International Journal of Analysis and Applications

Volume 17, Number 1 (2019), 47-63 IJAA

URL: https://doi.org/10.28924/2291-8639 INTERNATIONAL JOURNAL

DOI: 10.28924/2291-8639-17-2019-47

OF ANALYSIS AND APPLICATIONS

NONLINEAR SEQUENTIAL RIEMANN-LIOUVILLE AND CAPUTO FRACTIONAL
DIFFERENTIAL EQUATIONS WITH NONLOCAL AND INTEGRAL BOUNDARY
CONDITIONS

SUPHAWAT ASAWASAMRIT!, NAWAPOL PHUANGTHONG!, SOTIRIS K.
NTOUYAS?3 AND JESSADA TARIBOON!*

LIntelligent and Nonlinear Dynamic Innovations Research Center, Department of Mathematics, Faculty of

Applied Science, King Mongkut’s University of Technology North Bangkok, Bangkok 10800, Thailand

2 Department of Mathematics, University of Ioannina, 451 10 Ioannina, Greece

3 Nonlinear Analysis and Applied Mathematics (NAAM)-Research Group, Department of Mathematics,
Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia

*Corresponding author: jessada.t@sci.kmutnb.ac.th

ABSTRACT. In this paper, we discuss the existence and uniqueness of solutions for a new class of sequential
fractional differential equations of Riemann-Liouville and Caputo types with nonlocal integral boundary
conditions, by using standard fixed point theorems. We also demonstrate the application of the obtained

results with the aid of examples.

Received 2018-09-10; accepted 2018-10-24; published 2019-01-04.
2010 Mathematics Subject Classification. 26A33, 34A08, 34B15.

Key words and phrases. fractional derivatives; fractional integral; boundary value problems; existence; uniqueness; fixed

point theorems.

(©2019 Authors retain the copyrights

of their papers, and all open access articles are distributed under the terms of the Creative Commons Attribution License.

47


https://doi.org/10.28924/2291-8639
https://doi.org/10.28924/2291-8639-17-2019-47

Int. J. Anal. Appl. 17 (1) (2019) 48

1. INTRODUCTION

Fractional differential equations have gained considerable importance due to their widespread applica-
tions in various disciplines of social and natural sciences, and engineering. In recent years, there has been
a significant development in fractional calculus and fractional differential equations, for instance, see the
monographs by Kilbas et al. [12], Lakshmikantham et al. [14], Miller and Ross [15], Podlubny [16], Samko
et al. [18], Diethelm [9], Ahmad et al. [7] and the papers [1,4-6,8,10,17,20,21].

Recently in [2] the authors studied a class of nonlinear differential equations with multiple fractional
derivatives and Caputo type integro-differential boundary conditions

D[D%x(t) — g(t,x(t)] = f(t,x(t)), t € J:=[0,T],

(1.1)
2(0) = 0, (DY)(T) = A(I°z)(T),

where DX is Caputo fractional derivative of order x € {a, 8,7}, 0 < o, 3,7y < 1, I’ is the Riemann-Liouville
rB+d+1)

TG -7+ 1)

existence of solutions for the problem (1.1) is established by applying Leray-Schauder nonlinear alternative

fractional integral of order 6 > 0, f,g : J x R — R are given functions and \ #

[11] and Krasnoselskii’s fixed point theorem [13]. The uniqueness result for the problem (1.1) is obtained by
means of a celebrated fixed point theorem due to Banach.

In [3] existence criteria are developed for the solutions of Caputo-Hadamard type fractional neutral dif-
ferential equations supplemented with Dirichlet boundary conditions

De[DFx(t) — hit, ()] = f(t,z(t)), t € [1,T], T > 1,
(1.2)

where D? denotes the Caputo-Hadamard fractional derivatives of order p € (0,1) with p € {w,x} and
fih:[1,T] x R — R are appropriate functions.

Very recently in [19], the authors discussed existence and uniqueness of solutions for two sequential
Caputo-Hadamard and Hadamard-Caputo fractional differential equations subject to separated boundary

conditions as

CDP(DI)(E) = f(t,a(),  tE (ab),
(1.3)
arz(a) + ao( D) (a) =0, Brx(b) + Bo(F Di2)(b) = 0,
and
HDaCDr)(t) = f(ta(t),  tE (ab),
(1.4)
arz(a) + QQ(CDpx)(a) =0, B[z + 52(0Dpx)(b) =0,

where ¢ DP and ¥ D9 are the Caputo and Hadamard fractional derivatives of orders p and g, respectively,

0<p,q<1, f:]a,b] x R—Ris a continuous function, a > 0 and «;, 5; € R, i = 1, 2.
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Motivated by the above papers, we consider in the present paper the following boundary value problem

RLDICD 2 (t) — g(t, (1)) = f(t,2(t), 0<t < T,
(1.5)

z(n) = ¢(z), 1'z(T) = h(z),
where B D% € D" are Riemann-Liouville and Caputo fractional derivatives of orders ¢, € (0, 1), respectively,
I? is the Riemann-Liouville fractional integral of order p > 0, f,g : J xR — R are given continuous functions
and ¢, h : C(J,R) — R are two given functionals.
The rest of the paper is arranged as follows. In Section 2, we establish basic results that lays the
foundation for defining a fixed point problem equivalent to the given problem (1.5). The main results, based
on Banach’s contraction mapping principle, Krasnoselskii’s fixed point theorem and nonlinear alternative of

Leray-Schauder type, are obtained in Section 3. Examples illustrating the obtained results are also included.

2. PRELIMINARIES

In this section, we recall some basic concepts of fractional calculus [12,16] and present known results

needed in our forthcoming analysis.

Definition 2.1. The Riemann-Liouville fractional derivative of order q for a function f : (0,00) — R is

defined by

RL 1yq _ 1 a " — )" £(s)ds n=
D150 = gy () [ =" s a0 =l 1,

where [q] denotes the integer part of the real number q, provided the right-hand side is pointwise defined on

(0,00).

Definition 2.2. The Riemann-Liouville fractional integral of order q for a function f : (0,00) — R is

defined by

19f(t) = ﬁ / - s >0

provided the right-hand side is pointwise defined on (0, 00).

Definition 2.3. The Caputo derivative of fractional order q for a n-times derivative function f : (0,00) = R
is defined as

1
I'(n—q)

Lemma 2.1. If a + 3 > 0, then the equation (I°1°u)(t) = (I°TPu)(t), t € J is satisfied for u € L*(J,R).

Cpaf(t) = / syt (js)nf(éf)ds, >0, n=[g+1

+
Lemma 2.2. Let B > a. Then the equation (D*IPu)(t) = (I°~%u)(t), t € J is satisfied for u € C(J,R).

Lemma 2.3. Letn=[a]+ 1 if a €N and n = a if « € N. Then the following relations hold:

(l) fOT’kE {071727'-'777‘_1}’ Datk:07
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(ii) if B > n then D*tP~1 = ﬂﬁ—a—&

iii ayB—1 __ F(ﬂ) B+a—1
() 19077 = g st

Lemma 2.4. Let ¢ > 0. Then fory € C(0,T)N L(0,T) it holds

REpa (REDIy) (1) = y(t) + ext? ' + cot T2 + oo 4 et ™,
where c; ER, i =1,2,...,.nandn—1<q<n.
Lemma 2.5. Let ¢ > 0. Then for y € C(0,T) N L(0,T) it holds

RLIT(CDy) (t) = y(t) + co + crt + eat® + -+ 4 cport™ 1,

where ¢; €ER, 1 =10,1,2,...,n—1 andn = [q] + 1.

In the following, for simplicity, we use the notation 19 for L[4

Lemma 2.6. Letp>0,0<q,r <1, withqg+r >1,

I'(q) I

A= Ty

_ I'(q) _
g+r—1 Tprtatr 1 2.1

and g,y € C(J,R) and two functionals ¢,h : C(J,R) — R. The unique solution of the linear problem

RLDIC D z(t) — g(t)] = y(t), 0 <t < T,
(2.2)

is given by

a(t) = I7g(t) + 17"y(t)
tq+r—1 F(Q) A q+r v
+ A T(g+n) [ ((;S(x) —I"g(n) — 17° 9(77)) Tp+1)

— (h(z) = IP*79(T) — 19y (T)) ]

1{F(q>

PR By () = 17T — 1))

A

_ (¢(x) — Irg(n) . Iq—i—ry(n)) I‘(Z)T;%Tp+q+r_1:|'

Proof. Firstly, we apply the Riemann-Liouville fractional integral of order ¢ to both sides of equation (2.2),

and using Lemma 2.4, we have

D x(t) = g(t) + Iy(t) + 1197, (2.3)
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where a constant ¢; € R. After that, using Riemann-Liouville fractional integral of order r to both sides the

above equation and applying Lemma 2.5, we get

r
L@ g (2.4)

w(t) =1"g(t) + 17y (t) + &1 T(q+7)

where a constant co € R. Observe that the equation (2.4) is well defined as ¢ +r > 1.

Using nonlocal boundary condition of problem (2.2) to the above equation, we obtain the linear system

F(q) qg+r—1 o T A q+r
T+ 1) te = ox)—I"g(n) —I"y(n),
I'(q) - v R
Y pptetr-l teg—— = h — [PTTE(T) — [PTatT (T,
T ) P I O () y(T)

Note that the two functionals ¢(z) and h(x) are constants. Solving the system of linear equations for

constants ¢y, ca, we have

—_

TP A gtr
1 = A{F(p‘*‘l) ((;S(x) —1"g(n) -1 + y(n))

(W) — IPTR(T) — IPHOTY(T)) } ,

Cy =

F(q) qg+r—1 _ ptry _ yptg+r
{F(qmn * (h(x) Prg(T) — 7t Z/(T))

=)=

PO et o ot 1
ST (o)~ Il - 1) |

Substituting two constants ¢; and c¢p into equation (2.4), we obtain the required solution. The converse

follows by direct computation. The proof is completed. O

3. MAIN RESULTS

Let J = [0,7T] and C = C(J,R) denotes the Banach space of all continuous functions from J to R endowed

with the norm defined by ||z|| = sup,c; |z(t)|. By Lemma 2.6, we define an operator A : C — C by

(Ax) 1)
— Fgls () (E) + I (s, 2(5) (1)
g+r—1 P
o T (6a(0) = gl o) ~ 17 52060 0) s
- (Wa(0) = I g5, o)) ~ I (s, (9) () | (3.)

5 g (h(ale) ~ 17l () (T) = 144 (5, (5) ()

A|T(g+r)
— (¢l (t)) — I"g(s,2(s)) () — I7*" f(s,2(5)) () ”‘”TW”}
7 ’ T(p+q+r)

)

with A # 0. It should be noticed that problem (1.5) can be transformed into a fixed point equation z = Az.
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To accomplish of the study, we will use fixed point theorems to prove that the operator A has fixed points.

For the sake of convenience, we define four constants by

o B |: T N F(q) Tq+r1< TP ,,77" N Ter'r‘ >
T+ TTatr) AL \Te+ DT +1)  Th+r+1)
+1< F(Q) Tp+7‘ nq+r—1 F(Q) 77T Tp+q+r—l>:|
IA| \T'(g+1)T(p+r+1) P(p+q+1)T(r+1) ’
o Tqur F(q) Tq+7"71 TP ,r’q+r
t [F(q+r+1> T(g+r) [A] <F(p+1>F<q+r+1)

Tprta+r 1 ]_"(q) Tptatr
_|_> ( q+r—1 +
Fp+q+r+1)) A\T(@@+1)T(p+qg+r+1)

F(Q) ,rlq+r p+q+r—1
+I‘(p+q+1)I‘(q+r+1)T o )}

0. — [ L(q) Trrert I'(q)

’ AC(q+7) Tp+1) " [AT(p+q+1)

= & ptqt+r—1 & g+r—1
b= [IAIF(q+7’)T +|A|F(q+1)n }

+q+r—1
TP+a ]’

The first existence and uniqueness result is obtained by using Banach contraction mapping principle.

Theorem 3.1. Let g, f : J X R = R, be continuous functions and ¢,h : C(J,R) — R be two functionals

satisfying the assumption.:

(Hy) there exist positive constants L;, i = 1,2,3,4 such that:

|g(t7$) - g<t7y)| < L1|$ - y‘7 |f(t7$) - f(t7y)‘ < L2|‘T - y|) te Jax7y € R7
|¢(u) = ¢(v)| < Ls|u — v| and |h(u) — h(v)| < LaJu — v|, u,v € C(J,R).

If the inequality
W :=L1DP1 + Lo®Py + L3®P3 + LDy < 1, (32)
holds, then the boundary value problem (1.5) has a unique solution on J.

Proof. By using the Banach’s contraction mapping principle, we shall show that A of a fixed point problem,
x = Ax, has a unique fixed point which is the unique solution of problem (1.5).

To prove the embedding property, we set

sup |g(¢,0)] = My < oo, sup |f(¢,0)] = My < oo, |p(0)] = Ms, |h(0)] = My,
te[0,T] t€[0,T]

and choose

, s> M@y + Ma®y + M3P3 + MyPy
- 1-0 '
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Now, we show that AB, C B,, where B, = {z € C : ||z|| < r}. For any z € B,, and taking into account

assumption (H;), we obtain
| Az(t)]

sup {zrgcs, £())(t) + 177 f (s, 2(5)) (1)

t€[0,T)

tq+r1 T'(q) . 1 s (s
r<q+7~)[(¢< (0) = T'g(s,()) ~ I (5. 2())0)

IN

TP
L(p+1)

P g(s, 2(s))(T) — ﬂ*q“f(s,m(s))(mﬂ

T(g+r)"

S 0) = 17 Fsa(6)0) ) pe e |

p+q+r

(et
= [(@ a+r-1 (h(x(t)) P g(s,w(s))(T) — IPFH fs, x<s>><T>)
-(eet0
I

IN

9(s,2(s)) — g(s,0)[ + |g(s, 0) )(T)

HITT(|f (s, 2(s)) = f(5,0)[ + | £(s,0)[)(T)

Tat+r—1 F(q) TP )
Al F(q+r){r(p+1)<<¢($) ¢(0)] + [¢(0)]) (T)

17 (lg(s,2(5)) — 9(5,0)| + g5, 0)) ()

([ (50(6) = 601+ 160D ) + ( () = 1(0)] + (0)) (7)
1P ((g(s, 2(5)) — g5, 0)] + (s, 0)]) (T)

I (0(6) = £(5,0) + (5.0 (T) )

ﬁ [r(l;(i)l)nw_l ( (Ih(z) — h(0)] + |h(0)]) (T)

+I7 (|g(s, 2(s)) — g(s,0)] + [g(s, 0)[)(T)
HIPTITT (| f (s, 2(s)) — £(5,0)] + If(s,O)I)(T)>

I'(g) g — B
ol (o) - 600)] +160)) (7)

+I"(lg(s, z(s)) — g(s,0)[ + g(s,0)]) (n)
+IU ([ f (s, 2(s)) — f(s5,0)| + | f (s, 0)|)(ﬂ))}

Tr Tatr
Tr+1) & (L2T+M2)F(q—|—r+ 1)
Tatr—1 T'(q) TP

Al T(g+r) {F(p +1)

17‘1+7‘
D(g+r+1)

I M Tptatr
T (Lar - My) F(p+q+7‘+1)>]

IN

(Lir + M)

s

((Lgr + M3) + (Lir + M) ﬁ

TP+

+ (Lo + Ma) Tptr+1)

> + <(L4r + M) + (Lyr + My)
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T:D-i-r
Flp+r+1)

1 [ I'(q)

| T+ 1)77‘1”_1 ( (Lyr + My) + (Lyr + My)

n (L . M ) TP+Q+T N F(q) (L N oL )
2" Tlp+q+r+1) Tptqtr\ 3T

77T anrr
%(Lﬁ+Aﬁ)%(Lﬂ+A@)>}

L(r+1) T(g+r+1)
B A SN A
~ [T(r+1) T(g+7r) |A] 'p+1)T(r+1) Tp+r+1)
1( I'(q) TpP+r =1 ['(q) n" Tp+q+r1>:|
IA| \T(g+1)T(p+7r+1) T(p+q+1)T(r+1)
Ta+tr F(q) Tat+r—1 ( TP nq+r
X (L M-
(Lar + 1)+{I‘(q+r+1)+I‘(q+r) |A| Fp+1)T(g+7r+1)
N TPta+r > N 1< F(q) TpPta+r -
Fp+qg+r+1)) A\T(@@+1)T(p+qg+r+1)
T'(q) netr _1”
+ T:D+q+r Lor + M.
T(p+g+r)D(g+r+1) (Lar + 343)
[(q) Trtatrt T'(q) - ]
TPTatr=11 (Lar + M.
AT To+1) * WG e D (B M)

F(q) p+q+r—1 F(q) g+r—1 ,
i [|A|F(q + r)T * AT(g+1)" ] (Lar + My)

= CI)l (Ll’l“ —|— Ml) + CI)Q(LQ’I“ —|— Mg) + q)g(Lg’I“ —|— M3) + CI)4(L4’I“ —|— M4)

= Ql’l’ + (lebl + MQ(DQ + Mg@g + M4(I)4)

IN

r.
This mean that ||.Az| < r which yields AB, C B,.. For all ¢t € [0,T] and for each x,y € C, we have

|Az(t) — Ay(t))|

< I"(lg(s.2(s) = g(s.y()))(T) + I (| f (s, 2(s)) = £(5,5(s)))(T)

Tat+r=1 F(q) TP
[A| T(q+7) {p(p+ 1) ((|¢<33) — o)) (T)

17 (g5, 2(5)) — g5 y(sD)) () + 177 (| F(5,()) — (s 9(5))]) <n>)
+(<|h<x> — b)) () + 17+ (Ig(s, 2(5)) — g5 y(s)]) ()
LR (| (s, a(s)) — F(s,u(s)]) <T>)]

1] T(g)
MY [r<q+ 1)

=1 ( (Ih(2) — b)) (T)

+HIPT (lg(s,2(5)) — g(s,y(s))) (T) + I7FIT7 (| £ (s, 2(5)) — f(s,5()]) (T))

I'(g)

+WTP+‘”H < (Io(z) = o)) (T) + 1" (l9(s, z(s)) = g(s, 2(s))]) (n)
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+N“(U@wwﬂ—f@w@DDWO}

L i L e
< S )
< (Lle =3 gy + Bele =W 5o
Ta+r—1 T'(q) TP (
L —
AT T 7 |7 71 ( (Bl =)
L 0 L '
+( 1|$—y\)m+( 2|$—y|)w>
I I Tp+r I Tp+q+r
+(( alz —yl) +( 1\$—y|)m+( 2|$_y|)1“(p+q+r+1)>]
1 F(q) _ ( Tp+r
4+ — | — g+r—1 L _ + L _ -
e ((ale = o)+ (Eale = o) gy
TpPta+r F(q) (
+(Lofa — + Ly|z —
(Lale =) po o) * Ty (Bale =)
L m L '
+( 1|$—y\)m+( 2|x_y|)F(q+r+1)ﬂ
- [ Tr T'(q) Tatr—1 ( TP n" N Tp+r >
= |T(r+1) T(g+r) |A F'(p+1)T(r+1) T(p+r+1)
+1( Ha) Ll gr—1 0 /i Tp+q+r_1)]
Al \T(¢g+ 1) T(p+r+1) Fp+q+1)T(r+1)
Ta+r F(q) Tq+r1< TP nq+r
X(Li|lz —y|) + +
(Lafz = yl) [F(Q+r+1) T(g+7r) |A] Fp+1)T(g+r+1)
N Tpta+r )+ 1( F(q) TPta+r nq-&-r—l
Plp+q+r+1) [Al\T(¢g+1)T(p+qg+r+1)
I'(q) it -
+ TPratr=1 1 |y —
Flp+q¢+1)T(g+r+1) 27—y
I(q) Trtetr—t I'(q) -
+ + TPt La]e —
TS To 71 * ArGaa+D e~ 4

F(q) p+q+r—1 F(q) g+r—1
[Amqu HICESY Lalr =4l

= O1Li|xz —y|) + PoLlo|x — y|) + PsLs|z — y|) + PyLy|x — yl)

= Wz -y

The above result implies that [|Az — Ay|| < Qi|lz —y|. As Q; < 1, therefore A is a contraction operator.
Hence, by the Banach contraction mapping principle, we obtain that A has a unique fixed point which is

the unique solution of the problem (1.5). The proof is completed. |

Example 3.1. Consider the following nonlinear sequential Riemann-Liouville and Caputo fractional differ-

ential equation with nonlocal integral boundary conditions

t

e 2(0)
"Dt (Db~ e TH RO
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cos? (2mt) . (mz(t) + 2|z (t)]
(t+10)> + 50 lz(t)[ +1

1\ 2(2) + 20(2) s ()
”(2)‘ o=@+ o )= B

)+e2 0<t<3, (3.3)

Setting constants ¢ = 4/5, r = 1/2, p = 2/3, n = 1/2, T = 3, then we can compute constants as
®; = 12.42305820, ®5 = 14.24066077, $3 = 6.845515569, &, = 4.835810257. Setting functions

! ||

cos?(2mt) x? + 2|z .
t,z) = L f) = : +
9(t,z) (t2 4 40) + 20 [z] + 1 ft.) (t +10)* + 50 (|x|+1) ‘
x? + 2|7 |z|
== T 1300 h(z) = ——t—
@) = Go 1y T MO = By

so we get [g(t, ) — g(t,y)| < (1/60)|z —yl, [f(t,2) = f(t,y)] < (1/75)|z —yl, [6(x) — ¢(y)| < (1/30)]x —y|
and |h(z) — h(y)| < (1/25)|z — y|. Therefore the condition (Hy) is satisfied with Ly = 1/60, Ly = 1/75,
L3 =1/30 and Ly = 1/25. We can show that

Q1 = 0.8185425995 < 1.

Hence, by Theorem 3.1, the boundary value problem (3.3) has a unique solution on [0, 3].

The second existence result will be proved by using the following Krasnoselskii’s fixed point theorem.

Lemma 3.1. (Krasnoselskii’s fized point theorem) [13]. Let M be a closed, bounded, convex and nonempty
subset of a Banach space X. Let A, B be the operators such that (a) Az+ By € M whenever x,y € M; (b) A

is compact and continuous; (¢) B is a contraction mapping. Then there exists z € M such that z = Az+ Bz.

Theorem 3.2. Assume that g, f : JXR — R, are continuous functions and two functionals ¢, h : C(JxR) —
R satisfying the assumption (Hy). In addition we suppose that:
(H3) |g(t,x)| < 61(t), |f(t,x)] < 8a(t), V(t,z) € J X R and 61,05 € C(J,RT),
|p(u)] < 33, |h(u)| < 64, Vu € C(J x R) and 83,84 € RT.
If the inequality

q Ta+tr

22 := L1<¢)1 a I‘(r—i—l)) +L2(¢)2_ P(g+r+1)

) 4 Ly®y + Ly®y < 1, (3.4)
then the boundary value problem (1.5) has at least one solution on J.

Proof. To applied Lemma 3.1, we let sup,c s [01(t)] = ||61]|, sup,c s [02(¢)] = [|d2]|, and a positive constant 7

as

72> |[61][ @1 + [|02]| P2 + d3P3 + I Py
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Define a ball Bf by B = {z € C : ||z|| < 7} which is closed, bounded, convex and nonempty subset of a

Banach space C. In addition, we define the operators P and Q on Br as

(Pa)(t) = I"g(s,2(s))(t) + 17" f(s,2(s))(t), t €0, T],

(Qu)(t)

el 1) . e =
= TR Tqtn { (B(e(0)) = I"gls,2()) ) = 177 1,2 0) 5073

— (h(x(t)) = 17" "g(s, 2(s))(T) — 177747 f (s, 2(s))(T)) }

1 I'(q) g+r—1 p+r p+q+r
+A[F(Q+7“)77 T (R(a(t) = 1P g(s,2(s))(T) — IPF977 f(s,2(5))(T))

—(@la(t) — I"g(s 2()) () — I £ (5. 2(5)) () ”‘”Tﬁq“-l],

te€0,T).

Obvious that Az = Px + Qz. To prove that P and Q satisfy (a) of Lemma 3.1, for z,y € By, we have

[Pz + Qyl
T T(q) Te=' [ TP ’ TPt
< 1l ey ( - )
(r+1) T(g+7r) |A] \T(p+1)T@r+1)  Tp+r+1)
+ i < F(Q) Tp+r anrr*l + F(q) 77T Tp+q+r1):|
Al \I'(g+1)T(p+r+1) Lp+q+1)T(r+1)
6 Tqur F(q) Tqu'r’fl TP ,r)qur
o {F(q—f—r—i— 1) T(g+7r) A (F(p+ 1)T(g+r+1)
p+q+r p+q+r
+ T) + 1( P(q) T anrrfl 4
L(p+q+r+1) A\T(g+ 1) T(p+g+r+1)
+ F(q) nq+T Tp+q+r—1) ]
Flp+q+1)T(g+r+1)
+53{ I'(q) Trtetr-? . I'(q) T”q“l}
Al(g+7) D(p+1)  [Al(p+q+1)
I'(q) -1 F(Q) -1
+6 {Tp+q+r + q+r
AT (g +7) NREDK
= [61]|@1 + [|02]| P2 + 035 + 64Dy
< T

This shows that Px + Qu € Br.
The operator Q satisfies the condition (¢) of Lemma 3.1 from assumption (H;) together with (3.4). The
final step is to show that the operator P is satisfied condition (b) of Lemma 3.1. Since the functions f, g are

continuous, we get that the operator P is continuous. Now we will show that the operator P is compact.
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For any = € By, we obtain

s Tq—i—r

+ |6 .
I 2HF(q—|—r—|— 1)

T
<6

Therefore, the set P(B7) is uniformly bounded. Let uslet sup; ,)e x5 [9(t,7)| = g < 0o and sup; e s« - | [ (£, 7)]

= f < 0o. Let t1,ty € J with t; < to. Then we have

|(Pz)(t2) — (Pz)(t1)]

< % /Otl [(ts — 5)™ "1 = (ts — )" ] ds| + F(gr) /: (ts — 5)"1ds
+F(qf+r) /Otl [(ta — )71 — (11 — )™+ ~1] ds
+1"(qf+r) /:2 (ta — )" 'ds
L 0 31 20— )+ L 1 - 20— )],

which is independent of x and tends to zero as t; — to. Thus, the set P(Br) is equicontinuous. Hence,
by the Arzeld-Ascoli theorem, the set P(Br) is relatively compact. Therefore, the operator P is compact
which is satisfied condition (b) of Lemma 3.1. Thus all the assumptions of Lemma 3.1 are satisfied. So the

boundary value problem (1.5) has at least one solution on J. The proof is completed. |

Remark 3.1. In the above theorem we can interchange the roles of the operators P and Q to obtain a second

result replacing (3.4) by the following condition:
7" T+
Q3 :=1L + L
PTUITr+1) T P(g+r+ 1)

Remark 3.2. Since Qs < Q and Q3 < Q4, the condition (3.2) can be relazed by (3.4) and (3.5). However,

<1 (3.5)

the conclusion of both theorems has different mentions between uniqueness and multiplicity of solutions.

Example 3.2. Consider the following nonlinear sequential Riemann-Liouville and Caputo fractional differ-

ential equation with nonlocal integral boundary conditions

2t
(2 + 100)2 + 19300 |z(t)| + 1

B cos?(2mt) |lz(t)]
T 12+ 28000 <|x(t)| + 1) +eos(nt), 0<t <4, (3.6)
2(2) = —BL gy AL gy

~ 9840(|z(2)| + 1)
Setting constants ¢ = 1/2, r = 2/3, p = 2/3, n = 2, T = 4, then we can fine that ®; = 6717.422119,

= 9990(|z(3)[+ 1)’

®y = 6652.469591, &3 = 3119.677669, &, = 2175.349828. Next we set the following functions

e2t ||

(t2 +100)2 + 19300 ||+ 1’

g(t7$) =
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f(t,2) = <o) ( 2] )—i—cos(ﬂt)

12428000 \ |x|+1
|z| ||
- oy =—E L35
(=) = S990(2[ £ 1)’ @) = 10zl 71 T

Since |g(t, 2)—g(t, )| < (1/29300)}a—yl, | (¢ 2)— (1, )] < (1/28000) [z —y], |6(x)—o(t, )] < (1/9990) ]
and |h(z) — h(y)| < (1/9840)|z — y|, the condition (H;) fulfilled. It is obvious that

2t
9t )| < goens. |F(t@)] <1tcos(nt), [p(a)| <1, h(2) < 36.

Then the condition (Hs) is satisfied. In addition we have
Q9 =0.999918 < 1.

Hence, by Theorem 3.2, the boundary value problem (3.6) has at least one solution on [0, 4].

Remark 3.3. The problem (3.6) can not be applied by Theorem 3.1 since 1 = 1.000204 > 1.

Now, our third existence result is based on Leray-Schauder’s Nonlinear Alternative.

Lemma 3.2. (Nonlinear alternative for single-valued maps) [11]. Let E be a Banach space, C be a closed,
convex subset of E, U be an open subset of C and 0 € U. Suppose that A : U — C is a continuous, compact

(that is, A(U) is a relatively compact subset of C) map. Then either
(i) A has a fived point in U, or
(ii) there is a uw € OU (the boundary of U in C) and X € (0,1) with u = AA(u).

Theorem 3.3. Assume that g, f : JXxR — R are continuous functions and two functionals ¢, h : C(JxR) —
R. In addition we suppose that:
(H3) there exist continuous nondecreasing functions 1,1s : [0,00) — (0,00) and functions pi,p2 €

C(J,RT) such that
lg(t, )| < pr@a(llz)), £ 2)] < p2(t)ea(llz]]) for each (t,x) € T X R;

(Hy4) there exists a constant N > 0 such that

N
O ||p1 (|91 (N) + Po[[p2(|12(N) + P3|d(N)| + 4| h(N)]|

Then the boundary value problem (1.5) has at least one solution on J.

> 1.

Proof. Let us define a positive number R and let a ball Bg = {z € C : ||z|| < R} be a closed, convex subset
of C. Next, we will prove that the operator A, defined by (3.1), maps bounded sets (balls) into bounded sets

in C. For any t € J and x € Bg, we have

| Az (t)]
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IN

I"[g(s, x(s))[(t) + I f (s, 2(s))I(t)

“H Tt [(|¢<x<t>>| + I|g(s, 2(s))|n) + 1977 (5,2(5) () 1

+7
Al T(g+r)

+ ([ @®)] + 17 g(s, 2())(T) + I7H | f (s, 2(s))[(T)) }

L L) gtr—1 T P (s, z(s PHITT £(s (s
+|A| [p(q+r)77 (In(z()] + 1P |g(s, z(s))|(T) + I £ (s, 2(s))(T))

T (160 + I lg(s, ()| () + 17| £, () (n)) WT%TWM]
" Ta+tr

||p1‘|w1<||$‘|)ﬁ *lp2llv2 (el 5

IN

Tt T(q)

v 0
e e sttt + et

Tp+r

nq+r
+ Upallvalhel)) gy )+ (1Dl + a5

pA-q+7
+<|p2||w2<x||>>p(pfq+w)]
1 [ I'(g)

JA[[T(g+1)

Trir

T < [AIzD] + (Pl (ll))

(p+r+1)
Tpta+r ) F(q)
(p+q+r+1) Lp+q+7)

+(lp2ll92(llz 1)) 7 <¢(SEII)I

T q+r
+Ulon(lel) s + Qralvalel) 5o )|

" T(q) To=1/( TP o Tt
[r<r+1> T+ A <r(p+ DTo+1) r<p+r+1>>

1 F(q) Tp-i—?“ q+r—1 F(Q) 77T p+q+r—1
|A|(F(q+1)F(p+r+1)n+ F(p+q+1)F(r+1)T++ H

Ta+r I'(q) Tatr—1 ( TP natr
X + +
(pslen 1) + | + 1o T (ot e
Tp+q+r 1 F(q) Tp+q+7.
T YL n
I'p+qg+r+1) [A[\T(¢g+1)T(p+qg+r+1)
I'(q) nttr _
-+ Tp+q+r 1
T(p+q+1)T(g+7r+1) Ip2llv= (i)

+{ I(q) Trrotrt T'(q)
AlT(g+7) T(p+1)  [Al(p+q+1)

IN

q+r—1 +

TW*T‘*] o(llz])|

a0) p+q+r—1 I'(g) gtr—1 -
+{|A|F(q+r)T T AT+ D" ]|h(|| DI

= Pulpal[ga(lzl)) + Pallp2llvz(llzl) + @slo((lz])] + Pafh(lz]])]

IN

1 |lp1 Y1 (R) + Pa|pal[th2(R) + @3|p(R)| + P4|h(R)].

Therefore, from the above result, we conclude that

[Az|| < ®1|lp1[lv1(R) + Pal|pal[t2(R) + P3]p(R)| + u|h(R)].

(p+1)
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Then the set A(Bg) is uniformly bounded. Next, we show that the operator A maps bounded sets into

equicontinuous sets of C. Let vq,v5 € J with v; < 15 and for any « € B, then we have

[(Az)(v2) = (Az) (1)

< IMg(s,2(s))(v2) = g(s,2(s)) ()| + 177 (| f (s, 2(5)) (72) — f(5,2(5)) (1))
gt —-uf+r_1‘ T'(q)

+
Al L(g+7)

(6a002) — 9 00))

(p+1)
1[ I'(q)

+ﬂﬂwwﬂ)—h@@ﬂﬂﬁ4-m|Fm+7ﬁﬁ+“dﬂmw@ﬁ%—MxWﬁW

+ (|o(x(v2)) — d(x(11))]) FF(q)Tp“‘J””l}

(p+q+r)
||p1||’(/}1(R) r r r ||p2‘|¢2(R) q+r q+r r
‘TGITTUQ—QP+%Q—QJ]+f617175Wj'—q+}+ﬂw—tﬂ}

IN

+r—1 +r—1
R I

Al I(g+r)

T ((h(z(m)) - h<x<ul>>|>} +T [F(E(j))w (Ih(a(va)) — h(a())

n [ (6a002) — 9 00)) s

(p+1)

+ (|o(x(v2)) — d(x(11))]) F(pl—?-(z)—i-T)TpﬂJrrl} .

Obviously the right hand side of the above inequality tends to zero independently of x € Bgr as v1 — v»,
which implies that the set A(Bg) is equicontinuous. Therefore it follows by the Arzeld-Ascoli theorem that
the set A(Bp) is relative compact. Then the operator 4 is compact.

Let x(t) be a solution of problem (1.5). Then, for ¢t € J and x € Br, we have

2]l < @1llpa[la(12]]) + P2llp2llv2(llz]l) + Pslo([[z())] + Pala([|z]])]-

Consequently, we have

]
@1 [lpal[n(llzll) + Pallp2lla(llz]) + Pso(l|])] + Paf(llz]])]

<1

Let us define a subset of Br as
U={zeC:|z| < N}, (3.7)

where N is satisfied the condition (H;). Note that the operator A : U — C is continuous and completely
continuous. From the choice of U, there is no x € 9U such that x = Az for some 6 € (0,1). Then, by
nonlinear alternative of Leray-Schauder type, Lemma 3.2, we get that the operator A has a fixed point in

U, which is a solution of the boundary value problem (1.5). This completes the proof. O
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Example 3.3. Consider the following nonlinear sequential Riemann-Liouville and Caputo fractional differ-
ential equation with nonlocal integral boundary conditions

RL 4 (O 2 2e~tcos?t [ |xf®
D3 D3sx(t) — 1
( ) = 500 *

x4 +1
2sin* ¢ 28
= 1), 0<t<5, 3.8
1000 (|w|7+1+ ) (38)
x(4) 3 x(3)
2) = —= I52(5 —

Setting constants ¢ = 4/5, r =2/5, p =3/5, n =2, T = 5, then we get ®; = 72.200440, 5 = 129.62057,
®3 = 34.389063 and P4 = 2.841029. Let the following functions

2e tcos?t [ |xf®
g(t,x) =

2sin? ¢ 28
1 ta) = 1
1000 \zfy1 " ) &%) = =555 ( * )
X

2|74+ 1

X

L )= =
500° @) = 300

It follows that

+1
o)) < 2cos” (12
o(t.0)| < 20051 (150

1000
Hence, we choose py(t) = 2cos” ¢, ¢1(|z]) = (|z] +1)/(1000), p2(t) = 2sin"t, yo(|z[) = (2| + 1)/(1000).
Then there exists a constant N > 0.97645553 satisfying inequality

and f(t,x)|325m4t<|“|“>.

N
(72.200440)(2) (S551) + (129.62057)(2) (4552

> 1.
ToEE) + (34.389063) | oo | 4 (22.841029) | 55 |
Thus, by Theorem 3.3, the boundary value problem (3.8) has at least one solution on [0, 5].

The following result can be obtained by substituting pi(t),p2(t) = 1 and linear functions 1 (|z|) =
Mi|z| + K7 and v2(|z]) = Ma|z| + K2 in Theorem 3.3.

Corollary 3.1. Assume that the continuous functions g, f : JXR — R and two functionals ¢, h : C(JxR) —
R are satisfied

lg(t,2)| < My|z| + K1, |f(t,2)] < Malz|+ Ky for each (t,x) € J X R,
|o(x)| < Ms|z|+ Ky, |h(z)| < Mylz|+ K4 for each x € C(J,R),

where My, My, M3, My >0 and K1, Ko, K3, K4 > 0. If M1®, + My®s + M3®P3 + MyP4 < 1, then boundary
value problem (1.5) has at least one solution on [0,T].
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