.

Definition 2.1. A pre-Hilbert module over pro-C*-algebra A, is a complex vector space E which is also
a left A-module compatible with the complex algebra structure, equipped with an A-valued inner product
(.,.): Ex E— A which is C-and A-linear in its first variable and satisfies the following conditions:

)" =y, x);

(2) (z,x) >0;

(3) (z,z) =0 iff £ = 0;

—~
—_
~—
—~
8
<

for every x,y € E. We say E is a Hilbert A-module (or Hilbert pro-C*-module overA) If E is complete with

respect to the topology determined by the family of seminorms

pe(x) = vp({z,z))  weE,peSA).

Let E be a pre-Hilbert A-module.By [6], for p € S(A) and for all z,y € E, the following Cauchy-

Bunyakovskii inequality holds:
p((z,9)* < p((2, 2))p({y, ).
Consequently, for each p € S(A), we have:
pelazx) < pla)p(x), ac A,z e E.

Let A be a pro-C*-algebra and E and F' be two Hilbert A-modules. An A-module map T : E — F is

said to bounded if for each p € S(A), there is C, > 0 such that :
pp(Tz) < Cp. pp(x) (z € E),

where pg, respectively pp, are continuous seminorms on F, respectively F. A bounded .A-module map from

E to F is called an operators from F to F' . We denote the set of all operators from E to F' by Homa(E, F),
and we set Homa(E, F) = Enda(E)
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Proposition 2.2. Let T* € Homy(E,F). We say T is adjointable if there exists an operator T* € T €
Homy(F, E) such that:

<T1‘, y> = <.’L‘, T*y>

holds for all x € E,y € F.
We denote by Hom(E, F), the set of all adjointable operator from E to F and End(E) = Hom*(E, E)

Proposition 2.3 ( [6]). LetT: E — F and T* : F — E be two maps such that the equality

<T1‘, y> = <;E, T*y>

holds for allx € E, y € F.Then T € Hom’(E, F).

It is easy to see that for any p € S(A), the map defined by:
pE,F(T) =sup{pp(T(z): z € E, py(z) <1}, T € Homa(E,F),
is a seminorm on Hom 4 (F, F).

Definition 2.2. Let E and F be two Hilbert modules over pro-C*-algebra A. Then the operator T : E — F

is called uniformly bounded (below), if there exists C > 0 such that:

pp(T2) < C pp(a). (2.1)

(C pr(x) <pp(Tx)) (2.2)

The number C in (2.1) is called an upper bound for T and we set :
IT||co = inf{C : C is an upper bound for T'}.
Clearly, in this case we have:
P(T) < |Tlloos Vo e S(A).

Let T be an invertible element in End’ (E) such that both are uniformly bounded. Then by [2, Proposition

3.2], for each x € E we have the inequality
1Tz, @) < (Tx, Ta) < ||T| 3%z, ). (2.3)
The following proposition will be used in the next section.

Proposition 2.4 ( [6]). Let T be an uniformly bounded below operator in Hom 4(E, F). then T is closed(range)

and injective.
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3. #*-G-FRAMES IN HILBERT PRO-C*-MODULES

Throughout this section A is a pro-C*-algebra, U and V are two Hilbert A-modules. also {V;};cs is a

countable sequence of closed submodules of V.

Definition 3.1. A sequence A = {A; € Hom*(U,V;)}jes is called a x- g-frame for U with respect to
{Vities if
CUf NC <3 e, f A f) < D(f, f)D*
for all f € U and strictly nonzero elements C, D € A.
The number C and D are called *-g-frame bounds for A. The x-g-frame is called tight if C = D and a
Parseval if C' = D = 1. If in the above we only have the upper bound, then A is called a *-g-Bessel sequence.
Also if for each j € J,V; =V, we call A a x-g-frame for U with respect to V.

We mentioned that the set of all g-frames in Hilbert pro-C*-modules are a subset of the family of *-
g-frames. To illustrate this, let A = {A;};cs be a g-frame for U with respect to {V;};ec;. Note that for
feu,

(VORLAU, VO < 32 je (M £, 85 F)(VD)LalS, ) (VD) 1a
Therefore, every g-frame for U with real bounds C amd D is a #-g-frame for U with A-valued *-g-frame

bounds (v/C)14 and (v D)1 4.

Example 3.1. Let (?(A) be the set of all sequences (an)nen of elements of a pro-C*-algebra A such that
the series Y ..y aia; is convergent in A. Then, by [2, Example 3.2], (*(A) is a Hilbert module over A with
respect to pointwise operations and inner product defined by:
((ai)ien, (bi)ien) =Y aib;.
ieN
Let a = (ai)ien and b = (b;)ien in (2(A). We define ab = {a;b;}ien and pla) = /p({a,a)) and a* =
{@i}ien and (a,b) = ab* =3, a:b;.
Now, let j € J:= N and define f; € (*(A) by f; = {ff}leN such that

1.1,4 i =J;
0 i# 7, Vj € N.
Set Aj : 2(A) — A by Ay, (U) = (U, f;) for any U € £>(A) . We see that

25es(0y; (U), Ap; (U)) < (U, U).

Thus{A;};cs is a *-g-Bessel sequence .
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Definition 3.2. Let A = {A; € End(U,V;)}jcs be a x-g-frame for U with respect to {V;};c; with bounds
C and D. We define the corresponding *-g-frame transform as follows:
Th:U—= B Vi Taf={Af: jeJ}, for all f € U.
Since A is a x-g-frame, hence for each f € U we have:
C(f.f) C* <X, (N FAF) <D (f.f) D",
So Ty is well-defined. Also for any p € S(A) and f € U the following inequality is obtained:
p(C)2 u(f) < Py, v, (Taf) < p(D)? Pus(f):

From the above, it follows that the x-g-frame transform is an uniformly bounded below operator in End (U, @JEJ

Thus by Proposition 2.4, Tx is closed and injective.

Now, we define the synthesis operator for -g-frame A as follows:

Ty : @ Vi =0, Tx({y;}5) ZA* Yi), (3.1)

J€J JjeJ

where A} is the adjoint operator of A;.

Proposition 3.1. The synthesis operator defined by (3.1) is well-defined, uniformly bounded and the adjoint

of the transform operator.

Proof. Since A = {A; : j € J} is a *-g-frame for U with respect to {V;};cs, there exist C, D € A such that
for any f € U,

Cy<fmf>CV S E:j€J<Ajf7Ajf>§;l)<f7f>l)

Let I be an arbitrary finite subset of J. Using the Cauchy-Bunyakovskii inequality and [24, Lemma 2.2], for
any p € S(A) and (y;); € P;c; V; we have:

P> A3 (yy)) =sup{p(d Ai(y). ) feU, B(f) <1}

jel jel
=sup{p(> (v, A;f)): feU, p(f) <1}
jel
1/2 1/2
< swp | pO> (ys,u5)) p(O (M F A1)
p(f)SI jel je]
< sup  p(DD*)'p(f)(p Y (yj up)"?
ﬁ(f)gl ]EI
< ) (0> (s, u)'?

jeI

i)
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Now, since the series . ;(y;, y;) converges in A, the above inequality shows that .. ; A7 (y;) is convergent.

Hence T} is well-defined. On the other hand, for any f € U and (y;); € EB]EJ V;, we have:

(TA(f), (y);) = (A5 )5, (7))
= (A;f,5)

jeJ

= (. Ay

jeJ

= <f,ZAjyj>

jeJ
= (f,Tx(yj)jer)-

Therefore by Proposition 2.2 it follows that the synthesis operator is the adjoint of the transform operator.

Also, for any p € S(A) we have:
pu(Ti(W) < (D) bg,., v; W), y=(4)i € Djes Vi-
Hence the synthesis operator is uniformly bounded. O

Let A ={A, , j € J} be a *g-frame for U with repect to {V;};cs. Define the corresponding *-g-frame

operator Sy as follows:
SAZTA*TA:U%U SA(f)ZZjGJA;Ajf.

Since Sy is a combination of two bounded operators, it is a bounded operator.

Theorem 3.1. Let A = {A;};cs be a x-g-frame for U with respect to {V;};es and with bounds C,D. Then

Sa is an invertible positive operator. Also it is a self-adjoint operator such that:
ClyC* < Sy < DIy D*. (3.2)
Here Iy is the identity function on U.

Proof. According to the definition of the transform operator, for any f € U we can write:
(Ta(), Ta(f)) = {Ajfier AN fier) = e s (NG FL MG )
Since A is a *-g-frame for U with bounds C' and D, for each f € U it follows that
C{f, 1O < (Ta(f), Ta(f)) < D{f, f)D*.
On the other hand,

(SA(f), [y = (TRTA(S), ) = (Ta(f), Ta(f)) = (£, TRTA(S)) = (f, Sa(f))-

Consequently, Sy is a self-adjoint operator. Also, for any f € U, we obtain
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C{f, NC™ < (Sa(f), f) < D(f, YD

It follows that *-g-frame operator is positive and (3.2) also holds. Moreover, since Sy is one-to-one it follows

that Sp is invertible. O

According to (3.2) and Proposition 2.1 we have the following Lemma

Lemma 3.1.
D' Iy (DY < Syt <o (Y,

Hence the x-g-frame operator and its inverse belong to End*(U).

Theorem 3.2. Let {A; € End(U,Vj)}jes and 3 ;e ;(Ajf,Ajf) converge in the semi-norm for f € U.
Then A = {A;}jes is a x-g-frame for U with respect to {V;};cs if and only if there are two strictly nonzero
elements C, D € A such that for every f € U,
p(C™H) ™ p((f, MNP < p( (A F A )
jeJ

< p(D) p((f, )))p(D"). (3.3)

Proof. If {A; € End(U,V})};cs is a x-g-frame for U with respect to {V;};cs, then
(£, 1)) < CTH QN F A /)(C) T
JjeJ
and

O (A £.A6) < D(f, f)D*.

JjeJ
Therefore, by Proposition 2.1,
p(CI) 1 p((f, PP(C ) < p(D (A, A5 )
jeJ

< p(D) p({f, ))p(D"). (3-4)

For the converse, let (3.3) hold. Then we define a linear operator as follows:
MU=V, M) ={Nfljes, VfeT,
JjEJ

(MFMP) = (N f 0 ). VfeU.

jeJ

Hence, by (3.3), we have
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This shows that M is uniformly bounded. We write M*M = K. Then (M(f),M(f)) = (M*M(f), f) =
(K(f), f). Therefore, K is positive. As, K* = (M*M), K is self-adjoint. On the other hand,

(K2 f K2 f) = (Kf, f) =Y (A f, A;f).
JjeJ

Now, according to Proposition 2.4 and (3.3), K 2 is invertible and uniformly bounded; therefore, by [2,

Proposition 3.2], we have:

K2 O 22 < (K2 (), K2(f)) < K2 |loolfs FIEZ o

Hence {A;};cs is a *-g-frame. O

4. CONTROLLED *-G-FRAMES IN HILBERT PRO-C*-MODULES

In this section, we define the concept of multipliers for *-g-Bessel sequences and we show that controlled
x-g-frames are equivalent to *-g-frames.

Let A be a pro-C*-algebra, U and V be two Hilbert A-modules. also, let {V;};cs be a countable sequence
of closed submodules of V', L(U, V') and L(U) the collection of all bounded linear operators from U into V'
and U respectively. gl(U) the set of all bounded operators with a bounded inverse and gl™ (U) be the set of

positive operators in gl(U).

Proposition 4.1. Let A={A; e L(U,V;): je J} and 0 ={0; € L(U,V;) : j € J} be x-g-Bessel sequences
with bounds Bx and By. If for m = {m;}; C {>*(R), the operator

M=Mppg:U—=U
M(f) =" m;A30;f, (4.1)
J
is well-defined, then M is called the x-g-multiplier of A,0 and m.

Proof. Let I be an arbitrary finite subset of J. Using the Cauchy-Bunyakovskii inequality and [24, Lemma
2.2], for any p € S(A) and f € U we have:

p(>_miA30;f) = sup{p(d _m;A0;f,g): g€ U, plg) <1}

Jjel jJeI
= sup{p(D>_(m;0;f,A;9)): g€ U, plg) <1}
JeI
1/2 1/2

< sup | p(D_(m;0;f,m;6;f)) P> (A9, 059))

ﬁ(g)gl jeI jeI
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Since

Z<mj9jf7 m;0;f) = ng‘ (0;f,0;fym;
J

J

= (p(m;))*(6; 1,6, f)
J
< |lm||% Bo(f. /) B;,
so by Proposition 2.1 we have:

p(30;(m;05f,m;0; 1)) < [ml3.(B(f))?p(Bo)*.
Hence we have:
p(Y_mA50;f) < [mlloe P(f) p(Bo) p(Ba)
Jjel
(]
Definition 4.1. Let C,C" € gl™(U). The family A = {A; € L(U,V;) : j € J} is called a (C,C")-controlled

x-g-frame for U with respect to {V;}jes, if A is a *-g-Bessel sequence and

A(f, A* < (M CF,AC'f) < B, )BT, (42)
JjeJ
for all f € U and strictly nonzero elements A, B € A.
A, B are called controlled x-g-frame bounds. If C' = I, we call A = {A;}; a C-controlled x-g-frame for
U with bounds A, B. If only the second part of the above inequality holds, it is called a (C,C")-controlled

x-g-Bessel sequence with bound B.

Lemma 4.1 ( [2]). Let X be a Hilbert module over C*-algebra B, S > 0, i.e. this element is positive in
C*-algebra L(U). Then for each x € X,

(S, x) < ||Sl{x, z).
Proposition 4.2. Let C € gl*(H). The family
A={A €LUV)): je )
is a *-g-frame if and only if A is a C?- controlled *-g-frame.
Proof. Let A be a C?- controlled *-g-frame with bounds A, B. Then

A, AT <Y (M CFACE) < B, )BT, for feU.

jeJ

Af. AT = A(CCTF,COTI HA" S A|CIP(CTH F.CTHH AT < |[C)P Y (n0C™ f,Ce7t ).

jeJ
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Hence

ACITHEPATCIT <D (A A1)

jeJ
On the other hand for every f € U

DML A =D (N ceT L eeT )

JjEJ Jje€J
<B(C™'f,C7'f)B*
< BIICTH*{f, /) B

These inequalities yield that A is a *-g-frame with bounds A||C~!||, B||C~!||. Conversely assume that A is
a *-g-frame with bounds A’, B’. Then for all f € U,

Af AT <D (NF A f) < B HB”.

jeJ
So for f € U,
> (MCF A CF) < B(CF,CP)B" < B|IC|°B".
jeJ
For the lower bound, since A is #-g-frame for any f € U,
Alf, AT = Ac~ief, et A"
< AlcTHers.onA”

< [C7HP Y (A CH, AC ).

jeJ
Therefor A is a C%-controlled *-g-frame with bounds A’||C 1|, B'||C~}|| O
5. MULTIPLIERS OF CONTROLLED *-G-FRAMES IN HILBERT PRO-C*-MODULES
In this section, we define the multiplier of a controlled x-g-frame for C-controlled x-g-frames in Hilbert

pro-C*-modules. The definition of general case (C, C’)-controlled *-g-frames is similar.

Lemma 5.1. Let C,C’" € gl™(U) and A ={A; € L(U,V;): j€ J},0={0; € L(U,V;): j€ J} be C"* and

C?-controlled *-g-Bessel sequences for U, respectively. Let m = (> . Then
My conc :U—U,

defined by

My conc fi= ijCGJ*»AjC’f,
jed

is a well-defined bounded operator.
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Proof. Let A = {A; € L(U,V;): j€ J},0 ={0; € L(U,V;) : j € J} be C"? and C?-controlled x-g-Bessel

sequences for U, with bounds B, B’, respectively. For any f,g € U and finite subset I C J,

p(>_m;COAC' ) <sup{p(d_ m;CO;A;C'f,g): g €U, plg) <1}

JeI jJeI
=sup{p(d>_(m;A;C"f,0,C*g)): g€ U, plg) <1}
JjeI
1/2 1/2
< sup | p() (m;A;C"f,miA;C'f)) p(> (0;C*g,0;C*g)) | .
ﬁ(g)gl jGI jGI

since

J

> (MmN CFm A C ) = m (A C A C! fym
j
= (p(my))*(A;C" f, 0;,C" f)
7
< |Im|%,B(f, f)B*.

So by Proposition 2.1 we have:

J

p(> (miA;C" f.miN;C'f)) = p(Y_ my(A;C'f, A;C' fyms)
i

< [Imll, (5()*p(B)*.

Hence

p(Y_m;CO;A;C"f) < |mll.. B(f) p(B) p(B)"

jer

This shows that M, cg,a,c is well-defined and

p(Mm.con,c) < |lmllo p(B) p(B)'. O
The above Lemma provides a motivation for the following definition.
Definition 5.1. Let C,C’ € git(U) and A = {A; € L(U,V;): je€ J},0={0; € L(U,V;): j € J} be C"
and C?-controlled *-g-Bessel sequences for U, respectively. Let m = > . The operator
Mm,conc :U—=U,

defined by
My.conc fi= ijC’G;AjC’f,
jed

is called (C,C")-controlled multiplier operator with symbol m.
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