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Abstract. In this article we present the computations of lower bounds of well-known mathematical quantity

in control theory known as structured singular value for a family of structured matrices obtained for a

DC Motor, that is an electrical machine. The comparison of lower bounds with the well-known MATLAB

function mussv is studied. The structured singular values provide an important tool to synthesize robustness

as well as analyze performance and stability of feedback systems.

1. Introduction

The Structured Singular Value (SSV) [1] is an important and versatile tool in system theory which allows

one to address a central problem in control systems i.e. to analyze the stability of a system. The class of

structures addressed by the SSV is very generic and covers almost all kinds of parametric perturbations that

can be incorporated into the control system via real or complex linear fractional transformations (LFTs).

We refer the interested readers to see [2 - 9] and the references there in for more examples and applications

of SSV.

The exact computations of SSV are NP hard [10]. There are however several algorithms available in

literature to compute lower and upper bounds for SSV. An upper bound of SSV guaranties the robust

stability, while the lower bounds of SSV provides information about instability of linear closed loop systems.
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The widely used routine, mussv, available in MATLAB control Toolbox approximates upper bound by

means of the diagonal balancing and linear matrix inequalities (LMI) techniques [11, 12]. While on the other

hand, lower bound is approximated by generalization of power method [13-14].

In this paper, we present numerical approximations to a lower bound of the SSV associated with mixed

real and complex uncertainties. Our approach is based on a two level algorithm, inner-outer algorithm, given

in [17].

2. Overview of the article

Section 3 provides the basic framework of proposed problem. We explain how a better approximation of

the structured singular values can be obtained by a two level algorithm that is an inner-outer algorithm.

The outer algorithm determines the perturbation level while the inner algorithm computes the desired

perturbation. The inner algorithm then determines a (local) extremizer of the structured spectral value set.

In Section 4, we introduce the inner algorithm for the case of pure complex uncertainties. An important

characterization of extremizers help us to restrict the problem to a manifold of structured perturbations

with normalized and low-rank blocks. A gradient system of ODEs for finding extremizers on this manifold

is established. Finally, in Section 5, we give a range of numerical experiments to compare lower bounds of

SSV obtained with proposed algorithm [17] to those obtained with mussv.

3. Framework

Let C = C and R = R and let Cn,n(Rn,n) denote the family of complex (real) matrices. For M ∈

Cn,n(Rn,n) we consider an underlying perturbation set with prescribed block diagonal matrices given below

B = {diag(δiIi,∆j) : δi ∈ C(R), ∆j ∈ Cn,n(Rn,n)}. (3.1)

The following definition is given in [1], where I is the n× n identity matrix.

Definition 3.1. Let M ∈ Cn,n and ∆ ∈ B is an admissible perturbation. Then structured singular value

of M is denoted by µB(M) and is defined as follows

µB(M) :=
1

min {‖∆‖2 : ∆ ∈ B,det(I −M∆) = 0}
. (3.2)

In above definition 3.2, det(·) represents the determinant of a matrix (I −M∆) while minimum is over an

admissible perturbation ∆.

For a general set B the SSV become smaller and thus we have an upper bound. The important special

case, when the set B only consists of pure complex perturbations, we denote the set by B∗ instead of B. For

∆ ∈ B∗ we have eiθ∆ ∈ B for any θ ∈ R. As a result, this gives us a suitable choice of ∆ ∈ ∆B∗ such that

spectral radius attains the maximum value 1 that is ρ(M∆) = 1 iff there is ∆′ ∈ ∆B∗ , which possesses the
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same matrix 2-norm so that M∆′ possess an eigenvalue 1. This in turn implies that the matrix I −M∆′ is

singular. This gives us the following alternative definition of the SSV

µB∗(M) :==
1

min {‖∆‖2 : ∆ ∈ B∗, ρ(M∆) = 1}
. (3.3)

In Equ. (3.3), ρ(·) denotes the spectral radius of a matrix M∆.

3.1. Overview of the proposed methodology. We need to solve the maximization problem

λ(ε) = arg max|λ| (3.4)

where maximum is over λ for some fixed parameter ε > 0. It is clear that µB∗(M) is the reciprocal of the

smallest value of ε for which λ(ε) = 1. This suggests a two level algorithm. In the inner algorithm, we intend

to solve the problem addressed in Equ. (3.4). In the outer algorithm we first vary ε by using the fast Newtons

method and this exploits the knowledge of the computation of the exact derivative of the extremizers. We

address Equ. (3.4) by solving a system of ordinary differential equations.

4. Computation of local extremizers

In this section we present the inner algorithm for optimization problem addressed in Equ. (3.4). We use

the following standard eigenvalue perturbation result.

Lemma 4.1. [15]. Consider a family of matrices A : R → Cn,n and let λ(t) be an eigenvalue of A(t) for

all values of t. The eigenvalue λ(t) tends to converge to the simple eigenvalue λ0 = λ(0), of A0 = A(0) as

t→ 0. Therefor λ(t) is analytic near t = 0 with

dλ(t)

dt
=
X∗0BX0

X∗0X0

where, X∗0 , X0 are the left and right eigenvectors of A0 = A(0) associated with simple eigenvalue λ0 = λ(0),

that is, X∗0 (A0 − λ0I) = 0 and (A0 − λ0I)X∗ = 0 and the matrix B is the time derivative of the matrix

valued function A(t).

Definition 4.2. An admissible perturbation ∆ ∈ B∗ such that ‖∆‖2 ≤ 1 and the matrix (εM∆) for some

fixed parameter ε > 0 has greatest eigenvalue λmax which maximizes locally the modulus of ΛB∗

ε (M) is known

as a local maximizer.

Theorem 4.3. Let

∆̂ = {diag(δiIi,∆j) : δi ∈ C, ∆j ∈ Cmj ,mj , ∀i = 1 : S, J = 1 : F} (4.1)

with ‖∆̂‖2 = 1 be a local extremizer. The matrix εM∆ possesses the simple eigenvalue λ = |λ|eiθ, θ ∈ R,

with x and y being right and left eigenvectors for an eigenvalue λ. The eigenvectors are scaled such that

s = eiθy∗x > 0. Partitioning x and y according to size and structure of ∆̂ yields

x = (xT
1 , . . . , x

T
n , x

T
n+1, . . . , x

T
n+F )T;
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y = (yT
1 , . . . , y

T
n , y

T
n+1, . . . , y

T
n+F )T. (4.2)

Now we take z = M∗y = (zT
1 , . . . , z

T
n , z

T
n+1, . . . , z

T
n+F )T and assume the non-degeneracy conditions given

by

z∗kxk 6= 0 ∀ k = 1, . . . , n, (4.3)

‖zn+h‖2 · ‖xn+h‖2 6= 0 ∀ h = 1, . . . , F. (4.4)

Hence,

|δk| = 1 ∀ k = 1, . . . , s and ‖∆‖2 = 1 ∀h = 1, . . . , F.

Theorem 4.4. Let

∆̂ = {diag(δiIi,∆j) : δi ∈ C, ∆j ∈ Cmj ,mj , ∀i = 1 : S, J = 1 : F} (4.5)

with ‖∆̂‖2 = 1 be a local extremizer. Suppose that λ, x, z are defined and partitioned as in Theorem 4.3.

Assume the non-degeneracy condition of (4.4) and every block possess a singular value which attains the

maximum value 1. Then the matrix,

∆̂ = {diag(δ1I1, ..., δsIs;u1v
∗
1 , ..., uF v

∗
F )}

is a local extremizer.

Remark 4.5. Theorem 4.4 allows us to restrict the admissible perturbations in the structured spectral

value set given in (3.4) to those with rank-1 blocks. Since the Frobenius and the matrix 2-norms of a rank-1

matrix are same, this helps us to search for extremizers within the sub-manifold

B∗1 = {diag(δ1I1; ∆j) : δi ∈ C,∆j ∈ Cmj ,mj ,∀i = 1 : S, j = 1 : F}. (4.6)

4.6. Approximating extremal points of ΛB
∗

ε (M).

In order to approximate the local maxima for ΛB
∗

ε (M) we construct a matrix valued function ∆(t) where

∆(t) ∈ B∗ such that the largest eigenvalue λ of the matrix εM∆(t) achieves the maximum (local) growth. We

then derive a gradient system of ODEs which satisfies the choice of the initial matrix admissible perturbation

∆(t).

4.7. The local optimization problem.

We consider the fact that λ = |λ|eiθ is the simple eigenvalue with the corresponding eigenvectors, normalized

such that

‖x‖ = ‖y‖ = 1, y∗x = |y∗x|e−iθ. (4.7)

As a result of the Lemma 4.1, we get the following expression for the change in the largest eigenvalue.

d

dt
|λ|2 =

2|λ|
|y∗x|

Re(z∗∆̇x), z = M∗y (4.8)
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The eigenvectors x and y are defined and normalized as in the Theorem 4.3. Now, by considering the

suitable perturbation ∆ ∈ B∗1 with B∗1 in Equ. (4.6), we aim to determine a direction ∆∗ = z that (locally)

maximizes the increase of the modulus of λ. This amounts to determining a direction Z as given in the

following equation

Z = diag(ω1Ir1 , . . . , ωsIrN ,Ω1, . . . ,ΩF ) (4.9)

which is the solution of the following optimization problem

Z = arg max{Re(z∗Zx)}

subject to Re(δiωi) = 0, i = 1 : S,

and Re〈∆j ,Ωj〉 = 0, j = 1 : F. (4.10)

The linear constraints in maximization problem in Equ. (4.10) ensure that Z lies in the tangent space of

the manifold B∗1 at ∆(t). In particular Equ. (4.10) ensures that the norm of each block of the admissible

perturbation ∆(t) remain conserved.

Lemma 4.6. The solution of the maximization problem as discussed in (4.10) is given by

Z∗ = {diag(ω1Ir1 , . . . , ωNIrN ,Ω1, . . . ,ΩF )}, (4.11)

with

ωi = νi
(
x∗i zi −Re

(
x∗i ziδi

)
δi
)
, i = 1, . . . , S (4.12)

Ωj = ζj
(
zs+jx

∗
N+j −Re〈∆j , zs+jx

∗
s+j〉∆j

)
, j = 1, . . . , F. (4.13)

Where vi > 0 and ζj > 0. If the right-hand sides are different from zero then Z ∈ B∗1 .

Corollary 4.7. The result of the lemma 4.6 can be written as follows:

Z∗ = D1PB∗ (zx∗)−D2∆, (4.14)

where PB∗(·) is the orthogonal projection and D1, D2 ∈ B∗ are diagonal matrices with D1 is positive.

4.8. The gradient system of ordinary differential equations.

Following Lemma 4.6 and Corollary 4.7 we consider the following differential equations on the manifold

B∗1 .

∆̇ = D1PB∗(zx∗)−D2∆. (4.15)

where, x(t) is an eigenvector associated to a simple eigenvalue λ(t) of the matrix εM∆(t) for some fixed

ε > 0. Also note that the quantities z(t), D1 and D2 depend on the choice of the matrix valued function

that is ∆(t) as well. The differential Equ. (4.15) is a gradient system of ODEs.
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4.9. Choice of initial value matrix and ε0.

In order to compute ε0 we choose the initial value matrix

∆0 = DP∆B(wv∗), (4.16)

where D is the positive diagonal matrix such that ∆0 ∈ B∗. As a natural choice for the initialization of the

perturbation level, we take ε0 as

ε0 =
1

µ̂B∗(M)
. (4.17)

where µ̂B∗(M) is the upper bound of µ-value approximated by mussv.

5. Numerical Testing

In this section we present various numerical experimentations for both pure and mixed real and complex

perturbations. The comparisons of lower bounds of structured singular values for a class of matrices obtained

for DC Motor are considered.

Example 1. Consider the following five dimensional matrix.

M =



−.050− .113i −.012− .028i −.216 + .072i −.000− .000i 6.306− 2.099i

.113− .050i .028− .012i −.072− .216i .000− .000i 2.099 + 6.306i

−.050− .113i −.012− .028i −.073 + .072i −.000− .000i 6.306− 2.099i

−.004− .008i −.001− .002i .001 + .005i .142− .000i −.042− .153i

−.004− .008i −.001− .002i −.001− .002i −.000− .000i −.042− .153i


.

Also, consider the set of block diagonal uncertainties as an input argument. The uncertainty set is taken as

B = {diag(δ1I2,∆1) : δ1 ∈ R, ∆1 ∈ C3,3}.

Making use of MATLAB function mussv, we obtain an admissible perturbation set ∆̂, which is given below

∆̂ =



−.149 0 0 0 0

0 −.149 0 0 0

0 0 −.001− .001i 0 0

0 0 .000− .0001i 0 0

0 0 −.143− .044i −.0008 + 0.0033i −.0008 + .0033i


.

The 2-norm of admissible perturbation is obtained as 0.1499 while the lower bound of structured singular

value is obtained as µlPD(M) = 6.6709 and an upper bound µuPD(M) = 6.6715.
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Applying the algorithm presented in article [17], we obtain the admissible uncertainty ε∇̂ with ε = 0.1499

and ∇̂ with

∇̂ =



−1 0 0 0 0

0 −1 0 0 0

0 0 −0.0115− 0.0100i 0.0002− 0.0002i 0.0002− 0.0002i

0 0 0.0001− 0.0003i 0 0

0 0 −0.9541− 0.2976i −0.0065 + 0.0207i −0.0070 + 0.0206i


.

In this case the admissible uncertainty has a unit 2-norm while the obtained lower bound of structured

singular value is µlOur(M) = 6.6708.

Example 2. Consider the following five dimensional matrix.

M =



−.169− .155i −.042− .038i −.176 + .137i −.000− .000i 5.136− 3.998i

.310− .338i .077− .084i −.274− .352i .001− .001i 7.997 + 10.272i

−.169− .155i −.042− .038i −.033 + .137i −.000− .000i 5.136− 3.998i

−.014− .008i −.003− .002i .005 + .009i .142− .000i −.168− .266i

−.014− .008i −.003− .002i .005− .009i .142− .000i −.168− .266i


.

Also, consider the set of block diagonal uncertainties as an input argument. The uncertainty set is taken as

B = {diag(δ1I1,∆1) : δ1 ∈ R, ∆1 ∈ C4,4}.

Making use of MATLAB function mussv, we obtain an admissible perturbation set ∆̂, which is given below

∆̂ =



−0.0679 0 0 0 0

0 −.0004 + .0004i −.0002 + .0002i 0 0

0 −.0013 + .0014i −.0007− .0006i 0 0

0 0 0 0 0

0 .036− .048i −.024 + .018i −.0007 + .001i −.0007 + .001i


.

The 2-norm of admissible perturbation is obtained as 0.1499 while the lower bound of structured singular

value is obtained as µlPD(M) = 14.7375 and an upper bound µuPD(M) = 14.7988.
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Applying the algorithm presented in article [17], we obtain the admissible uncertainty ε∇̂ with ε = 0.0679

and ∇̂ with

∇̂ =



−1 0 0 0 0

0 .005 + .005i −.002 + .002i −.0001− .0001i −.0001− .0001i

0 −.018 + .020i −.010− .009i .0004− .0005i .0004− .0005i

0 −.0001 + .0001i 0 0 0

0 .541 + .711i .355 + .270i −.0109 + .018i −.010 + .181i


.

In this case the admissible uncertainty has a unit 2-norm while the obtained lower bound of structured

singular value is µlOur(M) = 14.7375.

Example 3. Consider the following five dimensional matrix.

M =



−.283− .099i −.070− .024i −.109 + .178i −.001− .000i 3.195− 5.200i

.299− .849i .074− .212i −.534− .328i .001− .003i 15.600 + 9.587i

−.283− .099i −.070− .024i −.033 + .178i −.001− .000i 3.195− 5.200i

−.021− .001i −.005− .0003i .011 + .009i .142− .000i −.346− .286i

−.021− .001i −.005− .0003i .011 + .009i −.0001− .000 −.346− .286i


.

Also, consider the set of block diagonal uncertainties as an input argument. The uncertainty set is taken as

B = {diag(δ1I1, δ2I1, δ3I1,∆1) : δ1, δ2, δ3 ∈ R, ∆1 ∈ C2,2}.

Making use of MATLAB function mussv, we obtain an admissible perturbation set ∆̂, which is given below

∆̂ =



−.586 + 1.067i 0 0 0 0

0 −.586 + 1.067i 0 0 0

0 0 −.586 + 1.067i 0 0

0 0 0 .109 .105

0 0 0 −.594 + .631i −.576 + .612i


.

The 2-norm of admissible perturbation is obtained as 1.2176 while the lower bound of structured singular

value is obtained as µlPD(M) = 0.8213 and an upper bound µuPD(M) = 0.8213.
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Applying the algorithm presented in article [17], we obtain the admissible uncertainty ε∇̂ with ε = 1.2176

and ∇̂ with

∇̂ =



−.492 + .870 0 0 0 0

0 −.492 + .870 0 0 0

0 0 −.492 + .870 0 0

0 0 0 .087 + .0009i .085 + .001i

0 0 0 −.484 + .520i −.472 + .506i


.

In this case the admissible uncertainty has a unit 2-norm while the obtained lower bound of structured

singular value is µlOur(M) = 0.8213.

Example 4. Consider the following five dimensional matrix.

M =



−.326 + .009i −.081− .002i −.036 + .181i −.001− .000i 1.065− 5.282i

−.038− 1.306i −.009− .326i −.724− .146i −.0002− .005i 21.128 + 4.260i

−.326 + .009i −.081 + .002i .106 + .181i −.001 1.065− 5.282i

−.020 + .009i −.005 + 0.002i .017 + .006i .142− .000i −.498− .196i

−.020 + .009i −.005 + .002i .017 + .006i −.0001− .000i −.498− 0.196i


.

Also, consider the set of block diagonal uncertainties as an input argument. The uncertainty set is taken as

B = {diag(δ1I1, δ2I1,∆1) : δ1, δ2,∈ R, ∆1 ∈ C3,3}.

Making use of MATLAB function mussv, we obtain an admissible perturbation set ∆̂, which is given below

∆̂ =



−.173 0 0 0 0

0 −.134 0 0 0

0 0 .002− .005i .0006 + .0002i .0006 + .0002i

0 0 −.0004i 0 0

0 0 .041 + .166i −.014 + .006i −.014 + .006i


.

The 2-norm of admissible perturbation is obtained as 0.1734 while the lower bound of structured singular

value is obtained as µlPD(M) = 5.7675 and an upper bound µuPD(M) = 5.7786.
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Applying the algorithm presented in article [17], we obtain the admissible uncertainty ε∇̂ with ε = 2.6959

and ∇̂ with

∇̂ =



−1 0 0 0 0

0 −.911 0 0 0

0 0 .015− .032i .003 + .0009i .003 + .0009i

0 0 .0002− .002i .0002 .0002

0 0 .247 + .959i −.083 + .038i −.083 + .038i


.

In this case the admissible uncertainty has a unit 2-norm while the obtained lower bound of structured

singular value is µlOur(M) = 0.3709.

In each of following figure, we present the comparison of lower bounds of structured singular values obtained

by MATLAB routine mussv and the algorithm presented in [17], for five dimensional complex matrices. Each

of these matrix is computed from [16].

6. Conclusion

In this article we have considered the problem for the computation of the lower bound of structured singular

values for a family of complex matrices obtained in [16]. The computation of structured singular values plays

an important role in robust stability and instability in control. The experimental results show the comparison

of the lower bounds computed by algorithm [17] when compared to well-known1 MATLAB function mussv

available in MATLAB Control toolbox.

7. Nomenclature

B Family of block diagonal matrices

ε0 Perturbation level

∆0 Initial admissible perturbation

µ Structured Singular Values
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Figure 1. The comparison of lower

bounds of structured singular values

for the frequency = 1, 2, 3.

Figure 2. The comparison of lower

bounds of structured singular values

for the frequency = 1, 2, 3.
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Figure 3. The comparison of lower

bounds of structured singular values

for the frequency = 1, 2, 3.

Figure 4. The comparison of lower

bounds of structured singular values

for the frequency = 1, 2, 3.
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Figure 5. The comparison of lower

bounds of structured singular values

for the frequency = 1, 2, 3.

Figure 6. The comparison of lower

bounds of structured singular values

for the frequency = 1, 2, 3.
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