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Abstract. In this paper we investigate linear algebraic structures in the set of product integrable matrix-

valued functions and find c-generated algebras in L([a, b],Rn×n)\L∗([a, b],Rn×n) and D([a, b],Rn×n)\L([a, b],Rn×n).

1. Introduction

If X is a vector space, a subset M of X is called lineable if M ∪ {0} contains an infinite dimensional

vector space. If X is a linear algebra and M ⊆ X, one calls M a κ-algebrable set if M ∪ {0} contains a

κ-generated algebra, that is, an algebra which has a minimal system of generators of cardinality κ. These

notions were coined by V.I. Guariy [1, 9] and then became a criterion for measuring how much large linear

algebraic structures could be found in a set of functions with weird properties (see [2, 6–8]).

Another criterion is the concept of strong algebrability introduced by Glab and Bartoszewicz in [5]. Let κ

be a cardinal number and X be a linear commutative algebra. A subset M of X is called strongly κ-algebrable

if M ∪ {0} contains a κ-generated algebra isomorphic to a free algebra.

In this paper we seek a linear algebraic structures in the spaces of product integrable function. The notion

of product integral has been introduced by Vito Volterra about the end of the 19th century, who studied
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linear systems of differential equations

W ′(t) = A(t)W (t), t ∈ [a, b]

W (a) = I,

where I is the identity matrix, A : [a, b]→ Rn×n is a given continuous function and W : [a, b]→ Rn×n is the

unknown function (see [17]). Later, Ludwig Schlesinger introduced the definition of the Riemann product

integral as follows: Given a tagged partition of an interval [a, b], which is a collection of point-interval pairs

D = (ξi, [ti−1, ti])
m
i=1, where a = t0 ≤ t1 ≤ ... ≤ tm = b and ξi ∈ [ti−1, ti] for every i ∈ {1, 2, ...,m}. We refer

to t0, t1, ..., tm as the division points of D, while ξ1, ξ2, ..., ξm are the tags of D.

Remark 1.1. If we replace ξi ∈ [ti−1, ti] by ξi ∈ [a, b], then the collection D is called a free tagged partition.

Given a function δ : [a, b]→ R+ (called a gauge on [a, b]), a free tagged partition is called δ-fine if

[ti−1, ti] ⊂ (ξi − δ(ξi), ξi + δ(ξi)) , i = {1, 2, ...,m}.

Now consider a matrix function A : [a, b]→ Rn×n with entries {aij}ni,j=1. Put

∆ti = ti − ti−1 , i = 1, 2, ...,m , υ(D) = max ∆ti
1≤i≤m

,

and define

P (A,D) =

m∏
i=1

(I +A(ξi)∆ti)

= (I +A(ξ1)∆t1)(I +A(ξ2)∆t2)....(I +A(ξm)∆tm).

In case the limit limυ(D)→0 P (A,D) exists, it is called the Riemann product integral of the function A on

the interval [a, b] and is denoted by the symbol (I +A(t)dt)
b∏
a
.

In this paper R([a, b],Rn×n) denotes the set of all Riemann product integrable functions.

Utilizing step functions Schlesinger generalized this definition and introduced the Lebesgue product inte-

gral (see [11,12,16]). Let us recall some facts that will be needed:

1. A function A : [a, b] → Rn×n is called a step function if there exists numbers a = t0 < t1 < ... <

tm = b such that A is constant function on every interval (tk−1, tk), k = 1, 2, ...,m.

2. For A ∈ Rn×n we will use the operator norm ‖A‖ = sup {‖Ax‖ : ‖x‖ ≤ 1} , where ‖Ax‖ and ‖x‖

denote the Euclidean norms of vectors Ax, x ∈ Rn.

3. A sequence of functions {Ak : [a, b]→ Rn×n}k∈N is called uniformly bounded if there exists a number

M ∈ R such that ‖Ak(x)‖ ≤M for all k ∈ N and all x ∈ [a, b].
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Theorem 1.1. [16, Lemma 3.5.4 and Theorem 3.5.5] Let Ak : [a, b] → Rn×n, k ∈ N, be a uniformly

bounded sequence of step functions such that limk→∞Ak(x) = A(x) a.e. on [a, b]. Then

lim
k→∞

‖Ak −A‖1 = lim
k→∞

b∫
a

‖Ak(x)−A(x)‖dx = 0,

and the limit lim
k→∞

(I +Ak(x)dx)
b∏
a

exists and is independent of the choice of the sequence {Ak}.

Definition 1.2. [16, Definiton 3.5.6] Consider the function A : [a, b] → Rn×n. Assume there exists a

uniformly bounded sequence of step functions Ak : [a, b] → Rn×n such that limk→∞Ak(x) = A(x) a.e. on

[a, b], then the function A is called Lebesgue product integrable and we define

(I +A(x)dx)

b∏
a

= lim
k→∞

(I +Ak(x)dx)

b∏
a

.

The symbole L∗([a, b],Rn×n) denotes the set of all Lebesgue product integrable functions. It is easy to

show that

L∗([a, b],Rn×n) = {A : [a, b]→ Rn×n : A is measurable and bounded}.

Let us recall that a function A : [a, b] → Rn×n is called Bochner intagrable if there is a sequence of simple

functions Ak : [a, b]→ Rn×n, k ∈ N such that lim
k→∞

Ak(t) = A(t) a.e. on [a, b] and

lim
k→∞

‖Ak −A‖1 = 0.

Thus by Theorem 1.1 and Definition 1.2, each A ∈ L∗([a, b],Rn×n) is Bochner intagrable.

After that Schlesinger extended the definition of L∗([a, b],Rn×n) to all matrix functions with Lebesgue

integrable (not necessarily bounded) entries and used the next symbole:

L([a, b],Rn×n) = {A : [a, b]→ Rn×n : (L)

b∫
a

‖A(x)‖dx <∞}.

The symbole (L) estands for the Lebesgue integral. Taking account of Theorem 1.1 it is natural to state the

following definition.

Definition 1.3. [16, Definiton 3.8.1] A function A : [a, b]→ Rn×n is called product integrable if there exists

a sequence of step functions {Ak} such that

lim
k→∞

‖Ak −A‖1 = 0.

We define

(I +A(x)dx)

b∏
a

= lim
k→∞

(I +Ak(x)dx)

b∏
a
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Remark 1.2. Since step functions belong to the complete space L([a, b],Rn×n), every product integrable

function also belongs to L([a, b],Rn×n). Moreover, step functions form a dense subset in this space, and

hence (I + A(x)dx)
b∏
a

exists if and only if A ∈ L([a, b],Rn×n), i.e., the Lebesgue integral
∫ b
a
‖A(t)‖dt is

finite.

Concerning the above definitions of product integral we have the following chain of strict inclusions:

R([a, b],Rn×n) ⊂ L∗([a, b],Rn×n) ⊂ L([a, b],Rn×n).

2. The exponential function and the product integral

Recall that for every A ∈ Rn×n the matrix exponential is defined by eA =
∞∑
k=0

Ak

k! .

Theorem 2.1. [16, Theorem 3.2.2] Consider a Riemann integrable function A : [a, b]→ Rn×n. Then

lim
υ(D)→0

m∏
k=1

eA(ξk)∆tk = lim
υ(D)→0

m∏
k=1

(I +A(ξk)∆tk) = (I +A(t)dt)

b∏
a

,

where partitions are as in introduction.

Remark 2.1. If A ∈ L∗([a, b],Rn×n) and {Ak}∞k=1 is a uniformly bounded sequence of step functions in

L∗([a, b],Rn×n) such that Ak → A a.e. on [a, b], then by [16, Theorem 3.6.3] we have (I+A(x)dx)
b∏
a

= lim
k→∞

(I+

Ak(x)dx)
b∏
a

. Now every function Ak is associated with a partition

Dk : a = tk0 < tk1 < ... < tkm(k) = b

such that

Ak(x) = Akj , x ∈ (tkj−1, t
k
j ),

and

lim
k→∞

υ(Dk) = 0.

So by the definition of Lebesgue product integrable functions,

(I +A(x)dx)

b∏
a

= lim
k→∞

(I +Ak(x)dx)

b∏
a

= lim
k→∞

m(k)∏
j=1

exp(Akj∆tkj ).

Moreover Schlesinger in [16, p. 485-486] proved the product integral might be also calculated as

(I +A(x)dx)

b∏
a

= lim
k→∞

m(k)∏
j=1

(I + (Akj∆tkj ).

We remark that each A ∈ L∗([a, b],Rn×n) is Bochner integrable and hence the product integrals
b∏
a

exp(A(t)dt

and
b∏
a

(I +A(t)dt) exist and equal to each other; see [13, Theorem 14, Theorem 16]. Thus according to the

previous discussion, Theorem 2.1 holds for all A ∈ L∗([a, b],Rn×n).
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Now cosider a function A ∈ L([a, b],Rn×n). By the definition 1.3 there exists a sequence of step functions

{Ak}∞k=1 such that

lim
k→∞

‖Ak −A‖1 = 0 and (I +A(t)dt)

b∏
a

= lim
k→∞

(I +Ak(t)dt)

b∏
a

.

Thus Theorem 2.1 does also hold for A ∈ L([a, b],Rn×n). So we can state the next theorem.

Theorem 2.2. Let A : [a, b] → Rn×n be a matrix function and A ∈ L([a, b],Rn×n), then exp ◦A is product

integrable.

3. Lebesgue product integrable functions

The next definition and theorem provide important tools for proving the existence of infinitely generated

algebras in the family of real or complex functions.

Definition 3.1 ( [3]). We say that a function f : R→ R is an exponential-like function (of rank m) whenever

f is given by f(x) =
m∑
i=1

aie
bix for some distinct nonzero real numbers b1, b2, ..., bm and some nonzero real

numbers a1, a2, ..., am.

Theorem 3.2 ( [3,4]). Let F ⊂ R[0,1] and assume that there exists a function F ∈ F such that foF ∈ F\{0}

for every exponential-like function f : R→ R. Then F is strongly c-algebrable. More exactly, if H ⊂ R is a

set of cardinality c and linearly independent over the rationals Q, then exp ◦(rF ), r ∈ H, are free generators

of an algebra contained in F ∪ {0}.

Note that in all proofs we apply Theorem 3.2

Theorem 3.3. The set of Riemann real valued integrable functions is strongly c-algebrable.

Proof. Volterra in [17] showed that the Riemann integrable functions are product integrable, thus by Theorem

2.1 and Theorem 3.2 the proof follows. �

Theorem 3.4. The set of real valued Lebesgue integrable functions is strongly c-algebrable.

Proof. Schlesinger in [12, 16] showed the product integrability of Lebesgue integrable functions. So by

Theorem 2.2 and Theorem 3.2, the proof is complete. �

Theorem 3.5. The set L([a, b],Rn×n)\L∗([a, b],Rn×n) is strongly c-algebrable.

Proof. Let A : [0, 1]→ Rn×n be given by A(x) = (aij(x))ni,j=1 such that for each i, j = 1, 2, .., n,

aij(x) =


1√
x

x ∈ (0, 1]

0 x = 0
.
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So for some y ∈ Rn×1 and ‖y‖ ≤ 1,

A(x)y =


a11 . . . a1n

...
. . .

...

an1 · · · ann



y1

...

yn

 =


a11y1 + a12y2 + · · ·+ a1nyn

...

an1y1 + an2y2 + · · ·+ annyn

 ,

‖A(x)y‖ ≥
√
n

x
(y1 + · · ·+ yn)

2 ≥ 1

x
, x ∈ (0, 1].

Thus A is not bounded and so A and exp ◦ (A) are not in L∗([0, 1],Rn×n). Now let Am : [0, 1] → Rn×n be

given by Am(x) = (
(m)

bij (x))ni,j=1 such that for each i, j = 1, 2, .., n,

(m)

bij (x) =

 0 x ∈ [0, 1
m ]

1√
x

x ∈ ( 1
m , 1]

.

Given an arbitrary i and j, and note that for m ≥ 2,
(m)

bij (x) is Lebesgue integrable on [0, 1]. Since

lim
m→∞

(m)

bij (x) = aij(x) for each x ∈ [0, 1], so by the Monotone Convergence Theorem aij(x) is Lebesgue

integrable. Thus A and exp ◦(A) are in L([0, 1],Rn×n) so f ◦ (A) is in L([0, 1],Rn×n), for every exponential-

like function f , and the proof is complete by Theorem 3.2. �

Theorem 3.6. The set of L([a, b],Rn×n)\R([a, b],Rn×n) is c-algebrable.

Proof. Since L([a, b],Rn×n)\L∗([a, b],Rn×n) ⊆ L([a, b],Rn×n)\R([a, b],Rn×n), the preceding theorem implies

that L([a, b],Rn×n)\R([a, b],Rn×n) is c-algebrable. �

4. Product integrability of Denjoy integrable matrix-valued functions

The following definition generalizes the concept of Denjoy product integration.

Definition 4.1. Consider the function A : [a, b] → Rn×n and let [c, d] ⊂ [a, b]. The oscilation of A on the

interval [c, d] is the number

osc(A, [c, d]) = sup {‖A(ξ1)−A(ξ2)‖ : ξ1, ξ2 ∈ [c, d]} .

The abbreviations AC, BV and ACG stand for “absolutely continuous”,

“bounded variations” and “generalized absolutely continiuous”, respectively.

Definition 4.2. Let A : [a, b]→ Rn×n and E ∈ [a, b].

1. The strong variation of F on E is defined by

V∗(F,E) = sup

{
n∑
i=1

osc(F, [ci, di])

}
,

where the supremum is taken over all finite collections {[ci, di] : 1 ≤ i ≤ n} of non-overlapping inter-

vals that have endpoints in E.
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2. The function F is of bounded variation in the restricted sense on E (briefely A is BV∗ on E ) if

V∗(F,E) is finite.

3. The function A is absolutely continuous in the restricted sense on E (briefely A is AC∗ on E ) if

for each ε > 0, there exists δ > 0 such that
n∑
i=1

osc(A, [ci, di]) < ε, whenevere {[ci, di] : 1 ≤ i ≤ n} is a finite collection of non-overlapping inter-

vals that have endpoints in E and satisfy
n∑
i=1

(di − ci) < δ.

4. The function A is generalized absolutely continuous in the restricted sense on E (briefely A is ACG∗

on E ) if A
∣∣
E

is continuous on E and E can be written as a countable union sets on each of which

A is AC∗.

Note that in general, V (F,E) ≤ V∗(F,E) and henceA isBV (AC,BV G,ACG) on E if it isBV∗(AC∗, BV G∗, ACG∗)

on E.

Definition 4.3. The function A : [a, b] → Rn×n is Denjoy integrable on [a, b] if there exists an ACG∗

function A : [a, b]→ Rn×n such that A′ = A a.e. on [a, b].

Theorem 4.4. [15, Theorem 6.2] Let F : [a, b]→ Rn×n and E ⊆ [a, b].

(1) If F is AC(ACG,AC∗, ACG∗) on E, then F is BV (BV G,BV∗, BV G∗) on E.

(2) If F is BV∗ on E, then F is BV∗ on E.

(3) Suppose that E is closed with a, b ∈ E and let G be the linear extension of F to [a, b]. If F is BV (AC)

on E, then G is BV (AC) on [a, b].

Remark 4.1. Let P be a perfect set. A perfect portion of P is a set of the form P ∩[c, d] where P ∩(c, d) 6= ∅,

c, d ∈ P, and P ∩ [c, d] is a perfect set.

Theorem 4.5. [15, Theorem 6.10] Suppose that F : [a, b]→ Rn×n is ACG(ACG∗) on [a, b] and let E ⊂ [a, b]

be a perfect set. Then there is a perfect portion E ∩ [c, d] of E such that F is AC(AC∗) on E ∩ [c, d].

( Note that in this case, each subinterval of [a, b] contains an interval on which the function F is AC(AC∗).

The endpoints of all the intervals on which F is AC(AC∗) form a dence set in [a, b] ).

We recall that the next Lemma and proposition are mentioned in [15] as exercises.

Lemma 4.1. Let F : [a, b] → Rn×n, and E be a closed set with bounds a and b, and let [a, b] − E =
∞⋃
n=1

(an, bn). Suppose that G is the linear extension of F from E to [a, b] and c ∈ E. Then G(x)−G(c)
x−c is

between F (an)−F (c)
an−c and F (bn)−F (c)

bn−c for each x ∈ (an, bn). In particular, if c is two-sided limit point of E and

F is differentiable at c, then G is differentiable at c and G′(c) = F ′(c).
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Proof. First we note that G = F on E and G is linear on each of the intervals contiguous to E. For each

x ∈ [an, bn], we have

G(x) =
F (bn)− F (an)

bn − an
(x− an) + F (an),

and hence an easy calculation completes the proof. �

Proposition 4.1. Suppose that A : [a, b]→ Rn×n is Denjoy integrable on [a, b]. Then [a, b] = ∪∞n=1En where

each En is closed and A is Lebesgue integrable on each En.

Proof. By the hypothesis, there exists an ACG∗ function A : [a, b]→ Rn×n such that A′ = A a.e. on [a, b],

and we can write [a, b] = ∪∞n=1En, where A is AC∗ on each En. By Theorem 4.4 we can assume that each

En is closed. Then by Theorem 4.5 there exists a perfect portion En ∩ [c, d] of En for n ∈ N, such that A is

AC∗ on En∩ [c, d]. Let G : [c, d]→ Rn×n be the linear extension of A
∣∣
En∩[c,d]

to [c, d]. By part 3 of Theorem

4.4, G is AC on [c, d]. So the function G′ exists a.e. and is Lebesgue integrable on [c, d]. But by Lemma 4.1

A′ = G′ = A a.e. on En ∩ [c, d], so the function A is Lebesgue integrable. �

Theorem 4.6. Let A : [a, b]→ Rn×n be Denjoy integrable on [a, b], then it is product integrable.

Proof. Let D([a, b],Rn×n) be endowed by the norm ‖A‖ = (D)
b∫
a

‖A(t)‖dt, where (D) stands for the Denjoy

integral. By Proposition 4.1 there exists subsets En such that [a, b] = ∪∞n=1En where for each n ∈ N, En is

non-overlapping, closed and A is Lebesgue integrable on En. Let An be the restriction of A to En for each

n ∈ N. Then each An is Lebesgue integrable and so product integrable and hence for each An there exists a

sequense of step functions {Ank
}∞k=1 such that Ank

: En → Rn×n and

lim
k→∞

‖Ank
−An‖En

= lim
k→∞

∫
En

‖Ank
(x)−An(x)‖dx = 0

For each n, put an = infEn and bn = supEn, so both an, bn are in En. Thus for each En there exist

t0, t1, ..., tn such that

t0 = an ≤ t1 ≤ ... ≤ tn = bn,

and Ank
is constant on (tk−1, tk) for k = 1, . . . , n. Now let {Bk}∞k=1 be a sequence of step functions on [a, b]

such that [a, b] =
∞⋃
n=1

En and Bk = Ank
on each En. Then by Dominated Convergence Theorem we have

the followings:

lim
k→∞

‖Bk −A‖1 = lim
k→∞

b∫
a

‖Bk(x)−A(x)‖dx

= lim
k→∞

∞∑
n=1

∫
En

‖Ank
(x)−An(x)‖dx = 0,
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i.e., Bk converges to A also in the norm of space D([a, b],Rn×n) and hence by [16, Theorem 3.5.5] lim
k→∞

(I +

Bk(x))dx
b∏
a

exists. So the proof is complete. �

5. c-algebrability of the set of Denjoy product integrable

In this section, some pathological properties (more precisely algebrability) of sets of product integrable

functions contained in D([a, b],Rn×n)\L([a, b],Rn×n) are investigated. First we note that a matrix A =

{aij}ni,j=1 is called regular if it has a nonzero determinant.

Definition 5.1. A function A : [a, b]→ Rn×n is called Perron product integrable if there is a regular matrix

B ∈ Rn×n such that for every ε > 0 there is a function δ : [a, b]→ (0,∞) such that ‖B − P (A,D)‖ < ε for

every δ-fine partition D of [a,b].

Theorem 5.2. Consider the function A : [a, b]→ Rn×n in D([a, b],Rn×n). Then

b∏
a

eA(t)dt = (I +A(t)dt)

b∏
a

.

Proof. By [10, Theorem 2.12] and [15, Theorem 11.2], the proof is clear. �

Corollary 5.1. If A : [a, b] → Rn×n is product integrable function, then exp ◦ (A) is product integrable

function.

Theorem 5.3. The set of product integrable functions is strongly c-algebrable.

Proof. By Corollary 5.1 and Theorem 3.2 the proof follows. �

Proposition 5.1. [15, Theorem 7.11] Suppose that f : [a, b]→ R is Denjoy integrable on each subinterval

[c, d] ⊆ (a, b). If
d∫
c

f converges to a finite limit as c→ a+ and d→ b−, then f is Denjoy integrable on [a, b]

and
b∫
a

f = lim
c→a+
d→b−

d∫
c

f .

Theorem 5.4. The set of D([a, b],Rn×n)\L ([a, b],Rn×n) is strongly c-algebrable.

Proof. Let
∞∑
n=1

cn be a nonabsolutely convergent series of real numbers and let In =
(
2−n, 2−n+1

)
, n ∈ N.

Define the function A : [0, 1]→ Rn×n by A(x) = (aij(x))ni,j=1, such that for each i, j = 1, 2, ..., n

(aij(x)) =


2ncn x ∈ In

0 otherwise.

Note that
1∫

0

|aij(x)|dx =

∞∑
n=1

∫
In

|aij(x)|dx =

∞∑
n=1

∣∣2−ncn2n
∣∣ =

∞∑
n=1

|cn| =∞.
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Hence neither aij nor A is Lebesgue integrable on [0, 1]. Now we are going to show that A is Denjoy integrable

on [0, 1]. For each 0 < α < 1 both of functions aij and A are bounded on [α, 1], so they are Lebesgue

integrable on [α, 1]. Let B(x) =
1∫
x

aij for each x ∈ (0, 1]. The function B is linear on each In. It follows

that B(x) is between B(2−n) and B(2n) for each x ∈ In. Now B(2−n) =
n∑
k=1

ck and lim
n→∞

B (2−n) =
∞∑
k=1

ck.

Therefore lim
x→0+

B (x) =
∞∑
n=1

cn and according to Proposition 5.1, aij is Denjoy integrable on [0, 1] for each

i, j = 1, 2, ..., n. Thus for each aij(x) there exists an ACG∗ function fij such that f ′ij(x) = aij(x) a.e. on

x ∈ [0, 1]. Now put F (x) = (fij(x))ni,j=1 for each x ∈ [0, 1]. So

F ′(x) = (f ′ij(x))ni,j=1 = (aij(x))ni,j=1 = A(x) a.e. on [0,1].

Hence A is Denjoy integrable on x ∈ [0, 1]. One can see easily that exp ◦ aij is Denjoy integrable and so is

exp ◦A. Thus by Theorem 3.2 the proof is complete. �
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